X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=47f57ab3b8d290642ef1f34b47f75a5ecdf91d68;hp=2092b7299ed1c3b78ac9b53178bf5e61e7672d8d;hb=69240a982d8c3a2d01fab04c284be43853ab2bc9;hpb=17cb7e7fa3cbc707be1df6793de1928fcb0c6219 diff --git a/src/timeman.cpp b/src/timeman.cpp index 2092b729..47f57ab3 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -23,19 +23,17 @@ #include "search.h" #include "timeman.h" -#include "ucioption.h" +#include "uci.h" + +TimeManagement Time; // Our global time management object namespace { enum TimeType { OptimumTime, MaxTime }; const int MoveHorizon = 50; // Plan time management at most this many moves ahead - const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio - const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio - - const double xscale = 9.3; - const double xshift = 59.8; - const double skewfactor = 0.172; + const double MaxRatio = 6.93; // When in trouble, we can step over reserved time with this ratio + const double StealRatio = 0.36; // However we must not steal time from remaining moves over this ratio // move_importance() is a skew-logistic function based on naive statistical @@ -45,82 +43,90 @@ namespace { double move_importance(int ply) { - return pow((1 + exp((ply - xshift) / xscale)), -skewfactor) + DBL_MIN; // Ensure non-zero + const double XScale = 8.27; + const double XShift = 59.; + const double Skew = 0.179; + + return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero } template - int remaining(int myTime, int movesToGo, int currentPly, int slowMover) + int remaining(int myTime, int movesToGo, int ply, int slowMover) { const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); - double thisMoveImportance = (move_importance(currentPly) * slowMover) / 100; + double moveImportance = (move_importance(ply) * slowMover) / 100; double otherMovesImportance = 0; for (int i = 1; i < movesToGo; ++i) - otherMovesImportance += move_importance(currentPly + 2 * i); + otherMovesImportance += move_importance(ply + 2 * i); - double ratio1 = (TMaxRatio * thisMoveImportance) / (TMaxRatio * thisMoveImportance + otherMovesImportance); - double ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / (thisMoveImportance + otherMovesImportance); + double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); + double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); - return int(floor(myTime * std::min(ratio1, ratio2))); + return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks an explicit cast } } // namespace -void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color us) -{ - /* We support four different kinds of time controls: - - increment == 0 && movesToGo == 0 means: x basetime [sudden death!] - increment == 0 && movesToGo != 0 means: x moves in y minutes - increment > 0 && movesToGo == 0 means: x basetime + z increment - increment > 0 && movesToGo != 0 means: x moves in y minutes + z increment - - Time management is adjusted by following UCI parameters: +/// init() is called at the beginning of the search and calculates the allowed +/// thinking time out of the time control and current game ply. We support four +/// different kinds of time controls, passed in 'limits': +/// +/// inc == 0 && movestogo == 0 means: x basetime [sudden death!] +/// inc == 0 && movestogo != 0 means: x moves in y minutes +/// inc > 0 && movestogo == 0 means: x basetime + z increment +/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment - emergencyMoveHorizon: Be prepared to always play at least this many moves - emergencyBaseTime : Always attempt to keep at least this much time (in ms) at clock - emergencyMoveTime : Plus attempt to keep at least this much time for each remaining emergency move - minThinkingTime : No matter what, use at least this much thinking before doing the move - */ - - int hypMTG, hypMyTime, t1, t2; +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) +{ + int minThinkingTime = Options["Minimum Thinking Time"]; + int moveOverhead = Options["Move Overhead"]; + int slowMover = Options["Slow Mover"]; + int npmsec = Options["nodestime"]; + + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: Given npms (nodes per millisecond) must be much lower then + // real engine speed to avoid time losses. + if (npmsec) + { + if (!availableNodes) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec - // Read uci parameters - int emergencyMoveHorizon = Options["Emergency Move Horizon"]; - int emergencyBaseTime = Options["Emergency Base Time"]; - int emergencyMoveTime = Options["Emergency Move Time"]; - int minThinkingTime = Options["Minimum Thinking Time"]; - int slowMover = Options["Slow Mover"]; + // Convert from millisecs to nodes + limits.time[us] = (int)availableNodes; + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; + } - // Initialize unstablePvFactor to 1 and search times to maximum values + startTime = limits.startTime; unstablePvFactor = 1; - optimumSearchTime = maximumSearchTime = std::max(limits.time[us], minThinkingTime); + optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); + + const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; - // We calculate optimum time usage for different hypothetical "moves to go"-values and choose the - // minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values. - for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); ++hypMTG) + // We calculate optimum time usage for different hypothetical "moves to go"-values + // and choose the minimum of calculated search time values. Usually the greatest + // hypMTG gives the minimum values. + for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) { // Calculate thinking time for hypothetical "moves to go"-value - hypMyTime = limits.time[us] - + limits.inc[us] * (hypMTG - 1) - - emergencyBaseTime - - emergencyMoveTime * std::min(hypMTG, emergencyMoveHorizon); + int hypMyTime = limits.time[us] + + limits.inc[us] * (hypMTG - 1) + - moveOverhead * (2 + std::min(hypMTG, 40)); hypMyTime = std::max(hypMyTime, 0); - t1 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); - t2 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); + int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); - optimumSearchTime = std::min(optimumSearchTime, t1); - maximumSearchTime = std::min(maximumSearchTime, t2); + optimumTime = std::min(t1, optimumTime); + maximumTime = std::min(t2, maximumTime); } if (Options["Ponder"]) - optimumSearchTime += optimumSearchTime / 4; - - // Make sure that maxSearchTime is not over absoluteMaxSearchTime - optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); + optimumTime += optimumTime / 4; }