X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fthread.h;h=3a2d8538b0a84d73ba50b5caf7bc42a138ab00ba;hp=782694ad7d25607e8161b1be8ce9803022222332;hb=ba85c59d96d962dddaa0f1a2608ebea2e8ae694b;hpb=a8b9c11f5666a6298d684e21156f4ac9d89c8d8c diff --git a/src/thread.h b/src/thread.h index 782694ad..3a2d8538 100644 --- a/src/thread.h +++ b/src/thread.h @@ -17,34 +17,19 @@ along with this program. If not, see . */ - #if !defined(THREAD_H_INCLUDED) #define THREAD_H_INCLUDED - -//// -//// Includes -//// - #include #include "lock.h" +#include "material.h" #include "movepick.h" +#include "pawns.h" #include "position.h" -#include "search.h" - - -//// -//// Constants and variables -//// - -const int MAX_THREADS = 8; -const int ACTIVE_SPLIT_POINTS_MAX = 8; - -//// -//// Types -//// +const int MAX_THREADS = 32; +const int MAX_ACTIVE_SPLIT_POINTS = 8; struct SplitPoint { @@ -52,44 +37,98 @@ struct SplitPoint { SplitPoint* parent; const Position* pos; Depth depth; - bool pvNode, mateThreat; Value beta; + int nodeType; int ply; - SearchStack sstack[MAX_THREADS][PLY_MAX_PLUS_2]; + int master; + Move threatMove; // Const pointers to shared data MovePicker* mp; - SearchStack* parentSstack; + SearchStack* ss; // Shared data Lock lock; + volatile int64_t nodes; volatile Value alpha; volatile Value bestValue; volatile int moveCount; - volatile bool stopRequest; - volatile int slaves[MAX_THREADS]; + volatile bool is_betaCutoff; + volatile bool is_slave[MAX_THREADS]; }; -// ThreadState type is used to represent thread's current state -enum ThreadState -{ - THREAD_SEARCHING, // thread is performing work - THREAD_AVAILABLE, // thread is polling for work - THREAD_SLEEPING, // we are not thinking, so thread is sleeping - THREAD_BOOKED, // other thread (master) has booked us as a slave - THREAD_WORKISWAITING, // master has ordered us to start - THREAD_TERMINATED // we are quitting and thread is terminated -}; +/// Thread struct is used to keep together all the thread related stuff like locks, +/// state and especially split points. We also use per-thread pawn and material hash +/// tables so that once we get a pointer to an entry its life time is unlimited and +/// we don't have to care about someone changing the entry under our feet. struct Thread { + + enum ThreadState + { + INITIALIZING, // Thread is initializing itself + SEARCHING, // Thread is performing work + AVAILABLE, // Thread is waiting for work + WORKISWAITING, // Master has ordered us to start searching + TERMINATED // We are quitting and thread is terminated + }; + + void wake_up(); + bool cutoff_occurred() const; + bool is_available_to(int master) const; + void idle_loop(SplitPoint* sp); + + SplitPoint splitPoints[MAX_ACTIVE_SPLIT_POINTS]; + MaterialInfoTable materialTable; + PawnInfoTable pawnTable; + int threadID; + int maxPly; + Lock sleepLock; + WaitCondition sleepCond; + volatile ThreadState state; SplitPoint* volatile splitPoint; volatile int activeSplitPoints; - uint64_t nodes; - uint64_t betaCutOffs[2]; - volatile ThreadState state; - unsigned char pad[64]; // set some distance among local data for each thread + volatile bool do_sleep; + volatile bool do_terminate; +}; + + +/// ThreadsManager class is used to handle all the threads related stuff like init, +/// starting, parking and, the most important, launching a slave thread at a split +/// point. All the access to shared thread data is done through this class. + +class ThreadsManager { + /* As long as the single ThreadsManager object is defined as a global we don't + need to explicitly initialize to zero its data members because variables with + static storage duration are automatically set to zero before enter main() + */ +public: + Thread& operator[](int threadID) { return threads[threadID]; } + void init(); + void exit(); + void init_hash_tables(); + + bool use_sleeping_threads() const { return useSleepingThreads; } + int min_split_depth() const { return minimumSplitDepth; } + int size() const { return activeThreads; } + + void set_size(int cnt); + void read_uci_options(); + bool available_slave_exists(int master) const; + + template + Value split(Position& pos, SearchStack* ss, Value alpha, Value beta, Value bestValue, + Depth depth, Move threatMove, int moveCount, MovePicker* mp, int nodeType); +private: + Thread threads[MAX_THREADS]; + Lock threadsLock; + Depth minimumSplitDepth; + int maxThreadsPerSplitPoint; + int activeThreads; + bool useSleepingThreads; }; +extern ThreadsManager Threads; #endif // !defined(THREAD_H_INCLUDED)