X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=55d98c1fa98b693a0b948d2d1175e8017d466e6c;hp=34858f3a0459a86fc380eb8e047895c7eaa950d6;hb=01d97521fd675ed157ff7d61e6057916abbcc56c;hpb=86c20416c85ac93ab982dda404fc268a92636fa6 diff --git a/src/timeman.cpp b/src/timeman.cpp index 34858f3a..55d98c1f 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,7 +1,8 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -23,104 +24,86 @@ #include "search.h" #include "timeman.h" -#include "ucioption.h" +#include "uci.h" + +TimeManagement Time; // Our global time management object namespace { enum TimeType { OptimumTime, MaxTime }; - const int MoveHorizon = 50; // Plan time management at most this many moves ahead - const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio - const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio - - const double xscale = 9.3; - const double xshift = 59.8; - const double skewfactor = 0.172; + int remaining(int myTime, int myInc, int moveOverhead, + int movesToGo, int ply, TimeType type) { + if (myTime <= 0) + return 0; - // move_importance() is a skew-logistic function based on naive statistical - // analysis of "how many games are still undecided after n half-moves". Game - // is considered "undecided" as long as neither side has >275cp advantage. - // Data was extracted from CCRL game database with some simple filtering criteria. + int moveNumber = (ply + 1) / 2; + double ratio; // Which ratio of myTime we are going to use. It is <= 1 + double sd = 8.5; - double move_importance(int ply) { + // Usage of increment follows quadratic distribution with the maximum at move 25 + double inc = myInc * std::max(55.0, 120.0 - 0.12 * (moveNumber - 25) * (moveNumber - 25)); - return pow((1 + exp((ply - xshift) / xscale)), -skewfactor) + DBL_MIN; // Ensure non-zero - } - - template - int remaining(int myTime, int movesToGo, int currentPly, int slowMover) - { - const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); - const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); + // In moves-to-go we distribute time according to a quadratic function with + // the maximum around move 20 for 40 moves in y time case. + if (movesToGo) + { + ratio = (type == OptimumTime ? 1.0 : 6.0) / std::min(50, movesToGo); - double thisMoveImportance = (move_importance(currentPly) * slowMover) / 100; - double otherMovesImportance = 0; + if (moveNumber <= 40) + ratio *= 1.1 - 0.001 * (moveNumber - 20) * (moveNumber - 20); + else + ratio *= 1.5; + } + // Otherwise we increase usage of remaining time as the game goes on + else + { + sd = 1 + 20 * moveNumber / (500.0 + moveNumber); + ratio = (type == OptimumTime ? 0.017 : 0.07) * sd; + } - for (int i = 1; i < movesToGo; ++i) - otherMovesImportance += move_importance(currentPly + 2 * i); + ratio = std::min(1.0, ratio * (1 + inc / (myTime * sd))); - double ratio1 = (TMaxRatio * thisMoveImportance) / (TMaxRatio * thisMoveImportance + otherMovesImportance); - double ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / (thisMoveImportance + otherMovesImportance); - - return floor(myTime * std::min(ratio1, ratio2)); + return int(ratio * std::max(0, myTime - moveOverhead)); } } // namespace -void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color us) -{ - /* We support four different kinds of time controls: - - increment == 0 && movesToGo == 0 means: x basetime [sudden death!] - increment == 0 && movesToGo != 0 means: x moves in y minutes - increment > 0 && movesToGo == 0 means: x basetime + z increment - increment > 0 && movesToGo != 0 means: x moves in y minutes + z increment - - Time management is adjusted by following UCI parameters: +/// init() is called at the beginning of the search and calculates the allowed +/// thinking time out of the time control and current game ply. We support four +/// different kinds of time controls, passed in 'limits': +/// +/// inc == 0 && movestogo == 0 means: x basetime [sudden death!] +/// inc == 0 && movestogo != 0 means: x moves in y minutes +/// inc > 0 && movestogo == 0 means: x basetime + z increment +/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment - emergencyMoveHorizon: Be prepared to always play at least this many moves - emergencyBaseTime : Always attempt to keep at least this much time (in ms) at clock - emergencyMoveTime : Plus attempt to keep at least this much time for each remaining emergency move - minThinkingTime : No matter what, use at least this much thinking before doing the move - */ - - int hypMTG, hypMyTime, t1, t2; - - // Read uci parameters - int emergencyMoveHorizon = Options["Emergency Move Horizon"]; - int emergencyBaseTime = Options["Emergency Base Time"]; - int emergencyMoveTime = Options["Emergency Move Time"]; - int minThinkingTime = Options["Minimum Thinking Time"]; - int slowMover = Options["Slow Mover"]; - - // Initialize unstablePvFactor to 1 and search times to maximum values - unstablePvFactor = 1; - optimumSearchTime = maximumSearchTime = std::max(limits.time[us], minThinkingTime); - - // We calculate optimum time usage for different hypothetical "moves to go"-values and choose the - // minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values. - for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); ++hypMTG) +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) +{ + int moveOverhead = Options["Move Overhead"]; + int npmsec = Options["nodestime"]; + + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: Given npms (nodes per millisecond) must be much lower then + // the real engine speed to avoid time losses. + if (npmsec) { - // Calculate thinking time for hypothetical "moves to go"-value - hypMyTime = limits.time[us] - + limits.inc[us] * (hypMTG - 1) - - emergencyBaseTime - - emergencyMoveTime * std::min(hypMTG, emergencyMoveHorizon); + if (!availableNodes) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec - hypMyTime = std::max(hypMyTime, 0); - - t1 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); - t2 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); - - optimumSearchTime = std::min(optimumSearchTime, t1); - maximumSearchTime = std::min(maximumSearchTime, t2); + // Convert from millisecs to nodes + limits.time[us] = (int)availableNodes; + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; } - if (Options["Ponder"]) - optimumSearchTime += optimumSearchTime / 4; + startTime = limits.startTime; + optimumTime = remaining(limits.time[us], limits.inc[us], moveOverhead, limits.movestogo, ply, OptimumTime); + maximumTime = remaining(limits.time[us], limits.inc[us], moveOverhead, limits.movestogo, ply, MaxTime); - // Make sure that maxSearchTime is not over absoluteMaxSearchTime - optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); + if (Options["Ponder"]) + optimumTime += optimumTime / 4; }