X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fthread.cpp;h=3b87a72415ddd0fd3fc57ba345a55c3af78fbc97;hp=8269dcf3d50029d2e4e355a8da8c345b48ddee80;hb=b1768c115cf2bbe7ed6f89dc53a8db85b4442353;hpb=d156e7a20b4ea15c2cbb4bcfa2dca5f1e96ece3b diff --git a/src/thread.cpp b/src/thread.cpp index 8269dcf3..3b87a724 100644 --- a/src/thread.cpp +++ b/src/thread.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,49 +17,122 @@ along with this program. If not, see . */ +#include #include +#include "movegen.h" +#include "search.h" #include "thread.h" #include "ucioption.h" -ThreadsManager Threads; // Global object definition +using namespace Search; + +ThreadsManager Threads; // Global object namespace { extern "C" { // start_routine() is the C function which is called when a new thread - // is launched. It simply calls idle_loop() of the supplied thread. - // There are two versions of this function; one for POSIX threads and - // one for Windows threads. - -#if defined(_MSC_VER) + // is launched. It simply calls idle_loop() of the supplied thread. The first + // and last thread are special. First one is the main search thread while the + // last one mimics a timer, they run in main_loop() and timer_loop(). +#if defined(_WIN32) || defined(_WIN64) DWORD WINAPI start_routine(LPVOID thread) { +#else + void* start_routine(void* thread) { +#endif + + Thread* th = (Thread*)thread; + + if (th->threadID == 0) + th->main_loop(); + + else if (th->threadID == MAX_THREADS) + th->timer_loop(); + + else + th->idle_loop(NULL); - ((Thread*)thread)->idle_loop(NULL); return 0; } -#else +} } - void* start_routine(void* thread) { - ((Thread*)thread)->idle_loop(NULL); - return NULL; +// Thread::timer_loop() is where the timer thread waits maxPly milliseconds and +// then calls do_timer_event(). If maxPly is 0 thread sleeps until is woken up. +extern void check_time(); + +void Thread::timer_loop() { + + while (!do_exit) + { + lock_grab(sleepLock); + timed_wait(sleepCond, sleepLock, maxPly ? maxPly : INT_MAX); + lock_release(sleepLock); + check_time(); } +} -#endif -} } +// Thread::main_loop() is where the main thread is parked waiting to be started +// when there is a new search. Main thread will launch all the slave threads. +void Thread::main_loop() { + + while (true) + { + lock_grab(sleepLock); + + do_sleep = true; // Always return to sleep after a search + is_searching = false; + + while (do_sleep && !do_exit) + { + cond_signal(Threads.sleepCond); // Wake up UI thread if needed + cond_wait(sleepCond, sleepLock); + } -// wake_up() wakes up the thread, normally at the beginning of the search or, -// if "sleeping threads" is used, when there is some work to do. + lock_release(sleepLock); + + if (do_exit) + return; + + is_searching = true; + + Search::think(); + } +} + + +// Thread::wake_up() wakes up the thread, normally at the beginning of the search +// or, if "sleeping threads" is used, when there is some work to do. void Thread::wake_up() { - lock_grab(&sleepLock); - cond_signal(&sleepCond); - lock_release(&sleepLock); + lock_grab(sleepLock); + cond_signal(sleepCond); + lock_release(sleepLock); +} + + +// Thread::wait_for_stop_or_ponderhit() is called when the maximum depth is +// reached while the program is pondering. The point is to work around a wrinkle +// in the UCI protocol: When pondering, the engine is not allowed to give a +// "bestmove" before the GUI sends it a "stop" or "ponderhit" command. We simply +// wait here until one of these commands (that raise StopRequest) is sent and +// then return, after which the bestmove and pondermove will be printed. + +void Thread::wait_for_stop_or_ponderhit() { + + Signals.stopOnPonderhit = true; + + lock_grab(sleepLock); + + while (!Signals.stop) + cond_wait(sleepCond, sleepLock); + + lock_release(sleepLock); } @@ -69,8 +142,9 @@ void Thread::wake_up() { bool Thread::cutoff_occurred() const { for (SplitPoint* sp = splitPoint; sp; sp = sp->parent) - if (sp->is_betaCutoff) + if (sp->cutoff) return true; + return false; } @@ -89,29 +163,22 @@ bool Thread::is_available_to(int master) const { // Make a local copy to be sure doesn't become zero under our feet while // testing next condition and so leading to an out of bound access. - int localActiveSplitPoints = activeSplitPoints; + int sp_count = activeSplitPoints; // No active split points means that the thread is available as a slave for any // other thread otherwise apply the "helpful master" concept if possible. - if ( !localActiveSplitPoints - || splitPoints[localActiveSplitPoints - 1].is_slave[master]) - return true; - - return false; + return !sp_count || (splitPoints[sp_count - 1].slavesMask & (1ULL << master)); } -// read_uci_options() updates number of active threads and other internal -// parameters according to the UCI options values. It is called before -// to start a new search. +// read_uci_options() updates internal threads parameters from the corresponding +// UCI options. It is called before to start a new search. void ThreadsManager::read_uci_options() { - maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value(); - minimumSplitDepth = Options["Minimum Split Depth"].value() * ONE_PLY; - useSleepingThreads = Options["Use Sleeping Threads"].value(); - - set_size(Options["Threads"].value()); + maxThreadsPerSplitPoint = Options["Max Threads per Split Point"]; + minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY; + useSleepingThreads = Options["Use Sleeping Threads"]; } @@ -120,7 +187,7 @@ void ThreadsManager::read_uci_options() { void ThreadsManager::set_size(int cnt) { - assert(cnt > 0 && cnt <= MAX_THREADS); + assert(cnt > 0 && cnt < MAX_THREADS); activeThreads = cnt; @@ -129,13 +196,15 @@ void ThreadsManager::set_size(int cnt) { { // Dynamically allocate pawn and material hash tables according to the // number of active threads. This avoids preallocating memory for all - // possible threads if only few are used as, for instance, on mobile - // devices where memory is scarce and allocating for MAX_THREADS could - // even result in a crash. + // possible threads if only few are used. threads[i].pawnTable.init(); threads[i].materialTable.init(); + threads[i].maxPly = 0; threads[i].do_sleep = false; + + if (!useSleepingThreads) + threads[i].wake_up(); } else threads[i].do_sleep = true; @@ -147,39 +216,30 @@ void ThreadsManager::set_size(int cnt) { void ThreadsManager::init() { - // Initialize threads lock, used when allocating slaves during splitting - lock_init(&threadsLock); + cond_init(sleepCond); + lock_init(splitLock); - // Initialize sleep and split point locks - for (int i = 0; i < MAX_THREADS; i++) + for (int i = 0; i <= MAX_THREADS; i++) { - lock_init(&threads[i].sleepLock); - cond_init(&threads[i].sleepCond); + lock_init(threads[i].sleepLock); + cond_init(threads[i].sleepCond); for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_init(&(threads[i].splitPoints[j].lock)); + lock_init(threads[i].splitPoints[j].lock); } - // Initialize main thread's associated data - threads[0].is_searching = true; - threads[0].threadID = 0; - set_size(1); // This makes all the threads but the main to go to sleep + // Allocate main thread tables to call evaluate() also when not searching + threads[0].pawnTable.init(); + threads[0].materialTable.init(); - // Create and launch all the threads but the main that is already running, - // threads will go immediately to sleep. - for (int i = 1; i < MAX_THREADS; i++) + // Create and launch all the threads, threads will go immediately to sleep + for (int i = 0; i <= MAX_THREADS; i++) { threads[i].is_searching = false; + threads[i].do_sleep = (i != 0); // Avoid a race with start_thinking() threads[i].threadID = i; -#if defined(_MSC_VER) - threads[i].handle = CreateThread(NULL, 0, start_routine, (LPVOID)&threads[i], 0, NULL); - bool ok = (threads[i].handle != NULL); -#else - bool ok = (pthread_create(&threads[i].handle, NULL, start_routine, (void*)&threads[i]) == 0); -#endif - - if (!ok) + if (!thread_create(threads[i].handle, start_routine, threads[i])) { std::cerr << "Failed to create thread number " << i << std::endl; ::exit(EXIT_FAILURE); @@ -192,43 +252,36 @@ void ThreadsManager::init() { void ThreadsManager::exit() { - for (int i = 0; i < MAX_THREADS; i++) + for (int i = 0; i <= MAX_THREADS; i++) { - // Wake up all the slave threads and wait for termination - if (i != 0) - { - threads[i].do_terminate = true; - threads[i].wake_up(); + assert(threads[i].do_sleep); -#if defined(_MSC_VER) - WaitForSingleObject(threads[i].handle, 0); - CloseHandle(threads[i].handle); -#else - pthread_join(threads[i].handle, NULL); -#endif - } + threads[i].do_exit = true; // Search must be already finished + threads[i].wake_up(); + + thread_join(threads[i].handle); // Wait for thread termination - // Now we can safely destroy locks and wait conditions - lock_destroy(&threads[i].sleepLock); - cond_destroy(&threads[i].sleepCond); + lock_destroy(threads[i].sleepLock); + cond_destroy(threads[i].sleepCond); for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_destroy(&(threads[i].splitPoints[j].lock)); + lock_destroy(threads[i].splitPoints[j].lock); } - lock_destroy(&threadsLock); + lock_destroy(splitLock); + cond_destroy(sleepCond); } // available_slave_exists() tries