X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=7a5db255142e91b6d696f516ccd58e4945e948d9;hp=11405bb9a01c3b954428dd32b857bf8f0071f917;hb=27efc5ac996ffc679395317c8bbb16aca996296c;hpb=b66552fc277ec6587bd93514a7a175d7905b2c6d diff --git a/src/timeman.cpp b/src/timeman.cpp index 11405bb9..7a5db255 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -23,7 +23,9 @@ #include "search.h" #include "timeman.h" -#include "ucioption.h" +#include "uci.h" + +TimeManagement Time; // Our global time management object namespace { @@ -33,10 +35,6 @@ namespace { const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio - const double xscale = 9.3; - const double xshift = 59.8; - const double skewfactor = 0.172; - // move_importance() is a skew-logistic function based on naive statistical // analysis of "how many games are still undecided after n half-moves". Game @@ -45,82 +43,92 @@ namespace { double move_importance(int ply) { - return pow((1 + exp((ply - xshift) / xscale)), -skewfactor) + DBL_MIN; // Ensure non-zero + const double XScale = 9.3; + const double XShift = 59.8; + const double Skew = 0.172; + + return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero } template - int remaining(int myTime, int movesToGo, int currentPly, int slowMover) + int remaining(int myTime, int movesToGo, int ply, int slowMover) { const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); - double thisMoveImportance = (move_importance(currentPly) * slowMover) / 100; + double moveImportance = (move_importance(ply) * slowMover) / 100; double otherMovesImportance = 0; for (int i = 1; i < movesToGo; ++i) - otherMovesImportance += move_importance(currentPly + 2 * i); + otherMovesImportance += move_importance(ply + 2 * i); - double ratio1 = (TMaxRatio * thisMoveImportance) / (TMaxRatio * thisMoveImportance + otherMovesImportance); - double ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / (thisMoveImportance + otherMovesImportance); + double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); + double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); - return int(myTime * std::min(ratio1, ratio2)); + return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks an explicit cast } } // namespace -void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color us) -{ - /* We support four different kinds of time controls: - - increment == 0 && movesToGo == 0 means: x basetime [sudden death!] - increment == 0 && movesToGo != 0 means: x moves in y minutes - increment > 0 && movesToGo == 0 means: x basetime + z increment - increment > 0 && movesToGo != 0 means: x moves in y minutes + z increment - - Time management is adjusted by following parameters: +/// init() is called at the beginning of the search and calculates the allowed +/// thinking time out of the time control and current game ply. We support four +/// different kinds of time controls, passed in 'limits': +/// +/// inc == 0 && movestogo == 0 means: x basetime [sudden death!] +/// inc == 0 && movestogo != 0 means: x moves in y minutes +/// inc > 0 && movestogo == 0 means: x basetime + z increment +/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment - emergencyMoveHorizon: Be prepared to always play at least this many moves - emergencyBaseTime : Always attempt to keep at least this much time (in ms) at clock - emergencyMoveTime : Plus attempt to keep at least this much time for each remaining emergency move - minThinkingTime : No matter what, use at least this much thinking before doing the move - */ - - int hypMTG, hypMyTime, t1, t2; +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply, TimePoint now) +{ + int minThinkingTime = Options["Minimum Thinking Time"]; + int moveOverhead = Options["Move Overhead"]; + int slowMover = Options["Slow Mover"]; + int npmsec = Options["nodestime"]; + + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: Given npms (nodes per millisecond) must be much lower then + // real engine speed to avoid time losses. + if (npmsec) + { + if (!availableNodes) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec - // Read uci parameters - int emergencyMoveHorizon = 40; - int emergencyBaseTime = Options["Move Overhead"] * 2; - int emergencyMoveTime = Options["Move Overhead"]; - int minThinkingTime = Options["Minimum Thinking Time"]; - int slowMover = Options["Slow Mover"]; + // Convert from millisecs to nodes + limits.time[us] = (int)availableNodes; + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; + } - // Initialize unstablePvFactor to 1 and search times to maximum values + start = now; unstablePvFactor = 1; - optimumSearchTime = maximumSearchTime = std::max(limits.time[us], minThinkingTime); + optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); + + const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; - // We calculate optimum time usage for different hypothetical "moves to go"-values and choose the - // minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values. - for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); ++hypMTG) + // We calculate optimum time usage for different hypothetical "moves to go"-values + // and choose the minimum of calculated search time values. Usually the greatest + // hypMTG gives the minimum values. + for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) { // Calculate thinking time for hypothetical "moves to go"-value - hypMyTime = limits.time[us] - + limits.inc[us] * (hypMTG - 1) - - emergencyBaseTime - - emergencyMoveTime * std::min(hypMTG, emergencyMoveHorizon); + int hypMyTime = limits.time[us] + + limits.inc[us] * (hypMTG - 1) + - moveOverhead * (2 + std::min(hypMTG, 40)); hypMyTime = std::max(hypMyTime, 0); - t1 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); - t2 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); + int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); - optimumSearchTime = std::min(optimumSearchTime, t1); - maximumSearchTime = std::min(maximumSearchTime, t2); + optimumTime = std::min(t1, optimumTime); + maximumTime = std::min(t2, maximumTime); } if (Options["Ponder"]) - optimumSearchTime += optimumSearchTime / 4; + optimumTime += optimumTime / 4; - // Make sure that maxSearchTime is not over absoluteMaxSearchTime - optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); + optimumTime = std::min(optimumTime, maximumTime); }