X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fthread.cpp;h=d056d2a9fd5883aa3d021a2a667bc99b6dc45789;hp=ca9fe14d8fa48dfee160df9e454fbfadb2013f53;hb=dcd8ce70941e9b8d5180eb43865bb9819e424c19;hpb=43204d9ac210a3a68b7b9785f3089d38412c1375 diff --git a/src/thread.cpp b/src/thread.cpp index ca9fe14d..d056d2a9 100644 --- a/src/thread.cpp +++ b/src/thread.cpp @@ -1,7 +1,8 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,490 +18,178 @@ along with this program. If not, see . */ -#include +#include // For std::count +#include +#include "movegen.h" #include "search.h" #include "thread.h" -#include "ucioption.h" +#include "uci.h" -ThreadsManager Threads; // Global object definition +using namespace Search; -namespace { extern "C" { +ThreadPool Threads; // Global object - // start_routine() is the C function which is called when a new thread - // is launched. It simply calls idle_loop() of the supplied thread. The - // last two threads are dedicated to read input from GUI and to mimic a - // timer, so they run in listener_loop() and timer_loop() respectively. +/// Thread constructor launch the thread and then wait until it goes to sleep +/// in idle_loop(). -#if defined(_MSC_VER) - DWORD WINAPI start_routine(LPVOID thread) { -#else - void* start_routine(void* thread) { -#endif +Thread::Thread() { - if (((Thread*)thread)->threadID == MAX_THREADS) - ((Thread*)thread)->listener_loop(); + resetCalls = exit = false; + maxPly = callsCnt = 0; + history.clear(); + counterMoves.clear(); + idx = Threads.size(); // Start from 0 - else if (((Thread*)thread)->threadID == MAX_THREADS + 1) - ((Thread*)thread)->timer_loop(); - else - ((Thread*)thread)->idle_loop(NULL); - - return 0; - } - -} } - - -// wake_up() wakes up the thread, normally at the beginning of the search or, -// if "sleeping threads" is used, when there is some work to do. - -void Thread::wake_up() { - - lock_grab(&sleepLock); - cond_signal(&sleepCond); - lock_release(&sleepLock); + std::unique_lock lk(mutex); + searching = true; + nativeThread = std::thread(&Thread::idle_loop, this); + sleepCondition.wait(lk, [&]{ return !searching; }); } -// cutoff_occurred() checks whether a beta cutoff has occurred in the current -// active split point, or in some ancestor of the split point. +/// Thread destructor wait for thread termination before returning -bool Thread::cutoff_occurred() const { +Thread::~Thread() { - for (SplitPoint* sp = splitPoint; sp; sp = sp->parent) - if (sp->is_betaCutoff) - return true; - return false; + mutex.lock(); + exit = true; + sleepCondition.notify_one(); + mutex.unlock(); + nativeThread.join(); } -// is_available_to() checks whether the thread is available to help the thread with -// threadID "master" at a split point. An obvious requirement is that thread must be -// idle. With more than two threads, this is not by itself sufficient: If the thread -// is the master of some active split point, it is only available as a slave to the -// threads which are busy searching the split point at the top of "slave"'s split -// point stack (the "helpful master concept" in YBWC terminology). - -bool Thread::is_available_to(int master) const { - - if (is_searching) - return false; +/// Thread::wait_for_search_finished() wait on sleep condition until not searching - // Make a local copy to be sure doesn't become zero under our feet while - // testing next condition and so leading to an out of bound access. - int localActiveSplitPoints = activeSplitPoints; +void Thread::wait_for_search_finished() { - // No active split points means that the thread is available as a slave for any - // other thread otherwise apply the "helpful master" concept if possible. - if ( !localActiveSplitPoints - || splitPoints[localActiveSplitPoints - 1].is_slave[master]) - return true; - - return false; + std::unique_lock lk(mutex); + sleepCondition.wait(lk, [&]{ return !searching; }); } -// read_uci_options() updates number of active threads and other internal -// parameters according to the UCI options values. It is called before -// to start a new search. - -void ThreadsManager::read_uci_options() { +/// Thread::wait() wait on sleep condition until condition is true - maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value(); - minimumSplitDepth = Options["Minimum Split Depth"].value() * ONE_PLY; - useSleepingThreads = Options["Use Sleeping Threads"].value(); +void Thread::wait(std::atomic_bool& condition) { - set_size(Options["Threads"].value()); + std::unique_lock lk(mutex); + sleepCondition.wait(lk, [&]{ return bool(condition); }); } -// set_size() changes the number of active threads and raises do_sleep flag for -// all the unused threads that will go