X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fthread.cpp;h=c76b4b707e9f97dfe641670de06021b982481287;hp=d8740db2a66c39f04e49171cc7991e7d0e75b4f8;hb=9c9205860c5ab0e4f3180298e3f7082be259772c;hpb=81c7975dcdf37ec96d308f800c2a40f6cb08907e diff --git a/src/thread.cpp b/src/thread.cpp index d8740db2..c76b4b70 100644 --- a/src/thread.cpp +++ b/src/thread.cpp @@ -29,18 +29,16 @@ using namespace Search; ThreadPool Threads; // Global object -extern void check_time(); - namespace { - // Helpers to launch a thread after creation and joining before delete. Must be - // outside Thread c'tor and d'tor because the object must be fully initialized + // Helpers to launch a thread after creation and joining before delete. Outside the + // Thread constructor and destructor because the object must be fully initialized // when start_routine (and hence virtual idle_loop) is called and when joining. template T* new_thread() { - T* th = new T(); - th->nativeThread = std::thread(&ThreadBase::idle_loop, th); // Will go to sleep - return th; + std::thread* th = new T; + *th = std::thread(&T::idle_loop, (T*)th); // Will go to sleep + return (T*)th; } void delete_thread(ThreadBase* th) { @@ -50,7 +48,7 @@ namespace { th->mutex.unlock(); th->notify_one(); - th->nativeThread.join(); // Wait for thread termination + th->join(); // Wait for thread termination delete th; } @@ -61,180 +59,56 @@ namespace { void ThreadBase::notify_one() { - std::unique_lock(this->mutex); + std::unique_lock lk(mutex); sleepCondition.notify_one(); } -// ThreadBase::wait_for() set the thread to sleep until 'condition' turns true +// ThreadBase::wait() set the thread to sleep until 'condition' turns true -void ThreadBase::wait_for(volatile const bool& condition) { +void ThreadBase::wait(std::atomic_bool& condition) { std::unique_lock lk(mutex); - sleepCondition.wait(lk, [&]{ return condition; }); + sleepCondition.wait(lk, [&]{ return bool(condition); }); } -// Thread c'tor makes some init but does not launch any execution thread that -// will be started only when c'tor returns. - -Thread::Thread() /* : splitPoints() */ { // Initialization of non POD broken in MSVC - - searching = false; - maxPly = 0; - splitPointsSize = 0; - activeSplitPoint = nullptr; - activePosition = nullptr; - idx = Threads.size(); // Starts from 0 -} - - -// Thread::cutoff_occurred() checks whether a beta cutoff has occurred in the -// current active split point, or in some ancestor of the split point. - -bool Thread::cutoff_occurred() const { - - for (SplitPoint* sp = activeSplitPoint; sp; sp = sp->parentSplitPoint) - if (sp->cutoff) - return true; - - return false; -} - +// ThreadBase::wait_while() set the thread to sleep until 'condition' turns false +void ThreadBase::wait_while(std::atomic_bool& condition) { -// Thread::can_join() checks whether the thread is available to join the split -// point 'sp'. An obvious requirement is that thread must be idle. With more than -// two threads, this is not sufficient: If the thread is the master of some split -// point, it is only available as a slave for the split points below his active -// one (the "helpful master" concept in YBWC terminology). - -bool Thread::can_join(const SplitPoint* sp) const { - - if (searching) - return false; - - // Make a local copy to be sure it doesn't become zero under our feet while - // testing next condition and so leading to an out of bounds access. - const size_t size = splitPointsSize; - - // No split points means that the thread is available as a slave for any - // other thread otherwise apply the "helpful master" concept if possible. - return !size || splitPoints[size - 1].slavesMask.test(sp->master->idx); + std::unique_lock lk(mutex); + sleepCondition.wait(lk, [&]{ return !condition; }); } -// Thread::split() does the actual work of distributing the work at a node between -// several available threads. If it does not succeed in splitting