to find an idle thread which is available as -// a slave for the thread with threadID "master". +// a slave for the thread with threadID 'master'. bool ThreadsManager::available_slave_exists(int master) const { assert(master >= 0 && master < activeThreads); for (int i = 0; i < activeThreads; i++) - if (i != master && threads[i].is_available_to(master)) + if (threads[i].is_available_to(master)) return true; return false; @@ -236,20 +289,20 @@ bool ThreadsManager::available_slave_exists(int master) const { // split() does the actual work of distributing the work at a node between -// several available threads. If it does not succeed in splitting the -// node (because no idle threads are available, or because we have no unused -// split point objects), the function immediately returns. If splitting is -// possible, a SplitPoint object is initialized with all the data that must be -// copied to the helper threads and we tell our helper threads that they have -// been assigned work. This will cause them to instantly leave their idle loops and -// call search().When all threads have returned from search() then split() returns. +// several available threads. If it does not succeed in splitting the node +// (because no idle threads are available, or because we have no unused split +// point objects), the function immediately returns. If splitting is possible, a +// SplitPoint object is initialized with all the data that must be copied to the +// helper threads and then helper threads are told that they have been assigned +// work. This will cause them to instantly leave their idle loops and call +// search(). When all threads have returned from search() then split() returns. template -Value ThreadsManager::split(Position& pos, SearchStack* ss, Value alpha, Value beta, +Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta, Value bestValue, Depth depth, Move threatMove, int moveCount, MovePicker* mp, int nodeType) { - assert(pos.is_ok()); - assert(bestValue >= -VALUE_INFINITE); + assert(pos.pos_is_ok()); + assert(bestValue > -VALUE_INFINITE); assert(bestValue <= alpha); assert(alpha < beta); assert(beta <= VALUE_INFINITE); @@ -257,20 +310,19 @@ Value ThreadsManager::split(Position& pos, SearchStack* ss, Value alpha, Value b assert(pos.thread() >= 0 && pos.thread() < activeThreads); assert(activeThreads > 1); - int i, master = pos.thread(); + int master = pos.thread(); Thread& masterThread = threads[master]; - // If we already have too many active split points, don't split if (masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS) return bestValue; - // Pick the next available split point object from the split point stack - SplitPoint* sp = masterThread.splitPoints + masterThread.activeSplitPoints; + // Pick the next available split point from the split point stack + SplitPoint* sp = &masterThread.splitPoints[masterThread.activeSplitPoints]; - // Initialize the split point object sp->parent = masterThread.splitPoint; sp->master = master; - sp->is_betaCutoff = false; + sp->cutoff = false; + sp->slavesMask = 1ULL << master; sp->depth = depth; sp->threatMove = threatMove; sp->alpha = alpha; @@ -282,69 +334,138 @@ Value ThreadsManager::split(Position& pos, SearchStack* ss, Value alpha, Value b sp->pos = &pos; sp->nodes = 0; sp->ss = ss; - for (i = 0; i < activeThreads; i++) - sp->is_slave[i] = false; - // If we are here it means we are not available assert(masterThread.is_searching); - int workersCnt = 1; // At least the master is included + int slavesCnt = 0; // Try to allocate available threads and ask them to start searching setting - // the state to Thread::WORKISWAITING, this must be done under lock protection - // to avoid concurrent allocation of the same slave by another master. - lock_grab(&threadsLock); + // is_searching flag. This must be done under lock protection to avoid concurrent + // allocation of the same slave by another master. + lock_grab(sp->lock); + lock_grab(splitLock); - for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++) - if (i != master && threads[i].is_available_to(master)) + for (int i = 0; i < activeThreads && !Fake; i++) + if (threads[i].is_available_to(master)) { - workersCnt++; - sp->is_slave[i] = true; + sp->slavesMask |= 1ULL << i; threads[i].splitPoint = sp; - - // This makes the slave to exit from idle_loop() - threads[i].is_searching = true; + threads[i].is_searching = true; // Slave leaves idle_loop() if (useSleepingThreads) threads[i].wake_up(); - } - - lock_release(&threadsLock); - // We failed to allocate even one slave, return - if (!Fake && workersCnt == 1) - return bestValue; + if (++slavesCnt + 1 >= maxThreadsPerSplitPoint) // Master is always included + break; + } masterThread.splitPoint = sp; masterThread.activeSplitPoints++; + lock_release(splitLock); + lock_release(sp->lock); + // Everything is set up. The master thread enters the idle loop, from which // it will instantly launch a search, because its is_searching flag is set. // We pass the split point as a parameter to the idle loop, which means that // the thread will return from the idle loop when all slaves have finished // their work at this split point. - masterThread.idle_loop(sp); - - // In helpful master concept a master can help only a sub-tree, and - // because here is all finished is not possible master is booked. - assert(!masterThread.is_searching); + if (slavesCnt || Fake) + masterThread.idle_loop(sp); // We have returned from the idle loop, which means that all threads are - // finished. Note that changing state and decreasing activeSplitPoints is done - // under lock protection to avoid a race with Thread::is_available_to(). - lock_grab(&threadsLock); + // finished. Note that setting is_searching and decreasing activeSplitPoints is + // done under lock protection to avoid a race with Thread::is_available_to(). + lock_grab(sp->lock); // To protect sp->nodes + lock_grab(splitLock); masterThread.is_searching = true; masterThread.activeSplitPoints--; - - lock_release(&threadsLock); - masterThread.splitPoint = sp->parent; pos.set_nodes_searched(pos.nodes_searched() + sp->nodes); + lock_release(splitLock); + lock_release(sp->lock); + return sp->bestValue; } // Explicit template instantiations -template Value ThreadsManager::split(Position&, SearchStack*, Value, Value, Value, Depth, Move, int, MovePicker*, int); -template Value ThreadsManager::split(Position&, SearchStack*, Value, Value, Value, Depth, Move, int, MovePicker*, int); +template Value ThreadsManager::split(Position&, Stack*, Value, Value, Value, Depth, Move, int, MovePicker*, int); +template Value ThreadsManager::split(Position&, Stack*, Value, Value, Value, Depth, Move, int, MovePicker*, int); + + +// ThreadsManager::set_timer() is used to set the timer to trigger after msec +// milliseconds. If msec is 0 then timer is stopped. + +void ThreadsManager::set_timer(int msec) { + + Thread& timer = threads[MAX_THREADS]; + + lock_grab(timer.sleepLock); + timer.maxPly = msec; + cond_signal(timer.sleepCond); // Wake up and restart the timer + lock_release(timer.sleepLock); +} + + +// ThreadsManager::start_thinking() is used by UI thread to wake up the main +// thread parked in main_loop() and starting a new search. If asyncMode is true +// then function returns immediately, otherwise caller is blocked waiting for +// the search to finish. + +void ThreadsManager::start_thinking(const Position& pos, const LimitsType& limits, + const std::set& searchMoves, bool async) { + Thread& main = threads[0]; + + lock_grab(main.sleepLock); + + // Wait main thread has finished before to launch a new search + while (!main.do_sleep) + cond_wait(sleepCond, main.sleepLock); + + // Copy input arguments to initialize the search + RootPosition.copy(pos, 0); + Limits = limits; + RootMoves.clear(); + + // Populate RootMoves with all the legal moves (default) or, if a searchMoves + // set is given, with the subset of legal moves to search. + for (MoveList ml(pos); !ml.end(); ++ml) + if (searchMoves.empty() || searchMoves.count(ml.move())) + RootMoves.push_back(RootMove(ml.move())); + + // Reset signals before to start the new search + Signals.stopOnPonderhit = Signals.firstRootMove = false; + Signals.stop = Signals.failedLowAtRoot = false; + + main.do_sleep = false; + cond_signal(main.sleepCond); // Wake up main thread and start searching + + if (!async) + while (!main.do_sleep) + cond_wait(sleepCond, main.sleepLock); + + lock_release(main.sleepLock); +} + + +// ThreadsManager::stop_thinking() is used by UI thread to raise a stop request +// and to wait for the main thread finishing the search. Needed to wait exiting +// and terminate the threads after a 'quit' command. + +void ThreadsManager::stop_thinking() { + + Thread& main = threads[0]; + + Search::Signals.stop = true; + + lock_grab(main.sleepLock); + + cond_signal(main.sleepCond); // In case is waiting for stop or ponderhit + + while (!main.do_sleep) + cond_wait(sleepCond, main.sleepLock); + + lock_release(main.sleepLock); +}