immediately to sleep. +/// Thread::start_searching() wake up the thread that will start the search -void ThreadsManager::set_size(int cnt) { +void Thread::start_searching(bool resume) { - assert(cnt > 0 && cnt <= MAX_THREADS); + std::unique_lock lk(mutex); - activeThreads = cnt; + if (!resume) + searching = true; - for (int i = 0; i < MAX_THREADS; i++) - if (i < activeThreads) - { - // Dynamically allocate pawn and material hash tables according to the - // number of active threads. This avoids preallocating memory for all - // possible threads if only few are used as, for instance, on mobile - // devices where memory is scarce and allocating for MAX_THREADS could - // even result in a crash. - threads[i].pawnTable.init(); - threads[i].materialTable.init(); - - threads[i].do_sleep = false; - } - else - threads[i].do_sleep = true; + sleepCondition.notify_one(); } -// init() is called during startup. Initializes locks and condition variables -// and launches all threads sending them immediately to sleep. - -void ThreadsManager::init() { +/// Thread::idle_loop() is where the thread is parked when it has no work to do - // Initialize sleep condition used to block waiting for GUI input - cond_init(&sleepCond); +void Thread::idle_loop() { - // Initialize threads lock, used when allocating slaves during splitting - lock_init(&threadsLock); - - // Initialize sleep and split point locks - for (int i = 0; i < MAX_THREADS + 2; i++) + while (!exit) { - lock_init(&threads[i].sleepLock); - cond_init(&threads[i].sleepCond); - - for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_init(&(threads[i].splitPoints[j].lock)); - } + std::unique_lock lk(mutex); - // Initialize main thread's associated data - threads[0].is_searching = true; - threads[0].threadID = 0; - set_size(1); // This makes all the threads but the main to go to sleep + searching = false; - // Create and launch all the threads but the main that is already running, - // threads will go immediately to sleep. - for (int i = 1; i < MAX_THREADS + 2; i++) - { - threads[i].is_searching = false; - threads[i].threadID = i; - -#if defined(_MSC_VER) - threads[i].handle = CreateThread(NULL, 0, start_routine, (LPVOID)&threads[i], 0, NULL); - bool ok = (threads[i].handle != NULL); -#else - bool ok = (pthread_create(&threads[i].handle, NULL, start_routine, (void*)&threads[i]) == 0); -#endif - - if (!ok) + while (!searching && !exit) { - std::cerr << "Failed to create thread number " << i << std::endl; - ::exit(EXIT_FAILURE); + sleepCondition.notify_one(); // Wake up any waiting thread + sleepCondition.wait(lk); } - } -} + lk.unlock(); -// exit() is called to cleanly terminate the threads when the program finishes - -void ThreadsManager::exit() { - - for (int i = 0; i < MAX_THREADS + 2; i++) - { - if (i != 0) - { - threads[i].do_terminate = true; - threads[i].wake_up(); - - // Wait for slave termination -#if defined(_MSC_VER) - WaitForSingleObject(threads[i].handle, 0); - CloseHandle(threads[i].handle); -#else - pthread_join(threads[i].handle, NULL); -#endif - } - - // Now we can safely destroy locks and wait conditions - lock_destroy(&threads[i].sleepLock); - cond_destroy(&threads[i].sleepCond); - - for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_destroy(&(threads[i].splitPoints[j].lock)); + if (!exit) + search(); } - - lock_destroy(&threadsLock); - cond_destroy(&sleepCond); } -// available_slave_exists() tries to find an idle thread which is available as -// a slave for the thread with threadID "master". - -bool ThreadsManager::available_slave_exists(int master) const { +/// ThreadPool::init() create and launch requested threads, that will go +/// immediately to sleep. We cannot use a constructor because Threads is a +/// static object and we need a fully initialized engine at this point due to +/// allocation of Endgames in the Thread constructor. - assert(master >= 0 && master < activeThreads); +void ThreadPool::init() { - for (int i = 0; i < activeThreads; i++) - if (i != master && threads[i].is_available_to(master)) - return true; - - return false; + push_back(new MainThread); + read_uci_options(); } -// split_point_finished() checks if all the slave threads of a given split -// point have finished searching. - -bool ThreadsManager::split_point_finished(SplitPoint* sp) const { - - for (int i = 0; i < activeThreads; i++) - if (sp->is_slave[i]) - return false; - - return true; -} - - -// split() does the actual work of distributing the work at a node between -// several available threads. If it does not succeed in splitting the -// node (because no idle threads are available, or because we have no unused -// split point objects), the function immediately