X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fthread.cpp;h=9aa0b55ef0deaafac39f430bbab900a754ba855f;hp=65d01d9100a874e19db9addea3772bafa735dd69;hb=6950d07bf421b122ccb5a15a2ed4fa3a993d9609;hpb=3aa471f2a9cb1cccd37c27906dd386b9724e32ab diff --git a/src/thread.cpp b/src/thread.cpp index 65d01d91..9aa0b55e 100644 --- a/src/thread.cpp +++ b/src/thread.cpp @@ -27,136 +27,117 @@ using namespace Search; -ThreadsManager Threads; // Global object +ThreadPool Threads; // Global object namespace { extern "C" { // start_routine() is the C function which is called when a new thread - // is launched. It is a wrapper to member function pointed by start_fn. + // is launched. It is a wrapper to the virtual function idle_loop(). - long start_routine(Thread* th) { (th->*(th->start_fn))(); return 0; } + long start_routine(Thread* th) { th->idle_loop(); return 0; } } } // Thread c'tor starts a newly-created thread of execution that will call -// the idle loop function pointed by start_fn going immediately to sleep. +// the the virtual function idle_loop(), going immediately to sleep. -Thread::Thread(Fn fn) { +Thread::Thread() : splitPoints() { - is_searching = do_exit = false; - maxPly = splitPointsCnt = 0; - curSplitPoint = NULL; - start_fn = fn; - threadID = Threads.size(); - - do_sleep = (fn != &Thread::main_loop); // Avoid a race with start_searching() - - lock_init(sleepLock); - cond_init(sleepCond); - - for (int j = 0; j < MAX_SPLITPOINTS_PER_THREAD; j++) - lock_init(splitPoints[j].lock); + searching = exit = false; + maxPly = splitPointsSize = 0; + activeSplitPoint = NULL; + idx = Threads.size(); if (!thread_create(handle, start_routine, this)) { - std::cerr << "Failed to create thread number " << threadID << std::endl; + std::cerr << "Failed to create thread number " << idx << std::endl; ::exit(EXIT_FAILURE); } } -// Thread d'tor waits for thread termination before to return. +// Thread d'tor waits for thread termination before to return Thread::~Thread() { - assert(do_sleep); - - do_exit = true; // Search must be already finished - wake_up(); - + exit = true; // Search must be already finished + notify_one(); thread_join(handle); // Wait for thread termination - - lock_destroy(sleepLock); - cond_destroy(sleepCond); - - for (int j = 0; j < MAX_SPLITPOINTS_PER_THREAD; j++) - lock_destroy(splitPoints[j].lock); } -// Thread::timer_loop() is where the timer thread waits maxPly milliseconds and -// then calls check_time(). If maxPly is 0 thread sleeps until is woken up. +// TimerThread::idle_loop() is where the timer thread waits msec milliseconds +// and then calls check_time(). If msec is 0 thread sleeps until is woken up. extern void check_time(); -void Thread::timer_loop() { +void TimerThread::idle_loop() { - while (!do_exit) + while (!exit) { - lock_grab(sleepLock); - timed_wait(sleepCond, sleepLock, maxPly ? maxPly : INT_MAX); - lock_release(sleepLock); - check_time(); + mutex.lock(); + + if (!exit) + sleepCondition.wait_for(mutex, msec ? msec : INT_MAX); + + mutex.unlock(); + + if (msec) + check_time(); } } -// Thread::main_loop() is where the main thread is parked waiting to be started +// MainThread::idle_loop() is where the main thread is parked waiting to be started // when there is a new search. Main thread will launch all the slave threads. -void Thread::main_loop() { +void MainThread::idle_loop() { while (true) { - lock_grab(sleepLock); + mutex.lock(); - do_sleep = true; // Always return to sleep after a search - is_searching = false; + thinking = false; - while (do_sleep && !do_exit) + while (!thinking && !exit) { - cond_signal(Threads.sleepCond); // Wake up UI thread if needed - cond_wait(sleepCond, sleepLock); + Threads.sleepCondition.notify_one(); // Wake up UI thread if needed + sleepCondition.wait(mutex); } - lock_release(sleepLock); + mutex.unlock(); - if (do_exit) + if (exit) return; - is_searching = true; + searching = true; Search::think(); + + assert(searching); + + searching = false; } } -// Thread::wake_up() wakes up the thread, normally at the beginning of the search -// or, if "sleeping threads" is used at split time. +// Thread::notify_one() wakes up the thread when there is some search to do -void Thread::wake_up() { +void Thread::notify_one() { - lock_grab(sleepLock); - do_sleep = false; - cond_signal(sleepCond); - lock_release(sleepLock); + mutex.lock(); + sleepCondition.notify_one(); + mutex.unlock(); } -// Thread::wait_for_stop_or_ponderhit() is called when the maximum depth is -// reached while the program is pondering. The point is to work around a wrinkle -// in the UCI protocol: When pondering, the engine is not allowed to give a -// "bestmove" before the GUI sends it a "stop" or "ponderhit" command. We simply -// wait here until one of these commands (that raise StopRequest) is sent and -// then return, after which the bestmove and pondermove will be printed. - -void Thread::wait_for_stop_or_ponderhit() { +// Thread::wait_for() set the thread to sleep until condition 'b' turns true - Signals.stopOnPonderhit = true; +void Thread::wait_for(volatile const bool& b) { - lock_grab(sleepLock); - while (!Signals.stop) cond_wait(sleepCond, sleepLock); - lock_release(sleepLock); + mutex.lock(); + while (!b) sleepCondition.wait(mutex); + mutex.unlock(); } @@ -165,7 +146,7 @@ void Thread::wait_for_stop_or_ponderhit() { bool Thread::cutoff_occurred() const { - for (SplitPoint* sp = curSplitPoint; sp; sp = sp->parent) + for (SplitPoint* sp = activeSplitPoint; sp; sp = sp->parent) if (sp->cutoff) return true; @@ -174,52 +155,49 @@ bool Thread::cutoff_occurred() const { // Thread::is_available_to() checks whether the thread is available to help the -// thread with threadID "master" at a split point. An obvious requirement is that -// thread must be idle. With more than two threads, this is not sufficient: If -// the thread is the master of some active split point, it is only available as a -// slave to the threads which are busy searching the split point at the top of -// "slave"'s split point stack (the "helpful master concept" in YBWC terminology). +// thread 'master' at a split point. An obvious requirement is that thread must +// be idle. With more than two threads, this is not sufficient: If the thread is +// the master of some split point, it is only available as a slave to the slaves +// which are busy searching the split point at the top of slaves split point +// stack (the "helpful master concept" in YBWC terminology). -bool Thread::is_available_to(int master) const { +bool Thread::is_available_to(Thread* master) const { - if (is_searching) + if (searching) return false; // Make a local copy to be sure doesn't become zero under our feet while // testing next condition and so leading to an out of bound access. - int spCnt = splitPointsCnt; + int size = splitPointsSize; - // No active split points means that the thread is available as a slave for any + // No split points means that the thread is available as a slave for any // other thread otherwise apply the "helpful master" concept if possible. - return !spCnt || (splitPoints[spCnt - 1].slavesMask & (1ULL << master)); + return !size || (splitPoints[size - 1].slavesMask & (1ULL << master->idx)); } -// init() is called at startup. Initializes lock and condition variable and -// launches requested threads sending them immediately to sleep. We cannot use +// init() is called at startup to create and launch requested threads, that will +// go immediately to sleep due to 'sleepWhileIdle' set to true. We cannot use // a c'tor becuase Threads is a static object and we need a fully initialized -// engine at this point due to allocation of endgames in Thread c'tor. +// engine at this point due to allocation of Endgames in Thread c'tor. -void ThreadsManager::init() { +void ThreadPool::init() { - cond_init(sleepCond); - lock_init(splitLock); - timer = new Thread(&Thread::timer_loop); - threads.push_back(new