X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=484aaa65998684cf6e6718d5c06d8d3b3a4052fd;hp=86c1d634e1e4bdef95f348e750a1f2b68b1cd2f2;hb=80d59eea392fc073f6d0ba29cb9a97e3d705ee58;hpb=f9571e8d57381275f08ffbfb960358319d4c34dd diff --git a/src/timeman.cpp b/src/timeman.cpp index 86c1d634..484aaa65 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,7 +1,8 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -25,92 +26,108 @@ #include "timeman.h" #include "uci.h" +TimeManagement Time; // Our global time management object + namespace { enum TimeType { OptimumTime, MaxTime }; - const int MoveHorizon = 50; // Plan time management at most this many moves ahead - const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio - const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio - - const double xscale = 9.3; - const double xshift = 59.8; - const double skewfactor = 0.172; + constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead + constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio + constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio // move_importance() is a skew-logistic function based on naive statistical // analysis of "how many games are still undecided after n half-moves". Game // is considered "undecided" as long as neither side has >275cp advantage. - // Data was extracted from CCRL game database with some simple filtering criteria. + // Data was extracted from the CCRL game database with some simple filtering criteria. double move_importance(int ply) { - return pow((1 + exp((ply - xshift) / xscale)), -skewfactor) + DBL_MIN; // Ensure non-zero + constexpr double XScale = 6.85; + constexpr double XShift = 64.5; + constexpr double Skew = 0.171; + + return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero } template - int remaining(int myTime, int movesToGo, int currentPly, int slowMover) - { - const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); - const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); + TimePoint remaining(TimePoint myTime, int movesToGo, int ply, TimePoint slowMover) { + + constexpr double TMaxRatio = (T == OptimumTime ? 1.0 : MaxRatio); + constexpr double TStealRatio = (T == OptimumTime ? 0.0 : StealRatio); - double thisMoveImportance = (move_importance(currentPly) * slowMover) / 100; - double otherMovesImportance = 0; + double moveImportance = (move_importance(ply) * slowMover) / 100.0; + double otherMovesImportance = 0.0; for (int i = 1; i < movesToGo; ++i) - otherMovesImportance += move_importance(currentPly + 2 * i); + otherMovesImportance += move_importance(ply + 2 * i); - double ratio1 = (TMaxRatio * thisMoveImportance) / (TMaxRatio * thisMoveImportance + otherMovesImportance); - double ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / (thisMoveImportance + otherMovesImportance); + double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); + double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); - return int(myTime * std::min(ratio1, ratio2)); + return TimePoint(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast } } // namespace -void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color us) -{ - /* We support four different kinds of time controls: - - increment == 0 && movesToGo == 0 means: x basetime [sudden death!] - increment == 0 && movesToGo != 0 means: x moves in y minutes - increment > 0 && movesToGo == 0 means: x basetime + z increment - increment > 0 && movesToGo != 0 means: x moves in y minutes + z increment - */ +/// init() is called at the beginning of the search and calculates the allowed +/// thinking time out of the time control and current game ply. We support four +/// different kinds of time controls, passed in 'limits': +/// +/// inc == 0 && movestogo == 0 means: x basetime [sudden death!] +/// inc == 0 && movestogo != 0 means: x moves in y minutes +/// inc > 0 && movestogo == 0 means: x basetime + z increment +/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment + +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { + + TimePoint minThinkingTime = Options["Minimum Thinking Time"]; + TimePoint moveOverhead = Options["Move Overhead"]; + TimePoint slowMover = Options["Slow Mover"]; + TimePoint npmsec = Options["nodestime"]; + TimePoint hypMyTime; + + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) + // must be much lower than the real engine speed. + if (npmsec) + { + if (!availableNodes) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec - int hypMTG, hypMyTime, t1, t2; + // Convert from milliseconds to nodes + limits.time[us] = TimePoint(availableNodes); + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; + } - // Read uci parameters - int moveOverhead = Options["Move Overhead"]; - int minThinkingTime = Options["Minimum Thinking Time"]; - int slowMover = Options["Slow Mover"]; + startTime = limits.startTime; + optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); - // Initialize unstablePvFactor to 1 and search times to maximum values - unstablePvFactor = 1; - optimumSearchTime = maximumSearchTime = std::max(limits.time[us], minThinkingTime); + const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; - // We calculate optimum time usage for different hypothetical "moves to go"-values and choose the - // minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values. - for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); ++hypMTG) + // We calculate optimum time usage for different hypothetical "moves to go" values + // and choose the minimum of calculated search time values. Usually the greatest + // hypMTG gives the minimum values. + for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG) { // Calculate thinking time for hypothetical "moves to go"-value hypMyTime = limits.time[us] + limits.inc[us] * (hypMTG - 1) - moveOverhead * (2 + std::min(hypMTG, 40)); - hypMyTime = std::max(hypMyTime, 0); + hypMyTime = std::max(hypMyTime, TimePoint(0)); - t1 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); - t2 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); + TimePoint t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + TimePoint t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); - optimumSearchTime = std::min(optimumSearchTime, t1); - maximumSearchTime = std::min(maximumSearchTime, t2); + optimumTime = std::min(t1, optimumTime); + maximumTime = std::min(t2, maximumTime); } if (Options["Ponder"]) - optimumSearchTime += optimumSearchTime / 4; - - // Make sure that maxSearchTime is not over absoluteMaxSearchTime - optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); + optimumTime += optimumTime / 4; }