returns. If splitting is -// possible, a SplitPoint object is initialized with all the data that must be -// copied to the helper threads and we tell our helper threads that they have -// been assigned work. This will cause them to instantly leave their idle loops and -// call search().When all threads have returned from search() then split() returns. - -template -Value ThreadsManager::split(Position& pos, SearchStack* ss, Value alpha, Value beta, - Value bestValue, Depth depth, Move threatMove, - int moveCount, MovePicker* mp, int nodeType) { - assert(pos.pos_is_ok()); - assert(bestValue >= -VALUE_INFINITE); - assert(bestValue <= alpha); - assert(alpha < beta); - assert(beta <= VALUE_INFINITE); - assert(depth > DEPTH_ZERO); - assert(pos.thread() >= 0 && pos.thread() < activeThreads); - assert(activeThreads > 1); - - int i, master = pos.thread(); - Thread& masterThread = threads[master]; - - // If we already have too many active split points, don't split - if (masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS) - return bestValue; - - // Pick the next available split point object from the split point stack - SplitPoint* sp = masterThread.splitPoints + masterThread.activeSplitPoints; - - // Initialize the split point object - sp->parent = masterThread.splitPoint; - sp->master = master; - sp->is_betaCutoff = false; - sp->depth = depth; - sp->threatMove = threatMove; - sp->alpha = alpha; - sp->beta = beta; - sp->nodeType = nodeType; - sp->bestValue = bestValue; - sp->mp = mp; - sp->moveCount = moveCount; - sp->pos = &pos; - sp->nodes = 0; - sp->ss = ss; - for (i = 0; i < activeThreads; i++) - sp->is_slave[i] = false; - - // If we are here it means we are not available - assert(masterThread.is_searching); - - int workersCnt = 1; // At least the master is included - - // Try to allocate available threads and ask them to start searching setting - // the state to Thread::WORKISWAITING, this must be done under lock protection - // to avoid concurrent allocation of the same slave by another master. - lock_grab(&threadsLock); - - for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++) - if (i != master && threads[i].is_available_to(master)) - { - workersCnt++; - sp->is_slave[i] = true; - threads[i].splitPoint = sp; - - // This makes the slave to exit from idle_loop() - threads[i].is_searching = true; - - if (useSleepingThreads) - threads[i].wake_up(); - } - - lock_release(&threadsLock); - - // We failed to allocate even one slave, return - if (!Fake && workersCnt == 1) - return bestValue; - - masterThread.splitPoint = sp; - masterThread.activeSplitPoints++; - - // Everything is set up. The master thread enters the idle loop, from which - // it will instantly launch a search, because its is_searching flag is set. - // We pass the split point as a parameter to the idle loop, which means that - // the thread will return from the idle loop when all slaves have finished - // their work at this split point. - masterThread.idle_loop(sp); - - // In helpful master concept a master can help only a sub-tree, and - // because here is all finished is not possible master is booked. - assert(!masterThread.is_searching); - - // We have returned from the idle loop, which means that all threads are - // finished. Note that changing state and decreasing activeSplitPoints is done - // under lock protection to avoid a race with Thread::is_available_to(). - lock_grab(&threadsLock); - - masterThread.is_searching = true; - masterThread.activeSplitPoints--; +/// ThreadPool::exit() terminate threads before the program exits. Cannot be +/// done in destructor because threads must be terminated before deleting any +/// static objects, so while still in main(). - lock_release(&threadsLock); +void ThreadPool::exit() { - masterThread.splitPoint = sp->parent; - pos.set_nodes_searched(pos.nodes_searched() + sp->nodes); - - return sp->bestValue; + while (size()) + delete back(), pop_back(); } -// Explicit template instantiations -template Value ThreadsManager::split(Position&, SearchStack*, Value, Value, Value, Depth, Move, int, MovePicker*, int); -template Value ThreadsManager::split(Position&, SearchStack*, Value, Value, Value, Depth, Move, int, MovePicker*, int); - - -// Thread::timer_loop() is where the timer thread waits maxPly milliseconds -// and then calls do_timer_event(). -void Thread::timer_loop() { - - while (!do_terminate) - { - lock_grab(&sleepLock); - timed_wait(&sleepCond, &sleepLock, maxPly ? maxPly : INT_MAX); - lock_release(&sleepLock); - do_timer_event(); - } -} +/// ThreadPool::read_uci_options() updates internal threads parameters from the +/// corresponding UCI options and creates/destroys threads to match requested +/// number. Thread objects are dynamically allocated. +void ThreadPool::read_uci_options() { -// ThreadsManager::set_timer() is used to set the timer to trigger after msec -// milliseconds. If msec is 0 then timer is stopped. + size_t requested = Options["Threads"]; -void ThreadsManager::set_timer(int msec) { + assert(requested > 0); - Thread& timer = threads[MAX_THREADS + 1]; + while (size() < requested) + push_back(new Thread); - lock_grab(&timer.sleepLock); - timer.maxPly = msec; - cond_signal(&timer.sleepCond); // Wake up and restart the timer - lock_release(&timer.sleepLock); + while (size() > requested) + delete back(), pop_back(); } -// Thread::listener_loop() is where the listener thread, used for I/O, waits for -// input. When is_searching is false then input is read in sync with main thread -// (that blocks), otherwise the listener thread reads any input asynchronously -// and processes the input line calling do_uci_async_cmd(). - -void Thread::listener_loop() { - - std::string cmd; - - while (true) - { - lock_grab(&sleepLock); - - Threads.inputLine = cmd; - do_sleep = !is_searching; - - // Here the thread is parked in sync mode after a line has been read - while (do_sleep && !do_terminate) // Catches spurious wake ups - { - cond_signal(&Threads.sleepCond); // Wake up main thread - cond_wait(&sleepCond, &sleepLock); // Sleep here - } - - lock_release(&sleepLock); +/// ThreadPool::nodes_searched() return the number of nodes searched - if (do_terminate) - return; +int64_t ThreadPool::nodes_searched() { - if (!std::getline(std::cin, cmd)) // Block waiting for input - cmd = "quit"; - - lock_grab(&sleepLock); - - // If we are in async mode then process the command now - if (is_searching) - { - // Command "quit" is the last one received by the GUI, so park the - // thread waiting for exiting. - if (cmd == "quit") - is_searching = false; - - do_uci_async_cmd(cmd); - cmd = ""; // Input has been consumed - } - - lock_release(&sleepLock); - } + int64_t nodes = 0; + for (Thread* th : *this) + nodes += th->rootPos.nodes_searched(); + return nodes; } -// ThreadsManager::getline() is used by main thread to block and wait for input, -// the behaviour mimics std::getline(). - -void ThreadsManager::getline(std::string& cmd) { +/// ThreadPool::start_thinking() wake up the main thread sleeping in idle_loop() +/// and start a new search, then return immediately. - Thread& listener = threads[MAX_THREADS]; +void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits, + StateStackPtr& states) { - lock_grab(&listener.sleepLock); + main()->wait_for_search_finished(); - listener.is_searching = false; // Set sync mode + Signals.stopOnPonderhit = Signals.stop = false; - // If there is already some input to grab then skip without to wake up the - // listener. This can happen if after we send the "bestmove", the GUI sends - // a command that the listener buffers in inputLine before going to sleep. - if (inputLine.empty()) + main()->rootMoves.clear(); + main()->rootPos = pos; + Limits = limits; + if (states.get()) // If we don't set a new position, preserve current state { - listener.do_sleep = false; - cond_signal(&listener.sleepCond); // Wake up listener thread - - while (!listener.do_sleep) - cond_wait(&sleepCond, &listener.sleepLock); // Wait for input + SetupStates = std::move(states); // Ownership transfer here + assert(!states.get()); } - cmd = inputLine; - inputLine = ""; // Input has been consumed - - lock_release(&listener.sleepLock); -} - - -// ThreadsManager::start_listener() is called at the beginning of the search to -// swith from sync behaviour (default) to async and so be able to read from UCI -// while other threads are searching. This avoids main thread polling for input. - -void ThreadsManager::start_listener() { - - Thread& listener = threads[MAX_THREADS]; - - lock_grab(&listener.sleepLock); - listener.is_searching = true; - listener.do_sleep = false; - cond_signal(&listener.sleepCond); // Wake up listener thread - lock_release(&listener.sleepLock); -} - - -// ThreadsManager::stop_listener() is called before to send "bestmove" to GUI to -// return to in-sync behaviour. This is needed because while in async mode any -// command is discarded without being processed (except for a very few ones). - -void ThreadsManager::stop_listener() { - - Thread& listener = threads[MAX_THREADS]; + for (const auto& m : MoveList(pos)) + if ( limits.searchmoves.empty() + || std::count(limits.searchmoves.begin(), limits.searchmoves.end(), m)) + main()->rootMoves.push_back(RootMove(m)); - lock_grab(&listener.sleepLock); - listener.is_searching = false; - lock_release(&listener.sleepLock); + main()->start_searching(); }