X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=da08f12d9692994355daf9a27130637b4b871d98;hp=1f598745ab086c1c71ca2dd86375cecbc69d59a7;hb=7fc47eeb6f6b5f3c5ff697e974093ff14413e42c;hpb=383b12e1a5cc03a122e9a071eebde87eac85b116 diff --git a/src/timeman.cpp b/src/timeman.cpp index 1f598745..da08f12d 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,8 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -28,21 +26,21 @@ TimeManagement Time; // Our global time management object -/// init() is called at the beginning of the search and calculates the bounds -/// of time allowed for the current game ply. We currently support: -// 1) x basetime (+z increment) -// 2) x moves in y seconds (+z increment) + +/// TimeManagement::init() is called at the beginning of the search and calculates +/// the bounds of time allowed for the current game ply. We currently support: +// 1) x basetime (+ z increment) +// 2) x moves in y seconds (+ z increment) void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { - TimePoint minThinkingTime = TimePoint(Options["Minimum Thinking Time"]); TimePoint moveOverhead = TimePoint(Options["Move Overhead"]); TimePoint slowMover = TimePoint(Options["Slow Mover"]); TimePoint npmsec = TimePoint(Options["nodestime"]); - // opt_scale is a percentage of available time to use for the current move. - // max_scale is a multiplier applied to optimumTime. - double opt_scale, max_scale; + // optScale is a percentage of available time to use for the current move. + // maxScale is a multiplier applied to optimumTime. + double optScale, maxScale; // If we have to play in 'nodes as time' mode, then convert from time // to nodes, and use resulting values in time management formulas. @@ -61,7 +59,7 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { startTime = limits.startTime; - //Maximum move horizon of 50 moves + // Maximum move horizon of 50 moves int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50; // Make sure timeLeft is > 0 since we may use it as a divisor @@ -77,22 +75,22 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { // game time for the current move, so also cap to 20% of available game time. if (limits.movestogo == 0) { - opt_scale = std::min(0.008 + std::pow(ply + 3.0, 0.5) / 250.0, + optScale = std::min(0.0084 + std::pow(ply + 3.0, 0.5) * 0.0042, 0.2 * limits.time[us] / double(timeLeft)); - max_scale = 4 + std::min(36, ply) / 12.0; + maxScale = std::min(7.0, 4.0 + ply / 12.0); } // x moves in y seconds (+ z increment) else { - opt_scale = std::min((0.8 + ply / 128.0) / mtg, + optScale = std::min((0.8 + ply / 128.0) / mtg, 0.8 * limits.time[us] / double(timeLeft)); - max_scale = std::min(6.3, 1.5 + 0.11 * mtg); + maxScale = std::min(6.3, 1.5 + 0.11 * mtg); } // Never use more than 80% of the available time for this move - optimumTime = std::max(minThinkingTime, TimePoint(opt_scale * timeLeft)); - maximumTime = TimePoint(std::min(0.8 * limits.time[us] - moveOverhead, max_scale * optimumTime)); + optimumTime = TimePoint(optScale * timeLeft); + maximumTime = TimePoint(std::min(0.8 * limits.time[us] - moveOverhead, maxScale * optimumTime)); if (Options["Ponder"]) optimumTime += optimumTime / 4;