X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fthread.cpp;h=7507ded119e5329f5df4cb9170ce5e79769c54d1;hp=18e35fb062ca9e11919cd6bab60148d2c13a3e7a;hb=6088ac210883c272832360f28c8922ff1514ef87;hpb=87b483f99922c493d20b40d9dd16beeb9ee443c1 diff --git a/src/thread.cpp b/src/thread.cpp index 18e35fb0..7507ded1 100644 --- a/src/thread.cpp +++ b/src/thread.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,8 +17,10 @@ along with this program. If not, see . */ +#include #include +#include "movegen.h" #include "search.h" #include "thread.h" #include "ucioption.h" @@ -34,7 +36,7 @@ namespace { extern "C" { // and last thread are special. First one is the main search thread while the // last one mimics a timer, they run in main_loop() and timer_loop(). -#if defined(_MSC_VER) +#if defined(_WIN32) || defined(_WIN64) DWORD WINAPI start_routine(LPVOID thread) { #else void* start_routine(void* thread) { @@ -57,14 +59,80 @@ namespace { extern "C" { } } -// wake_up() wakes up the thread, normally at the beginning of the search or, -// if "sleeping threads" is used, when there is some work to do. +// Thread::timer_loop() is where the timer thread waits maxPly milliseconds and +// then calls do_timer_event(). If maxPly is 0 thread sleeps until is woken up. +extern void check_time(); + +void Thread::timer_loop() { + + while (!do_exit) + { + lock_grab(sleepLock); + timed_wait(sleepCond, sleepLock, maxPly ? maxPly : INT_MAX); + lock_release(sleepLock); + check_time(); + } +} + + +// Thread::main_loop() is where the main thread is parked waiting to be started +// when there is a new search. Main thread will launch all the slave threads. + +void Thread::main_loop() { + + while (true) + { + lock_grab(sleepLock); + + do_sleep = true; // Always return to sleep after a search + is_searching = false; + + while (do_sleep && !do_exit) + { + cond_signal(Threads.sleepCond); // Wake up UI thread if needed + cond_wait(sleepCond, sleepLock); + } + + lock_release(sleepLock); + + if (do_exit) + return; + + is_searching = true; + + Search::think(); + } +} + + +// Thread::wake_up() wakes up the thread, normally at the beginning of the search +// or, if "sleeping threads" is used, when there is some work to do. void Thread::wake_up() { - lock_grab(&sleepLock); - cond_signal(&sleepCond); - lock_release(&sleepLock); + lock_grab(sleepLock); + cond_signal(sleepCond); + lock_release(sleepLock); +} + + +// Thread::wait_for_stop_or_ponderhit() is called when the maximum depth is +// reached while the program is pondering. The point is to work around a wrinkle +// in the UCI protocol: When pondering, the engine is not allowed to give a +// "bestmove" before the GUI sends it a "stop" or "ponderhit" command. We simply +// wait here until one of these commands (that raise StopRequest) is sent and +// then return, after which the bestmove and pondermove will be printed. + +void Thread::wait_for_stop_or_ponderhit() { + + Signals.stopOnPonderhit = true; + + lock_grab(sleepLock); + + while (!Signals.stop) + cond_wait(sleepCond, sleepLock); + + lock_release(sleepLock); } @@ -73,8 +141,8 @@ void Thread::wake_up() { bool Thread::cutoff_occurred() const { - for (SplitPoint* sp = splitPoint; sp; sp = sp->parent) - if (sp->is_betaCutoff) + for (SplitPoint* sp = curSplitPoint; sp; sp = sp->parent) + if (sp->cutoff) return true; return false; @@ -95,28 +163,22 @@ bool Thread::is_available_to(int master) const { // Make a local copy to be sure doesn't become zero under our feet while // testing next condition and so leading to an out of bound access. - int localActiveSplitPoints = activeSplitPoints; + int spCnt = splitPointsCnt; // No active split points means that the thread is available as a slave for any // other thread otherwise apply the "helpful master" concept if possible. - if ( !localActiveSplitPoints - || splitPoints[localActiveSplitPoints - 1].is_slave[master]) - return true; - - return false; + return !spCnt || (splitPoints[spCnt - 1].slavesMask & (1ULL << master)); } -// read_uci_options() updates number of active threads and other parameters -// according to the UCI options values. It is called before to start a new search. +// read_uci_options() updates internal threads parameters from the corresponding +// UCI options. It is called