the node -// (because no idle threads are available), the function immediately returns. -// If splitting is possible, a SplitPoint object is initialized with all the -// data that must be copied to the helper threads and then helper threads are -// informed that they have been assigned work. This will cause them to instantly -// leave their idle loops and call search(). When all threads have returned from -// search() then split() returns. - -void Thread::split(Position& pos, Stack* ss, Value alpha, Value beta, Value* bestValue, - Move* bestMove, Depth depth, int moveCount, - MovePicker* movePicker, int nodeType, bool cutNode) { - - assert(searching); - assert(-VALUE_INFINITE < *bestValue && *bestValue <= alpha && alpha < beta && beta <= VALUE_INFINITE); - assert(depth >= Threads.minimumSplitDepth); - assert(splitPointsSize < MAX_SPLITPOINTS_PER_THREAD); - - // Pick and init the next available split point - SplitPoint& sp = splitPoints[splitPointsSize]; - - sp.mutex.lock(); // No contention here until we don't increment splitPointsSize - - sp.master = this; - sp.parentSplitPoint = activeSplitPoint; - sp.slavesMask = 0, sp.slavesMask.set(idx); - sp.depth = depth; - sp.bestValue = *bestValue; - sp.bestMove = *bestMove; - sp.alpha = alpha; - sp.beta = beta; - sp.nodeType = nodeType; - sp.cutNode = cutNode; - sp.movePicker = movePicker; - sp.moveCount = moveCount; - sp.pos = &pos; - sp.nodes = 0; - sp.cutoff = false; - sp.ss = ss; - sp.allSlavesSearching = true; // Must be set under lock protection - - ++splitPointsSize; - activeSplitPoint = &sp; - activePosition = nullptr; - - // Try to allocate available threads - Thread* slave; - - while ( sp.slavesMask.count() < MAX_SLAVES_PER_SPLITPOINT - && (slave = Threads.available_slave(&sp)) != nullptr) - { - slave->mutex.lock(); - - if (slave->can_join(activeSplitPoint)) - { - activeSplitPoint->slavesMask.set(slave->idx); - slave->activeSplitPoint = activeSplitPoint; - slave->searching = true; - slave->sleepCondition.notify_one(); // Could be sleeping - } - - slave->mutex.unlock(); - } - - // Everything is set up. The master thread enters the idle loop, from which - // it will instantly launch a search, because its 'searching' flag is set. - // The thread will return from the idle loop when all slaves have finished - // their work at this split point. - sp.mutex.unlock(); - - Thread::idle_loop(); // Force a call to base class idle_loop() - - // In the helpful master concept, a master can help only a sub-tree of its - // split point and because everything is finished here, it's not possible - // for the master to be booked. - assert(!searching); - assert(!activePosition); - - searching = true; - - // We have returned from the idle loop, which means that all threads are - // finished. Note that decreasing splitPointsSize must be done under lock - // protection to avoid a race with Thread::can_join(). - sp.mutex.lock(); +// Thread constructor makes some init but does not launch any execution thread, +// which will be started only when the constructor returns. - --splitPointsSize; - activeSplitPoint = sp.parentSplitPoint; - activePosition = &pos; - pos.set_nodes_searched(pos.nodes_searched() + sp.nodes); - *bestMove = sp.bestMove; - *bestValue = sp.bestValue; +Thread::Thread() { - sp.mutex.unlock(); + searching = resetCallsCnt = false; + maxPly = callsCnt = 0; + history.clear(); + counterMoves.clear(); + idx = Threads.size(); // Starts from 0 } -// TimerThread::idle_loop() is where the timer thread waits Resolution milliseconds -// and then calls check_time(). When not searching, thread sleeps until it's woken up. +// Thread::idle_loop() is where the thread is parked when it has no work to do -void TimerThread::idle_loop() { +void Thread::idle_loop() { while (!exit) { std::unique_lock lk(mutex); - if (!exit) - sleepCondition.wait_for(lk, std::chrono::milliseconds(run ? Resolution : INT_MAX)); + while (!searching && !exit) + sleepCondition.wait(lk); lk.unlock(); - if (run) - check_time(); + if (!exit && searching) + search(); } } @@ -252,48 +126,48 @@ void MainThread::idle_loop() { while (!thinking && !exit) { - Threads.sleepCondition.notify_one(); // Wake up the UI thread if needed + sleepCondition.notify_one(); // Wake up the UI thread if needed sleepCondition.wait(lk); } lk.unlock(); if (!exit) - { - searching = true; + think(); + } +} - Search::think(); - assert(searching); +// MainThread::join() waits for main thread to finish thinking - searching = false; - } - } +void MainThread::join() { + + std::unique_lock lk(mutex); + sleepCondition.wait(lk, [&]{ return !thinking; }); } // ThreadPool::init() is called at startup to create and launch requested threads, -// that will go immediately to sleep. We cannot use a c'tor because Threads is a -// static object and we need a fully initialized engine at this point due to -// allocation of Endgames in Thread c'tor. +// that will go immediately to sleep. We cannot use a constructor because Threads +// is a static object and we need a fully initialized engine at this point due to +// allocation of Endgames in the Thread constructor. void ThreadPool::init() { - timer = new_thread(); push_back(new_thread()); read_uci_options(); } // ThreadPool::exit() terminates the threads before the program exits. Cannot be -// done in d'tor because threads must be terminated before freeing us. +// done in destructor because threads must be terminated before freeing us. void ThreadPool::exit() { - delete_thread(timer); // As first because check_time() accesses threads data - for (Thread* th : *this) delete_thread(th); + + clear(); // Get rid of stale pointers } @@ -305,15 +179,10 @@ void ThreadPool::exit() { void ThreadPool::read_uci_options() { - minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY; size_t requested = Options["Threads"]; assert(requested > 0); - // If zero (default) then set best minimum split depth automatically - if (!minimumSplitDepth) - minimumSplitDepth = requested < 8 ? 4 * ONE_PLY : 7 * ONE_PLY; - while (size() < requested) push_back(new_thread()); @@ -325,25 +194,14 @@ void ThreadPool::read_uci_options() { } -// ThreadPool::available_slave() tries to find an idle thread which is available -// to join SplitPoint 'sp'. - -Thread* ThreadPool::available_slave(const SplitPoint* sp) const { - - for (Thread* th : *this) - if (th->can_join(sp)) - return th; - - return nullptr; -} - - -// ThreadPool::wait_for_think_finished() waits for main thread to finish the search +// ThreadPool::nodes_searched() returns the number of nodes searched -void ThreadPool::wait_for_think_finished() { +int64_t ThreadPool::nodes_searched() { - std::unique_lock lk(main()->mutex); - sleepCondition.wait(lk, [&]{ return !main()->thinking; }); + int64_t nodes = 0; + for (Thread *th : *this) + nodes += th->rootPos.nodes_searched(); + return nodes; } @@ -352,15 +210,13 @@ void ThreadPool::wait_for_think_finished() { void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits, StateStackPtr& states) { - wait_for_think_finished(); - - SearchTime = now(); // As early as possible + main()->join(); Signals.stopOnPonderhit = Signals.firstRootMove = false; Signals.stop = Signals.failedLowAtRoot = false; - RootMoves.clear(); - RootPos = pos; + main()->rootMoves.clear(); + main()->rootPos = pos; Limits = limits; if (states.get()) // If we don't set a new position, preserve current state { @@ -371,8 +227,8 @@ void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits, for (const auto& m : MoveList(pos)) if ( limits.searchmoves.empty() || std::count(limits.searchmoves.begin(), limits.searchmoves.end(), m)) - RootMoves.push_back(RootMove(m)); + main()->rootMoves.push_back(RootMove(m)); main()->thinking = true; - main()->notify_one(); // Starts main thread + main()->notify_one(); // Wake up main thread: 'thinking' must be already set }