Thread(&Thread::main_loop)); + sleepWhileIdle = true; + timer = new TimerThread(); + threads.push_back(new MainThread()); read_uci_options(); } -// d'tor cleanly terminates the threads when the program exits. +// exit() cleanly terminates the threads before the program exits -ThreadsManager::~ThreadsManager() { +void ThreadPool::exit() { - for (int i = 0; i < size(); i++) - delete threads[i]; + delete timer; // As first because check_time() accesses threads data - delete timer; - lock_destroy(splitLock); - cond_destroy(sleepCond); + for (size_t i = 0; i < threads.size(); i++) + delete threads[i]; } @@ -228,19 +206,18 @@ ThreadsManager::~ThreadsManager() { // objects are dynamically allocated to avoid creating in advance all possible // threads, with included pawns and material tables, if only few are used. -void ThreadsManager::read_uci_options() { +void ThreadPool::read_uci_options() { maxThreadsPerSplitPoint = Options["Max Threads per Split Point"]; minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY; - useSleepingThreads = Options["Use Sleeping Threads"]; - int requested = Options["Threads"]; + size_t requested = Options["Threads"]; assert(requested > 0); - while (size() < requested) - threads.push_back(new Thread(&Thread::idle_loop)); + while (threads.size() < requested) + threads.push_back(new Thread()); - while (size() > requested) + while (threads.size() > requested) { delete threads.back(); threads.pop_back(); @@ -248,40 +225,12 @@ void ThreadsManager::read_uci_options() { } -// wake_up() is called before a new search to start the threads that are waiting -// on the sleep condition and to reset maxPly. When useSleepingThreads is set -// threads will be woken up at split time. - -void ThreadsManager::wake_up() const { - - for (int i = 0; i < size(); i++) - { - threads[i]->maxPly = 0; - - if (!useSleepingThreads) - threads[i]->wake_up(); - } -} - - -// sleep() is called after the search finishes to ask all the threads but the -// main one to go waiting on a sleep condition. - -void ThreadsManager::sleep() const { - - for (int i = 1; i < size(); i++) // Main thread will go to sleep by itself - threads[i]->do_sleep = true; // to avoid a race with start_searching() -} - - -// available_slave_exists() tries to find an idle thread which is available as -// a slave for the thread with threadID 'master'. - -bool ThreadsManager::available_slave_exists(int master) const { +// slave_available() tries to find an idle thread which is available as a slave +// for the thread 'master'. - assert(master >= 0 && master < size()); +bool ThreadPool::slave_available(Thread* master) const { - for (int i = 0; i < size(); i++) + for (size_t i = 0; i < threads.size(); i++) if (threads[i]->is_available_to(master)) return true; @@ -291,161 +240,139 @@ bool ThreadsManager::available_slave_exists(int master) const { // split() does the actual work of distributing the work at a node between // several available threads. If it does not succeed in splitting the node -// (because no idle threads are available, or because we have no unused split -// point objects), the function immediately returns. If splitting is possible, a -// SplitPoint object is initialized with all the data that must be copied to the -// helper threads and then helper threads are told that they have been assigned -// work. This will cause them to instantly leave their idle loops and call -// search(). When all threads have returned from search() then split() returns. +// (because no idle threads are available), the function immediately returns. +// If splitting is possible, a SplitPoint object is initialized with all the +// data that must be copied to the helper threads and then helper threads are +// told that they have been assigned work. This will cause them to instantly +// leave their idle loops and call search(). When all threads have returned from +// search() then split() returns. template -Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta, - Value bestValue, Move* bestMove, Depth depth, - Move threatMove, int moveCount, MovePicker* mp, int nodeType) { +Value ThreadPool::split(Position& pos, Stack* ss, Value alpha, Value beta, + Value bestValue, Move* bestMove, Depth depth, Move threatMove, + int moveCount, MovePicker& mp, int nodeType) { + assert(pos.pos_is_ok()); + assert(bestValue <= alpha && alpha < beta && beta <= VALUE_INFINITE); assert(bestValue > -VALUE_INFINITE); - assert(bestValue <= alpha); - assert(alpha < beta); - assert(beta <= VALUE_INFINITE); - assert(depth > DEPTH_ZERO); + assert(depth >= Threads.minimumSplitDepth); - int master = pos.thread(); - Thread& masterThread = *threads[master]; + Thread* master = pos.this_thread(); - if (masterThread.splitPointsCnt >= MAX_SPLITPOINTS_PER_THREAD) - return bestValue; + assert(master->searching); + assert(master->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD); // Pick the next available split point from the split point stack - SplitPoint* sp = &masterThread.splitPoints[masterThread.splitPointsCnt++]; - - sp->parent = masterThread.curSplitPoint; - sp->master = master; - sp->cutoff = false; - sp->slavesMask = 1ULL << master; - sp->depth = depth; - sp->bestMove = *bestMove; - sp->threatMove = threatMove; - sp->alpha = alpha; - sp->beta = beta; - sp->nodeType = nodeType; - sp->bestValue = bestValue; - sp->mp = mp; - sp->moveCount = moveCount; - sp->pos = &pos; - sp->nodes = 0; - sp->ss = ss; - - assert(masterThread.is_searching); - - masterThread.curSplitPoint = sp; - int slavesCnt = 0; + SplitPoint& sp = master->splitPoints[master->splitPointsSize]; + + sp.master = master; + sp.parent = master->activeSplitPoint; + sp.slavesMask = 1ULL << master->idx; + sp.depth = depth; + sp.bestMove = *bestMove; + sp.threatMove = threatMove; + sp.alpha = alpha; + sp.beta = beta; + sp.nodeType = nodeType; + sp.bestValue = bestValue; + sp.mp = ∓ + sp.moveCount = moveCount; + sp.pos = &pos; + sp.nodes = 0; + sp.cutoff = false; + sp.ss = ss; // Try to allocate available threads and ask them to start searching setting - // is_searching flag. This must be done under lock protection to avoid concurrent + // 'searching' flag. This must be done under lock protection to avoid concurrent // allocation of the same slave by another master. - lock_grab(sp->lock); - lock_grab(splitLock); + mutex.lock(); + sp.mutex.lock(); - for (int i = 0; i < size() && !Fake; ++i) - if (threads[i]->is_available_to(master)) - { - sp->slavesMask |= 1ULL << i; - threads[i]->curSplitPoint = sp; - threads[i]->is_searching = true; // Slave leaves idle_loop() + master->splitPointsSize++; + master->activeSplitPoint = &sp; - if (useSleepingThreads) - threads[i]->wake_up(); + size_t slavesCnt = 1; // Master is always included - if (++slavesCnt + 1 >= maxThreadsPerSplitPoint) // Master is always included - break; + for (size_t i = 0; i < threads.size() && !Fake; ++i) + if (threads[i]->is_available_to(master) && ++slavesCnt <= maxThreadsPerSplitPoint) + { + sp.slavesMask |= 1ULL << i; + threads[i]->activeSplitPoint = &sp; + threads[i]->searching = true; // Slave leaves idle_loop() + threads[i]->notify_one(); // Could be sleeping } - lock_release(splitLock); - lock_release(sp->lock); + sp.mutex.unlock(); + mutex.unlock(); // Everything is set up. The master thread enters the idle loop, from which - // it will instantly launch a search, because its is_searching flag is set. - // We pass the split point as a parameter to the idle loop, which means that - // the thread will return from the idle loop when all slaves have finished + // it will instantly launch a search, because its 'searching' flag is set. + // The thread will return from the idle loop when all slaves have finished // their work at this split point. - if (slavesCnt || Fake) + if (slavesCnt > 1 || Fake) { - masterThread.idle_loop(sp); + master->Thread::idle_loop(); // Force a call to base class idle_loop() // In helpful master