before to start a new search. void ThreadsManager::read_uci_options() { - maxThreadsPerSplitPoint = Options["Max Threads per Split Point"].value(); - minimumSplitDepth = Options["Min Split Depth"].value() * ONE_PLY; - useSleepingThreads = Options["Use Sleeping Threads"].value(); - - set_size(Options["Threads"].value()); + maxThreadsPerSplitPoint = Options["Max Threads per Split Point"]; + minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY; + useSleepingThreads = Options["Use Sleeping Threads"]; } @@ -125,11 +187,11 @@ void ThreadsManager::read_uci_options() { void ThreadsManager::set_size(int cnt) { - assert(cnt > 0 && cnt <= MAX_THREADS); + assert(cnt > 0 && cnt < MAX_THREADS); activeThreads = cnt; - for (int i = 1; i < MAX_THREADS; i++) // Ignore main thread + for (int i = 0; i < MAX_THREADS; i++) if (i < activeThreads) { // Dynamically allocate pawn and material hash tables according to the @@ -137,8 +199,12 @@ void ThreadsManager::set_size(int cnt) { // possible threads if only few are used. threads[i].pawnTable.init(); threads[i].materialTable.init(); + threads[i].maxPly = 0; threads[i].do_sleep = false; + + if (!useSleepingThreads) + threads[i].wake_up(); } else threads[i].do_sleep = true; @@ -150,18 +216,16 @@ void ThreadsManager::set_size(int cnt) { void ThreadsManager::init() { - // Initialize sleep condition and lock used by thread manager - cond_init(&sleepCond); - lock_init(&threadsLock); + cond_init(sleepCond); + lock_init(splitLock); - // Initialize thread's sleep conditions and split point locks for (int i = 0; i <= MAX_THREADS; i++) { - lock_init(&threads[i].sleepLock); - cond_init(&threads[i].sleepCond); + lock_init(threads[i].sleepLock); + cond_init(threads[i].sleepCond); - for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_init(&(threads[i].splitPoints[j].lock)); + for (int j = 0; j < MAX_SPLITPOINTS_PER_THREAD; j++) + lock_init(threads[i].splitPoints[j].lock); } // Allocate main thread tables to call evaluate() also when not searching @@ -172,17 +236,10 @@ void ThreadsManager::init() { for (int i = 0; i <= MAX_THREADS; i++) { threads[i].is_searching = false; - threads[i].do_sleep = true; + threads[i].do_sleep = (i != 0); // Avoid a race with start_thinking() threads[i].threadID = i; -#if defined(_MSC_VER) - threads[i].handle = CreateThread(NULL, 0, start_routine, (LPVOID)&threads[i], 0, NULL); - bool ok = (threads[i].handle != NULL); -#else - bool ok = !pthread_create(&threads[i].handle, NULL, start_routine, (void*)&threads[i]); -#endif - - if (!ok) + if (!thread_create(threads[i].handle, start_routine, threads[i])) { std::cerr << "Failed to create thread number " << i << std::endl; ::exit(EXIT_FAILURE); @@ -197,27 +254,22 @@ void ThreadsManager::exit() { for (int i = 0; i <= MAX_THREADS; i++) { - threads[i].do_terminate = true; + assert(threads[i].do_sleep); + + threads[i].do_exit = true; // Search must be already finished threads[i].wake_up(); - // Wait for thread termination -#if defined(_MSC_VER) - WaitForSingleObject(threads[i].handle, 0); - CloseHandle(threads[i].handle); -#else - pthread_join(threads[i].handle, NULL); -#endif + thread_join(threads[i].handle); // Wait for thread termination - // Now we can safely destroy associated locks and wait conditions - lock_destroy(&threads[i].sleepLock); - cond_destroy(&threads[i].sleepCond); + lock_destroy(threads[i].sleepLock); + cond_destroy(threads[i].sleepCond); - for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_destroy(&(threads[i].splitPoints[j].lock)); + for (int j = 0; j < MAX_SPLITPOINTS_PER_THREAD; j++) + lock_destroy(threads[i].splitPoints[j].lock); } - lock_destroy(&threadsLock); - cond_destroy(&sleepCond); + lock_destroy(splitLock); + cond_destroy(sleepCond); } @@ -236,19 +288,6 @@ bool ThreadsManager::available_slave_exists(int master) const { } -// split_point_finished() checks if all the slave threads of a given split -// point have finished searching. - -bool ThreadsManager::split_point_finished(SplitPoint* sp) const { - - for (int i = 0; i < activeThreads; i++) - if (sp->is_slave[i]) - return false; - - return true; -} - - // split() does the actual work of distributing the work at a node between // several available threads. If it does not succeed in splitting the node // (because