X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=035fe33511db8669f5a2b4634bd92af5fb5ecc22;hp=55d98c1fa98b693a0b948d2d1175e8017d466e6c;hb=aa88261a8f509fdabfe235042de1c1ea7a39a399;hpb=01d97521fd675ed157ff7d61e6057916abbcc56c diff --git a/src/timeman.cpp b/src/timeman.cpp index 55d98c1f..035fe335 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -2,7 +2,7 @@ Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -32,40 +32,41 @@ namespace { enum TimeType { OptimumTime, MaxTime }; - int remaining(int myTime, int myInc, int moveOverhead, - int movesToGo, int ply, TimeType type) { + const int MoveHorizon = 50; // Plan time management at most this many moves ahead + const double MaxRatio = 7.09; // When in trouble, we can step over reserved time with this ratio + const double StealRatio = 0.35; // However we must not steal time from remaining moves over this ratio - if (myTime <= 0) - return 0; - int moveNumber = (ply + 1) / 2; - double ratio; // Which ratio of myTime we are going to use. It is <= 1 - double sd = 8.5; + // move_importance() is a skew-logistic function based on naive statistical + // analysis of "how many games are still undecided after n half-moves". Game + // is considered "undecided" as long as neither side has >275cp advantage. + // Data was extracted from the CCRL game database with some simple filtering criteria. - // Usage of increment follows quadratic distribution with the maximum at move 25 - double inc = myInc * std::max(55.0, 120.0 - 0.12 * (moveNumber - 25) * (moveNumber - 25)); + double move_importance(int ply) { - // In moves-to-go we distribute time according to a quadratic function with - // the maximum around move 20 for 40 moves in y time case. - if (movesToGo) - { - ratio = (type == OptimumTime ? 1.0 : 6.0) / std::min(50, movesToGo); + const double XScale = 7.64; + const double XShift = 58.4; + const double Skew = 0.183; - if (moveNumber <= 40) - ratio *= 1.1 - 0.001 * (moveNumber - 20) * (moveNumber - 20); - else - ratio *= 1.5; - } - // Otherwise we increase usage of remaining time as the game goes on - else - { - sd = 1 + 20 * moveNumber / (500.0 + moveNumber); - ratio = (type == OptimumTime ? 0.017 : 0.07) * sd; - } + return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero + } + + template + int remaining(int myTime, int movesToGo, int ply, int slowMover) { + + const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); + const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); + + double moveImportance = (move_importance(ply) * slowMover) / 100; + double otherMovesImportance = 0; - ratio = std::min(1.0, ratio * (1 + inc / (myTime * sd))); + for (int i = 1; i < movesToGo; ++i) + otherMovesImportance += move_importance(ply + 2 * i); - return int(ratio * std::max(0, myTime - moveOverhead)); + double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); + double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); + + return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast } } // namespace @@ -80,9 +81,11 @@ namespace { /// inc > 0 && movestogo == 0 means: x basetime + z increment /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment -void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) -{ +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { + + int minThinkingTime = Options["Minimum Thinking Time"]; int moveOverhead = Options["Move Overhead"]; + int slowMover = Options["Slow Mover"]; int npmsec = Options["nodestime"]; // If we have to play in 'nodes as time' mode, then convert from time @@ -101,8 +104,28 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) } startTime = limits.startTime; - optimumTime = remaining(limits.time[us], limits.inc[us], moveOverhead, limits.movestogo, ply, OptimumTime); - maximumTime = remaining(limits.time[us], limits.inc[us], moveOverhead, limits.movestogo, ply, MaxTime); + optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); + + const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; + + // We calculate optimum time usage for different hypothetical "moves to go"-values + // and choose the minimum of calculated search time values. Usually the greatest + // hypMTG gives the minimum values. + for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) + { + // Calculate thinking time for hypothetical "moves to go"-value + int hypMyTime = limits.time[us] + + limits.inc[us] * (hypMTG - 1) + - moveOverhead * (2 + std::min(hypMTG, 40)); + + hypMyTime = std::max(hypMyTime, 0); + + int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + + optimumTime = std::min(t1, optimumTime); + maximumTime = std::min(t2, maximumTime); + } if (Options["Ponder"]) optimumTime += optimumTime / 4;