X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=28505e4e900dc4bd9ef78353f3d0846d64ee79cd;hp=dfa6c1cb6e394c1c428a3066f3c28a181068ec3d;hb=bb83a417cb708e105c88052809ddfdf308b55aa9;hpb=391cd57b52a18166f90202f01f28be1f3bf24d4c diff --git a/src/timeman.cpp b/src/timeman.cpp index dfa6c1cb..28505e4e 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,27 +17,20 @@ along with this program. If not, see . */ - -//// -//// Includes -//// - +#include #include -#include "misc.h" +#include "search.h" +#include "timeman.h" #include "ucioption.h" -//// -//// Local definitions -//// - namespace { /// Constants - const int MaxMoveHorizon = 50; // Plan time management at most this many moves ahead - const float MaxRatio = 3.0; // When in trouble, we can step over reserved time with this ratio - const float MaxStealRatio = 0.33; // However we must not steal time from remaining moves over this ratio + const int MoveHorizon = 50; // Plan time management at most this many moves ahead + const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio + const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio // MoveImportance[] is based on naive statistical analysis of "how many games are still undecided @@ -71,95 +64,98 @@ namespace { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 }; - int move_importance(int ply) { return MoveImportance[Min(ply, 511)]; } + int move_importance(int ply) { return MoveImportance[std::min(ply, 511)]; } /// Function Prototypes - int min_time_for_MTG(int myTime, int movesToGo, int currentPly); - int max_time_for_MTG(int myTime, int movesToGo, int currentPly); + enum TimeType { OptimumTime, MaxTime }; + + template + int remaining(int myTime, int movesToGo, int fullMoveNumber, int slowMover); } -//// -//// Functions -//// +void TimeManager::pv_instability(double bestMoveChanges) { -void get_search_times(int myTime, int myInc, int movesToGo, int currentPly, - int* maxSearchTime, int* absoluteMaxSearchTime) + unstablePVExtraTime = int(bestMoveChanges * optimumSearchTime / 1.4); +} + + +void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color us) { /* We support four different kind of time controls: - Inc == 0 && movesToGo == 0 means: x basetime [sudden death!] - Inc == 0 && movesToGo != 0 means: (x moves) / (y minutes) - Inc > 0 && movesToGo == 0 means: x basetime + z inc. - Inc > 0 && movesToGo != 0 means: (x moves) / (y minutes) + z inc + increment == 0 && movesToGo == 0 means: x basetime [sudden death!] + increment == 0 && movesToGo != 0 means: x moves in y minutes + increment > 0 && movesToGo == 0 means: x basetime + z increment + increment > 0 && movesToGo != 0 means: x moves in y minutes + z increment Time management is adjusted by following UCI parameters: - emergencyMoveHorizon :Be prepared to always play at least this many moves - emergencyBaseTime :Always attempt to keep at least this much time (in ms) at clock - emergencyMoveTime :Plus attempt to keep at least this much time for each remaining emergency move - minThinkingTime :No matter what, use at least this much thinking before doing the move + emergencyMoveHorizon: Be prepared to always play at least this many moves + emergencyBaseTime : Always attempt to keep at least this much time (in ms) at clock + emergencyMoveTime : Plus attempt to keep at least this much time for each remaining emergency move + minThinkingTime : No matter what, use at least this much thinking before doing the move */ - int hypMTG, hypMyTime; + int hypMTG, hypMyTime, t1, t2; // Read uci parameters - int emergencyMoveHorizon = get_option_value_int("Emergency Move Horizon"); - int emergencyBaseTime = get_option_value_int("Emergency Base Time"); - int emergencyMoveTime = get_option_value_int("Emergency Move Time"); - int minThinkingTime = get_option_value_int("Minimum Thinking Time"); + int emergencyMoveHorizon = Options["Emergency Move Horizon"]; + int emergencyBaseTime = Options["Emergency Base Time"]; + int emergencyMoveTime = Options["Emergency Move Time"]; + int minThinkingTime = Options["Minimum Thinking Time"]; + int slowMover = Options["Slow Mover"]; - // Initialize variables to maximum values - *maxSearchTime = *absoluteMaxSearchTime = myTime; + // Initialize to maximum values but unstablePVExtraTime that is reset + unstablePVExtraTime = 0; + optimumSearchTime = maximumSearchTime = limits.time[us]; // We calculate optimum time usage for different hypothetic "moves to go"-values and choose the // minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values. - for (hypMTG = 1; hypMTG <= (movesToGo ? Min(movesToGo, MaxMoveHorizon) : MaxMoveHorizon); hypMTG++) + for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); ++hypMTG) { // Calculate thinking time for hypothetic "moves to go"-value - hypMyTime = Max(myTime + (hypMTG - 1) * myInc - emergencyBaseTime - Min(hypMTG, emergencyMoveHorizon) * emergencyMoveTime, 0); + hypMyTime = limits.time[us] + + limits.inc[us] * (hypMTG - 1) + - emergencyBaseTime + - emergencyMoveTime * std::min(hypMTG, emergencyMoveHorizon); + + hypMyTime = std::max(hypMyTime, 0); + + t1 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); + t2 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); - *maxSearchTime = Min(*maxSearchTime, minThinkingTime + min_time_for_MTG(hypMyTime, hypMTG, currentPly)); - *absoluteMaxSearchTime = Min(*absoluteMaxSearchTime, minThinkingTime + max_time_for_MTG(hypMyTime, hypMTG, currentPly)); + optimumSearchTime = std::min(optimumSearchTime, t1); + maximumSearchTime = std::min(maximumSearchTime, t2); } + if (Options["Ponder"]) + optimumSearchTime += optimumSearchTime / 4; + // Make sure that maxSearchTime is not over absoluteMaxSearchTime - *maxSearchTime = Min(*maxSearchTime, *absoluteMaxSearchTime); + optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); } -//// -//// Local functions -//// namespace { - int min_time_for_MTG(int myTime, int movesToGo, int currentPly) + template + int remaining(int myTime, int movesToGo, int currentPly, int slowMover) { - float thisMoveImportance = move_importance(currentPly); - float otherMovesImportance = 0; - - for (int i = 1; i < movesToGo; i++) - otherMovesImportance += move_importance(currentPly + 2 * i); - - float ratio = thisMoveImportance / (thisMoveImportance + otherMovesImportance); + const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); + const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); - return int(floor(myTime * ratio)); - } - - int max_time_for_MTG(int myTime, int movesToGo, int currentPly) - { - float thisMoveImportance = move_importance(currentPly); - float otherMovesImportance = 0; + int thisMoveImportance = move_importance(currentPly) * slowMover / 100; + int otherMovesImportance = 0; - for (int i = 1; i < movesToGo; i++) + for (int i = 1; i < movesToGo; ++i) otherMovesImportance += move_importance(currentPly + 2 * i); - float ratio1 = (MaxRatio * thisMoveImportance) / (MaxRatio * thisMoveImportance + otherMovesImportance); - float ratio2 = (thisMoveImportance + MaxStealRatio * otherMovesImportance) / (thisMoveImportance + otherMovesImportance); + double ratio1 = (TMaxRatio * thisMoveImportance) / double(TMaxRatio * thisMoveImportance + otherMovesImportance); + double ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / double(thisMoveImportance + otherMovesImportance); - return int(floor(myTime * Min(ratio1, ratio2))); + return int(floor(myTime * std::min(ratio1, ratio2))); } } -