no idle threads are available, or because we have no unused split @@ -271,20 +310,19 @@ Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta, assert(pos.thread() >= 0 && pos.thread() < activeThreads); assert(activeThreads > 1); - int i, master = pos.thread(); + int master = pos.thread(); Thread& masterThread = threads[master]; - // If we already have too many active split points, don't split - if (masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS) + if (masterThread.splitPointsCnt >= MAX_SPLITPOINTS_PER_THREAD) return bestValue; // Pick the next available split point from the split point stack - SplitPoint* sp = &masterThread.splitPoints[masterThread.activeSplitPoints]; + SplitPoint* sp = &masterThread.splitPoints[masterThread.splitPointsCnt]; - // Initialize the split point - sp->parent = masterThread.splitPoint; + sp->parent = masterThread.curSplitPoint; sp->master = master; - sp->is_betaCutoff = false; + sp->cutoff = false; + sp->slavesMask = 1ULL << master; sp->depth = depth; sp->threatMove = threatMove; sp->alpha = alpha; @@ -297,66 +335,58 @@ Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta, sp->nodes = 0; sp->ss = ss; - for (i = 0; i < activeThreads; i++) - sp->is_slave[i] = false; - - // If we are here it means we are not available assert(masterThread.is_searching); - int workersCnt = 1; // At least the master is included + int slavesCnt = 0; // Try to allocate available threads and ask them to start searching setting // is_searching flag. This must be done under lock protection to avoid concurrent // allocation of the same slave by another master. - lock_grab(&threadsLock); + lock_grab(sp->lock); + lock_grab(splitLock); - for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++) + for (int i = 0; i < activeThreads && !Fake; i++) if (threads[i].is_available_to(master)) { - workersCnt++; - sp->is_slave[i] = true; - threads[i].splitPoint = sp; - - // This makes the slave to exit from idle_loop() - threads[i].is_searching = true; + sp->slavesMask |= 1ULL << i; + threads[i].curSplitPoint = sp; + threads[i].is_searching = true; // Slave leaves idle_loop() if (useSleepingThreads) threads[i].wake_up(); - } - lock_release(&threadsLock); + if (++slavesCnt + 1 >= maxThreadsPerSplitPoint) // Master is always included + break; + } - // We failed to allocate even one slave, return - if (!Fake && workersCnt == 1) - return bestValue; + masterThread.curSplitPoint = sp; + masterThread.splitPointsCnt++; - masterThread.splitPoint = sp; - masterThread.activeSplitPoints++; + lock_release(splitLock); + lock_release(sp->lock); // Everything is set up. The master thread enters the idle loop, from which // it will instantly launch a search, because its is_searching flag is set. // We pass the split point as a parameter to the idle loop, which means that // the thread will return from the idle loop when all slaves have finished // their work at this split point. - masterThread.idle_loop(sp); - - // In helpful master concept a master can help only a sub-tree of its split - // point, and because here is all finished is not possible master is booked. - assert(!masterThread.is_searching); + if (slavesCnt || Fake) + masterThread.idle_loop(sp); // We have returned from the idle loop, which means that all threads are - // finished. Note that changing state and decreasing activeSplitPoints is done - // under lock protection to avoid a race with Thread::is_available_to(). - lock_grab(&threadsLock); + // finished. Note that setting is_searching and decreasing activeSplitPoints is + // done under lock protection to avoid a race with Thread::is_available_to(). + lock_grab(sp->lock); // To protect sp->nodes + lock_grab(splitLock); masterThread.is_searching = true; - masterThread.activeSplitPoints--; - - lock_release(&threadsLock); - - masterThread.splitPoint = sp->parent; + masterThread.splitPointsCnt--; + masterThread.curSplitPoint = sp->parent; pos.set_nodes_searched(pos.nodes_searched() + sp->nodes); + lock_release(splitLock); + lock_release(sp->lock); + return sp->bestValue; } @@ -365,22 +395,6 @@ template Value ThreadsManager::split(Position&, Stack*, Value, Value, Val template Value ThreadsManager::split(Position&, Stack*, Value, Value, Value, Depth, Move, int, MovePicker*, int); -// Thread::timer_loop() is