X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=0c5224642c191856bc458426597abdcee8e7edbb;hp=2092b7299ed1c3b78ac9b53178bf5e61e7672d8d;hb=287e2e2f74332d59dae2bd01772a74b909b87d22;hpb=93e3b06fe2d441d7011068712fddbc8bf46ce4ec diff --git a/src/timeman.cpp b/src/timeman.cpp index 2092b729..0c522464 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,7 +1,8 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,109 +19,97 @@ */ #include -#include -#include #include "search.h" #include "timeman.h" -#include "ucioption.h" +#include "uci.h" + +TimeManagement Time; // Our global time management object namespace { enum TimeType { OptimumTime, MaxTime }; - const int MoveHorizon = 50; // Plan time management at most this many moves ahead - const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio - const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio + int remaining(int myTime, int myInc, int moveOverhead, int movesToGo, + int moveNum, bool ponder, TimeType type) { - const double xscale = 9.3; - const double xshift = 59.8; - const double skewfactor = 0.172; + if (myTime <= 0) + return 0; + double ratio; // Which ratio of myTime we are going to use - // move_importance() is a skew-logistic function based on naive statistical - // analysis of "how many games are still undecided after n half-moves". Game - // is considered "undecided" as long as neither side has >275cp advantage. - // Data was extracted from CCRL game database with some simple filtering criteria. + // Usage of increment follows quadratic distribution with the maximum at move 25 + double inc = myInc * std::max(55.0, 120 - 0.12 * (moveNum - 25) * (moveNum - 25)); - double move_importance(int ply) { + // In moves-to-go we distribute time according to a quadratic function with + // the maximum around move 20 for 40 moves in y time case. + if (movesToGo) + { + ratio = (type == OptimumTime ? 1.0 : 6.0) / std::min(50, movesToGo); - return pow((1 + exp((ply - xshift) / xscale)), -skewfactor) + DBL_MIN; // Ensure non-zero - } + if (moveNum <= 40) + ratio *= 1.1 - 0.001 * (moveNum - 20) * (moveNum - 20); + else + ratio *= 1.5; - template - int remaining(int myTime, int movesToGo, int currentPly, int slowMover) - { - const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); - const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); + if (movesToGo > 1) + ratio = std::min(0.75, ratio); - double thisMoveImportance = (move_importance(currentPly) * slowMover) / 100; - double otherMovesImportance = 0; + ratio *= 1 + inc / (myTime * 8.5); + } + // Otherwise we increase usage of remaining time as the game goes on + else + { + double k = 1 + 20 * moveNum / (500.0 + moveNum); + ratio = (type == OptimumTime ? 0.017 : 0.07) * (k + inc / myTime); + } - for (int i = 1; i < movesToGo; ++i) - otherMovesImportance += move_importance(currentPly + 2 * i); + int time = int(std::min(1.0, ratio) * std::max(0, myTime - moveOverhead)); - double ratio1 = (TMaxRatio * thisMoveImportance) / (TMaxRatio * thisMoveImportance + otherMovesImportance); - double ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / (thisMoveImportance + otherMovesImportance); + if (type == OptimumTime && ponder) + time = 5 * time / 4; - return int(floor(myTime * std::min(ratio1, ratio2))); + return time; } } // namespace -void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color us) -{ - /* We support four different kinds of time controls: - - increment == 0 && movesToGo == 0 means: x basetime [sudden death!] - increment == 0 && movesToGo != 0 means: x moves in y minutes - increment > 0 && movesToGo == 0 means: x basetime + z increment - increment > 0 && movesToGo != 0 means: x moves in y minutes + z increment - - Time management is adjusted by following UCI parameters: - - emergencyMoveHorizon: Be prepared to always play at least this many moves - emergencyBaseTime : Always attempt to keep at least this much time (in ms) at clock - emergencyMoveTime : Plus attempt to keep at least this much time for each remaining emergency move - minThinkingTime : No matter what, use at least this much thinking before doing the move - */ +/// init() is called at the beginning of the search and calculates the allowed +/// thinking time out of the time control and current game ply. We support four +/// different kinds of time controls, passed in 'limits': +/// +/// inc == 0 && movestogo == 0 means: x basetime [sudden death!] +/// inc == 0 && movestogo != 0 means: x moves in y minutes +/// inc > 0 && movestogo == 0 means: x basetime + z increment +/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment - int hypMTG, hypMyTime, t1, t2; - - // Read uci parameters - int emergencyMoveHorizon = Options["Emergency Move Horizon"]; - int emergencyBaseTime = Options["Emergency Base Time"]; - int emergencyMoveTime = Options["Emergency Move Time"]; - int minThinkingTime = Options["Minimum Thinking Time"]; - int slowMover = Options["Slow Mover"]; - - // Initialize unstablePvFactor to 1 and search times to maximum values - unstablePvFactor = 1; - optimumSearchTime = maximumSearchTime = std::max(limits.time[us], minThinkingTime); - - // We calculate optimum time usage for different hypothetical "moves to go"-values and choose the - // minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values. - for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); ++hypMTG) +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) +{ + int moveOverhead = Options["Move Overhead"]; + int npmsec = Options["nodestime"]; + bool ponder = Options["Ponder"]; + + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: Given npms (nodes per millisecond) must be much lower then + // the real engine speed to avoid time losses. + if (npmsec) { - // Calculate thinking time for hypothetical "moves to go"-value - hypMyTime = limits.time[us] - + limits.inc[us] * (hypMTG - 1) - - emergencyBaseTime - - emergencyMoveTime * std::min(hypMTG, emergencyMoveHorizon); - - hypMyTime = std::max(hypMyTime, 0); - - t1 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); - t2 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); + if (!availableNodes) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec - optimumSearchTime = std::min(optimumSearchTime, t1); - maximumSearchTime = std::min(maximumSearchTime, t2); + // Convert from millisecs to nodes + limits.time[us] = (int)availableNodes; + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; } - if (Options["Ponder"]) - optimumSearchTime += optimumSearchTime / 4; + int moveNum = (ply + 1) / 2; - // Make sure that maxSearchTime is not over absoluteMaxSearchTime - optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); + startTime = limits.startTime; + optimumTime = remaining(limits.time[us], limits.inc[us], moveOverhead, + limits.movestogo, moveNum, ponder, OptimumTime); + maximumTime = remaining(limits.time[us], limits.inc[us], moveOverhead, + limits.movestogo, moveNum, ponder, MaxTime); }