X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fthread.cpp;h=344cfb794782d7a559194ccf7007645c2bc63bd2;hp=60c0ce71c683b0f917a8b2e28535eb8ff2548b2f;hb=f5622cd5ec7836e899e263cc4cd4cc386e1ed5f4;hpb=a1a7bc84da4a6f180179e437494dd485cba1711d diff --git a/src/thread.cpp b/src/thread.cpp index 60c0ce71..344cfb79 100644 --- a/src/thread.cpp +++ b/src/thread.cpp @@ -123,7 +123,7 @@ bool Thread::available_to(const Thread* master) const { // No split points means that the thread is available as a slave for any // other thread otherwise apply the "helpful master" concept if possible. - return !size || (splitPoints[size - 1].slavesMask & (1ULL << master->idx)); + return !size || splitPoints[size - 1].slavesMask.test(master->idx); } @@ -181,20 +181,20 @@ void MainThread::idle_loop() { // init() is called at startup to create and launch requested threads, that will -// go immediately to sleep due to 'sleepWhileIdle' set to true. We cannot use -// a c'tor because Threads is a static object and we need a fully initialized -// engine at this point due to allocation of Endgames in Thread c'tor. +// go immediately to sleep. We cannot use a c'tor because Threads is a static +// object and we need a fully initialized engine at this point due to allocation +// of Endgames in Thread c'tor. void ThreadPool::init() { - sleepWhileIdle = true; timer = new_thread(); push_back(new_thread()); read_uci_options(); } -// exit() cleanly terminates the threads before the program exits +// exit() cleanly terminates the threads before the program exits. Cannot be done in +// d'tor because we have to terminate the threads before to free ThreadPool object. void ThreadPool::exit() { @@ -271,7 +271,7 @@ void Thread::split(Position& pos, const Stack* ss, Value alpha, Value beta, Valu sp.masterThread = this; sp.parentSplitPoint = activeSplitPoint; - sp.slavesMask = 1ULL << idx; + sp.slavesMask = 0, sp.slavesMask.set(idx); sp.depth = depth; sp.bestValue = *bestValue; sp.bestMove = *bestMove; @@ -292,45 +292,40 @@ void Thread::split(Position& pos, const Stack* ss, Value alpha, Value beta, Valu Threads.mutex.lock(); sp.mutex.lock(); + sp.allSlavesSearching = true; // Must be set under lock protection ++splitPointsSize; activeSplitPoint = &sp; activePosition = NULL; - int slavesCnt = 1; // This thread is always included - Thread* slave; - - while (!Fake && (slave = Threads.available_slave(this)) != NULL) - { - ++slavesCnt; - sp.slavesMask |= 1ULL << slave->idx; - slave->activeSplitPoint = &sp; - slave->searching = true; // Slave leaves idle_loop() - slave->notify_one(); // Could be sleeping - } + if (!Fake) + for (Thread* slave; (slave = Threads.available_slave(this)) != NULL; ) + { + sp.slavesMask.set(slave->idx); + slave->activeSplitPoint = &sp; + slave->searching = true; // Slave leaves idle_loop() + slave->notify_one(); // Could be sleeping + } // Everything is set up. The master thread enters the idle loop, from which // it will instantly launch a search, because its 'searching' flag is set. // The thread will return from the idle loop when all slaves have finished // their work at this split point. - if (slavesCnt > 1 || Fake) - { - sp.mutex.unlock(); - Threads.mutex.unlock(); - - Thread::idle_loop(); // Force a call to base class idle_loop() - - // In the helpful master concept, a master can help only a sub-tree of its - // split point and because everything is finished here, it's not possible - // for the master to be booked. - assert(!searching); - assert(!activePosition); - - // We have returned from the idle loop, which means that all threads are - // finished. Note that setting 'searching' and decreasing splitPointsSize is - // done under lock protection to avoid a race with Thread::available_to(). - Threads.mutex.lock(); - sp.mutex.lock(); - } + sp.mutex.unlock(); + Threads.mutex.unlock(); + + Thread::idle_loop(); // Force a call to base class idle_loop() + + // In the helpful master concept, a master can help only a sub-tree of its + // split point and because everything is finished here, it's not possible + // for the master to be booked. + assert(!searching); + assert(!activePosition); + + // We have returned from the idle loop, which means that all threads are + // finished. Note that setting 'searching' and decreasing splitPointsSize is + // done under lock protection to avoid a race with Thread::available_to(). + Threads.mutex.lock(); + sp.mutex.lock(); searching = true; --splitPointsSize;