concept a master can help only a sub-tree of its split // point, and because here is all finished is not possible master is booked. - assert(!masterThread.is_searching); + assert(!master->searching); } // We have returned from the idle loop, which means that all threads are - // finished. Note that setting is_searching and decreasing splitPointsCnt is + // finished. Note that setting 'searching' and decreasing splitPointsSize is // done under lock protection to avoid a race with Thread::is_available_to(). - lock_grab(sp->lock); // To protect sp->nodes - lock_grab(splitLock); + mutex.lock(); + sp.mutex.lock(); - masterThread.is_searching = true; - masterThread.splitPointsCnt--; - masterThread.curSplitPoint = sp->parent; - pos.set_nodes_searched(pos.nodes_searched() + sp->nodes); - *bestMove = sp->bestMove; + master->searching = true; + master->splitPointsSize--; + master->activeSplitPoint = sp.parent; + pos.set_nodes_searched(pos.nodes_searched() + sp.nodes); + *bestMove = sp.bestMove; - lock_release(splitLock); - lock_release(sp->lock); + sp.mutex.unlock(); + mutex.unlock(); - return sp->bestValue; + return sp.bestValue; } // Explicit template instantiations -template Value ThreadsManager::split(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker*, int); -template Value ThreadsManager::split(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker*, int); +template Value ThreadPool::split(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker&, int); +template Value ThreadPool::split(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker&, int); -// ThreadsManager::set_timer() is used to set the timer to trigger after msec -// milliseconds. If msec is 0 then timer is stopped. +// wait_for_think_finished() waits for main thread to go to sleep then returns -void ThreadsManager::set_timer(int msec) { +void ThreadPool::wait_for_think_finished() { - lock_grab(timer->sleepLock); - timer->maxPly = msec; - cond_signal(timer->sleepCond); // Wake up and restart the timer - lock_release(timer->sleepLock); + MainThread* t = main_thread(); + t->mutex.lock(); + while (t->thinking) sleepCondition.wait(t->mutex); + t->mutex.unlock(); } -// ThreadsManager::wait_for_search_finished() waits for main thread to go to -// sleep, this means search is finished. Then returns. +// start_thinking() wakes up the main thread sleeping in main_loop() so to start +// a new search, then returns immediately. -void ThreadsManager::wait_for_search_finished() { +void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits, + const std::vector& searchMoves, StateStackPtr& states) { + wait_for_think_finished(); - Thread* main = threads[0]; - lock_grab(main->sleepLock); - while (!main->do_sleep) cond_wait(sleepCond, main->sleepLock); - lock_release(main->sleepLock); -} - - -// ThreadsManager::start_searching() is used by UI thread to wake up the main -// thread parked in main_loop() and starting a new search. If async is true -// then function returns immediately, otherwise caller is blocked waiting for -// the search to finish. - -void ThreadsManager::start_searching(const Position& pos, const LimitsType& limits, - const std::set& searchMoves, bool async) { - wait_for_search_finished(); + SearchTime = Time::now(); // As early as possible Signals.stopOnPonderhit = Signals.firstRootMove = false; Signals.stop = Signals.failedLowAtRoot = false; - RootPosition.copy(pos, 0); + RootPos = pos; Limits = limits; + SetupStates = states; // Ownership transfer here RootMoves.clear(); - for (MoveList ml(pos); !ml.end(); ++ml) - if (searchMoves.empty() || searchMoves.count(ml.move())) + for (MoveList ml(pos); !ml.end(); ++ml) + if (searchMoves.empty() || count(searchMoves.begin(), searchMoves.end(), ml.move())) RootMoves.push_back(RootMove(ml.move())); - threads[0]->wake_up(); // Start main thread - - if (!async) - wait_for_search_finished(); + main_thread()->thinking = true; + main_thread()->notify_one(); // Starts main thread }