where the timer thread waits maxPly milliseconds and -// then calls do_timer_event(). If maxPly is 0 thread sleeps until is woken up. -extern void do_timer_event(); - -void Thread::timer_loop() { - - while (!do_terminate) - { - lock_grab(&sleepLock); - timed_wait(&sleepCond, &sleepLock, maxPly ? maxPly : INT_MAX); - lock_release(&sleepLock); - do_timer_event(); - } -} - - // ThreadsManager::set_timer() is used to set the timer to trigger after msec // milliseconds. If msec is 0 then timer is stopped. @@ -388,40 +402,10 @@ void ThreadsManager::set_timer(int msec) { Thread& timer = threads[MAX_THREADS]; - lock_grab(&timer.sleepLock); + lock_grab(timer.sleepLock); timer.maxPly = msec; - cond_signal(&timer.sleepCond); // Wake up and restart the timer - lock_release(&timer.sleepLock); -} - - -// Thread::main_loop() is where the main thread is parked waiting to be started -// when there is a new search. Main thread will launch all the slave threads. - -void Thread::main_loop() { - - while (true) - { - lock_grab(&sleepLock); - - do_sleep = true; // Always return to sleep after a search - is_searching = false; - - while (do_sleep && !do_terminate) - { - cond_signal(&Threads.sleepCond); // Wake up UI thread if needed - cond_wait(&sleepCond, &sleepLock); - } - - is_searching = true; - - lock_release(&sleepLock); - - if (do_terminate) - return; - - think(); // This is the search entry point - } + cond_signal(timer.sleepCond); // Wake up and restart the timer + lock_release(timer.sleepLock); } @@ -431,50 +415,57 @@ void Thread::main_loop() { // the search to finish. void ThreadsManager::start_thinking(const Position& pos, const LimitsType& limits, - const std::vector& searchMoves, bool asyncMode) { + const std::set& searchMoves, bool async) { Thread& main = threads[0]; - lock_grab(&main.sleepLock); + lock_grab(main.sleepLock); // Wait main thread has finished before to launch a new search while (!main.do_sleep) - cond_wait(&sleepCond, &main.sleepLock); + cond_wait(sleepCond, main.sleepLock); // Copy input arguments to initialize the search RootPosition.copy(pos, 0); Limits = limits; - SearchMoves = searchMoves; + RootMoves.clear(); + + // Populate RootMoves with all the legal moves (default) or, if a searchMoves + // set is given, with the subset of legal moves to search. + for (MoveList ml(pos); !ml.end(); ++ml) + if (searchMoves.empty() || searchMoves.count(ml.move())) + RootMoves.push_back(RootMove(ml.move())); // Reset signals before to start the new search - memset((void*)&Signals, 0, sizeof(Signals)); + Signals.stopOnPonderhit = Signals.firstRootMove = false; + Signals.stop = Signals.failedLowAtRoot = false; main.do_sleep = false; - cond_signal(&main.sleepCond); // Wake up main thread and start searching + cond_signal(main.sleepCond); // Wake up main thread and start searching - if (!asyncMode) - cond_wait(&sleepCond, &main.sleepLock); + if (!async) + while (!main.do_sleep) + cond_wait(sleepCond, main.sleepLock); - lock_release(&main.sleepLock); + lock_release(main.sleepLock); } -// ThreadsManager::wait_for_stop_or_ponderhit() is called when the maximum depth -// is reached while the program is pondering. The point is to work around a wrinkle -// in the UCI protocol: When pondering, the engine is not allowed to give a -// "bestmove" before the GUI sends it a "stop" or "ponderhit" command. We simply -// wait here until one of these commands (that raise StopRequest) is sent and -// then return, after which the bestmove and pondermove will be printed. - -void ThreadsManager::wait_for_stop_or_ponderhit() { +// ThreadsManager::stop_thinking() is used by UI thread to raise a stop request +// and to wait for the main thread finishing the search. Needed to wait exiting +// and terminate the threads after a 'quit' command. - Signals.stopOnPonderhit = true; +void ThreadsManager::stop_thinking() { Thread& main = threads[0]; - lock_grab(&main.sleepLock); + Search::Signals.stop = true; - while (!Signals.stop) - cond_wait(&main.sleepCond, &main.sleepLock); + lock_grab(main.sleepLock); + + cond_signal(main.sleepCond); // In case is waiting for stop or ponderhit + + while (!main.do_sleep) + cond_wait(sleepCond, main.sleepLock); - lock_release(&main.sleepLock); + lock_release(main.sleepLock); }