X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=7a5db255142e91b6d696f516ccd58e4945e948d9;hp=9accfbb346a6e2ca77b960378a29a496c3ceeb4f;hb=27efc5ac996ffc679395317c8bbb16aca996296c;hpb=c9dcda6ac488c0058ebd567e1f52e30b8cd0db20 diff --git a/src/timeman.cpp b/src/timeman.cpp index 9accfbb3..7a5db255 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,125 +18,117 @@ */ #include +#include #include #include "search.h" #include "timeman.h" -#include "ucioption.h" +#include "uci.h" + +TimeManagement Time; // Our global time management object namespace { - /// Constants + enum TimeType { OptimumTime, MaxTime }; const int MoveHorizon = 50; // Plan time management at most this many moves ahead const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio - const double xscale = 9.3; - const double xshift = 59.8; - const double skewfactor = 0.172; - - /// move_importance() is a skew-logistic function based on naive statistical - /// analysis of "how many games are still undecided after n half-moves". Game - /// is considered "undecided" as long as neither side has >275cp advantage. - /// Data was extracted from CCRL game database with some simple filtering criteria. + // move_importance() is a skew-logistic function based on naive statistical + // analysis of "how many games are still undecided after n half-moves". Game + // is considered "undecided" as long as neither side has >275cp advantage. + // Data was extracted from CCRL game database with some simple filtering criteria. double move_importance(int ply) { - return pow((1 + exp((ply - xshift) / xscale)), -skewfactor); + const double XScale = 9.3; + const double XShift = 59.8; + const double Skew = 0.172; + + return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero } + template + int remaining(int myTime, int movesToGo, int ply, int slowMover) + { + const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); + const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); - /// Function Prototypes + double moveImportance = (move_importance(ply) * slowMover) / 100; + double otherMovesImportance = 0; - enum TimeType { OptimumTime, MaxTime }; + for (int i = 1; i < movesToGo; ++i) + otherMovesImportance += move_importance(ply + 2 * i); - template - int remaining(int myTime, int movesToGo, int fullMoveNumber, int slowMover); -} + double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); + double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); + return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks an explicit cast + } -void TimeManager::pv_instability(double bestMoveChanges) { +} // namespace - unstablePVExtraTime = int(bestMoveChanges * optimumSearchTime / 1.4); -} +/// init() is called at the beginning of the search and calculates the allowed +/// thinking time out of the time control and current game ply. We support four +/// different kinds of time controls, passed in 'limits': +/// +/// inc == 0 && movestogo == 0 means: x basetime [sudden death!] +/// inc == 0 && movestogo != 0 means: x moves in y minutes +/// inc > 0 && movestogo == 0 means: x basetime + z increment +/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment -void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color us) +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply, TimePoint now) { - /* We support four different kind of time controls: - - increment == 0 && movesToGo == 0 means: x basetime [sudden death!] - increment == 0 && movesToGo != 0 means: x moves in y minutes - increment > 0 && movesToGo == 0 means: x basetime + z increment - increment > 0 && movesToGo != 0 means: x moves in y minutes + z increment - - Time management is adjusted by following UCI parameters: - - emergencyMoveHorizon: Be prepared to always play at least this many moves - emergencyBaseTime : Always attempt to keep at least this much time (in ms) at clock - emergencyMoveTime : Plus attempt to keep at least this much time for each remaining emergency move - minThinkingTime : No matter what, use at least this much thinking before doing the move - */ + int minThinkingTime = Options["Minimum Thinking Time"]; + int moveOverhead = Options["Move Overhead"]; + int slowMover = Options["Slow Mover"]; + int npmsec = Options["nodestime"]; + + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: Given npms (nodes per millisecond) must be much lower then + // real engine speed to avoid time losses. + if (npmsec) + { + if (!availableNodes) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec - int hypMTG, hypMyTime, t1, t2; + // Convert from millisecs to nodes + limits.time[us] = (int)availableNodes; + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; + } - // Read uci parameters - int emergencyMoveHorizon = Options["Emergency Move Horizon"]; - int emergencyBaseTime = Options["Emergency Base Time"]; - int emergencyMoveTime = Options["Emergency Move Time"]; - int minThinkingTime = Options["Minimum Thinking Time"]; - int slowMover = Options["Slow Mover"]; + start = now; + unstablePvFactor = 1; + optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); - // Initialize all to maximum values but unstablePVExtraTime that is reset - unstablePVExtraTime = 0; - optimumSearchTime = maximumSearchTime = limits.time[us]; + const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; - // We calculate optimum time usage for different hypothetical "moves to go"-values and choose the - // minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values. - for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); ++hypMTG) + // We calculate optimum time usage for different hypothetical "moves to go"-values + // and choose the minimum of calculated search time values. Usually the greatest + // hypMTG gives the minimum values. + for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) { // Calculate thinking time for hypothetical "moves to go"-value - hypMyTime = limits.time[us] - + limits.inc[us] * (hypMTG - 1) - - emergencyBaseTime - - emergencyMoveTime * std::min(hypMTG, emergencyMoveHorizon); + int hypMyTime = limits.time[us] + + limits.inc[us] * (hypMTG - 1) + - moveOverhead * (2 + std::min(hypMTG, 40)); hypMyTime = std::max(hypMyTime, 0); - t1 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); - t2 = minThinkingTime + remaining(hypMyTime, hypMTG, currentPly, slowMover); + int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); - optimumSearchTime = std::min(optimumSearchTime, t1); - maximumSearchTime = std::min(maximumSearchTime, t2); + optimumTime = std::min(t1, optimumTime); + maximumTime = std::min(t2, maximumTime); } if (Options["Ponder"]) - optimumSearchTime += optimumSearchTime / 4; - - // Make sure that maxSearchTime is not over absoluteMaxSearchTime - optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); -} + optimumTime += optimumTime / 4; - -namespace { - - template - int remaining(int myTime, int movesToGo, int currentPly, int slowMover) - { - const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); - const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); - - double thisMoveImportance = (move_importance(currentPly) * slowMover) / 100; - double otherMovesImportance = 0; - - for (int i = 1; i < movesToGo; ++i) - otherMovesImportance += move_importance(currentPly + 2 * i); - - double ratio1 = (TMaxRatio * thisMoveImportance) / (TMaxRatio * thisMoveImportance + otherMovesImportance); - double ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / (thisMoveImportance + otherMovesImportance); - - return int(floor(myTime * std::min(ratio1, ratio2))); - } + optimumTime = std::min(optimumTime, maximumTime); }