X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=da08f12d9692994355daf9a27130637b4b871d98;hp=fafde2aa62033d44a7953d29db8aca23dd78023e;hb=7fc47eeb6f6b5f3c5ff697e974093ff14413e42c;hpb=c8589903777b6e0289640b43fae966ded442af48 diff --git a/src/timeman.cpp b/src/timeman.cpp index fafde2aa..da08f12d 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,8 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,6 +16,7 @@ along with this program. If not, see . */ +#include #include #include @@ -27,66 +26,21 @@ TimeManagement Time; // Our global time management object -namespace { - enum TimeType { OptimumTime, MaxTime }; - - constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead - constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio - constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio - - - // move_importance() is a skew-logistic function based on naive statistical - // analysis of "how many games are still undecided after n half-moves". Game - // is considered "undecided" as long as neither side has >275cp advantage. - // Data was extracted from the CCRL game database with some simple filtering criteria. - - double move_importance(int ply) { - - constexpr double XScale = 6.85; - constexpr double XShift = 64.5; - constexpr double Skew = 0.171; - - return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero - } - - template - TimePoint remaining(TimePoint myTime, int movesToGo, int ply, TimePoint slowMover) { - - constexpr double TMaxRatio = (T == OptimumTime ? 1.0 : MaxRatio); - constexpr double TStealRatio = (T == OptimumTime ? 0.0 : StealRatio); - - double moveImportance = (move_importance(ply) * slowMover) / 100.0; - double otherMovesImportance = 0.0; - - for (int i = 1; i < movesToGo; ++i) - otherMovesImportance += move_importance(ply + 2 * i); - - double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); - double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); - - return TimePoint(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast - } - -} // namespace - - -/// init() is called at the beginning of the search and calculates the allowed -/// thinking time out of the time control and current game ply. We support four -/// different kinds of time controls, passed in 'limits': -/// -/// inc == 0 && movestogo == 0 means: x basetime [sudden death!] -/// inc == 0 && movestogo != 0 means: x moves in y minutes -/// inc > 0 && movestogo == 0 means: x basetime + z increment -/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment +/// TimeManagement::init() is called at the beginning of the search and calculates +/// the bounds of time allowed for the current game ply. We currently support: +// 1) x basetime (+ z increment) +// 2) x moves in y seconds (+ z increment) void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { - TimePoint minThinkingTime = Options["Minimum Thinking Time"]; - TimePoint moveOverhead = Options["Move Overhead"]; - TimePoint slowMover = Options["Slow Mover"]; - TimePoint npmsec = Options["nodestime"]; - TimePoint hypMyTime; + TimePoint moveOverhead = TimePoint(Options["Move Overhead"]); + TimePoint slowMover = TimePoint(Options["Slow Mover"]); + TimePoint npmsec = TimePoint(Options["nodestime"]); + + // optScale is a percentage of available time to use for the current move. + // maxScale is a multiplier applied to optimumTime. + double optScale, maxScale; // If we have to play in 'nodes as time' mode, then convert from time // to nodes, and use resulting values in time management formulas. @@ -104,29 +58,40 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { } startTime = limits.startTime; - optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); - const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; + // Maximum move horizon of 50 moves + int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50; - // We calculate optimum time usage for different hypothetical "moves to go" values - // and choose the minimum of calculated search time values. Usually the greatest - // hypMTG gives the minimum values. - for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG) - { - // Calculate thinking time for hypothetical "moves to go"-value - hypMyTime = limits.time[us] - + limits.inc[us] * (hypMTG - 1) - - moveOverhead * (2 + std::min(hypMTG, 40)); + // Make sure timeLeft is > 0 since we may use it as a divisor + TimePoint timeLeft = std::max(TimePoint(1), + limits.time[us] + limits.inc[us] * (mtg - 1) - moveOverhead * (2 + mtg)); - hypMyTime = std::max(hypMyTime, TimePoint(0)); + // A user may scale time usage by setting UCI option "Slow Mover" + // Default is 100 and changing this value will probably lose elo. + timeLeft = slowMover * timeLeft / 100; - TimePoint t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); - TimePoint t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + // x basetime (+ z increment) + // If there is a healthy increment, timeLeft can exceed actual available + // game time for the current move, so also cap to 20% of available game time. + if (limits.movestogo == 0) + { + optScale = std::min(0.0084 + std::pow(ply + 3.0, 0.5) * 0.0042, + 0.2 * limits.time[us] / double(timeLeft)); + maxScale = std::min(7.0, 4.0 + ply / 12.0); + } - optimumTime = std::min(t1, optimumTime); - maximumTime = std::min(t2, maximumTime); + // x moves in y seconds (+ z increment) + else + { + optScale = std::min((0.8 + ply / 128.0) / mtg, + 0.8 * limits.time[us] / double(timeLeft)); + maxScale = std::min(6.3, 1.5 + 0.11 * mtg); } + // Never use more than 80% of the available time for this move + optimumTime = TimePoint(optScale * timeLeft); + maximumTime = TimePoint(std::min(0.8 * limits.time[us] - moveOverhead, maxScale * optimumTime)); + if (Options["Ponder"]) optimumTime += optimumTime / 4; }