X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=6d3b7314705f1098273837863d1dedaf4b94a1bd;hp=2629e967d12b6f6e92311492beca66f418468d92;hb=e0504ab876a997321102f040ab88203cb893db12;hpb=d4af15f682c1967450233ab62cba1a6c5d601df6 diff --git a/src/timeman.cpp b/src/timeman.cpp index 2629e967..6d3b7314 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -33,27 +33,27 @@ namespace { enum TimeType { OptimumTime, MaxTime }; const int MoveHorizon = 50; // Plan time management at most this many moves ahead - const double MaxRatio = 6.93; // When in trouble, we can step over reserved time with this ratio - const double StealRatio = 0.36; // However we must not steal time from remaining moves over this ratio + const double MaxRatio = 7.09; // When in trouble, we can step over reserved time with this ratio + const double StealRatio = 0.35; // However we must not steal time from remaining moves over this ratio // move_importance() is a skew-logistic function based on naive statistical // analysis of "how many games are still undecided after n half-moves". Game // is considered "undecided" as long as neither side has >275cp advantage. - // Data was extracted from CCRL game database with some simple filtering criteria. + // Data was extracted from the CCRL game database with some simple filtering criteria. double move_importance(int ply) { - const double XScale = 8.27; - const double XShift = 59.; - const double Skew = 0.179; + const double XScale = 7.64; + const double XShift = 58.4; + const double Skew = 0.183; return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero } template - int remaining(int myTime, int movesToGo, int ply, int slowMover) - { + int remaining(int myTime, int movesToGo, int ply, int slowMover) { + const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); @@ -66,7 +66,7 @@ namespace { double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); - return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks an explicit cast + return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast } } // namespace @@ -81,8 +81,8 @@ namespace { /// inc > 0 && movestogo == 0 means: x basetime + z increment /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment -void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) -{ +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { + int minThinkingTime = Options["Minimum Thinking Time"]; int moveOverhead = Options["Move Overhead"]; int slowMover = Options["Slow Mover"]; @@ -91,7 +91,7 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) // If we have to play in 'nodes as time' mode, then convert from time // to nodes, and use resulting values in time management formulas. // WARNING: Given npms (nodes per millisecond) must be much lower then - // real engine speed to avoid time losses. + // the real engine speed to avoid time losses. if (npmsec) { if (!availableNodes) // Only once at game start @@ -104,7 +104,6 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) } startTime = limits.startTime; - unstablePvFactor = 1; optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon;