X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=e63454ebd7b3f85f4d6dedaafbe4df949e7133d2;hp=04730abcc4a0f68eebb078a6044b1316eaae8d2b;hb=759b3c79cf94d101163f646b1eb2a9f9c64293ab;hpb=42b48b08e81b55e385e55b3074b7c59d81809a45 diff --git a/src/timeman.cpp b/src/timeman.cpp index 04730abc..e63454eb 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -2,6 +2,7 @@ Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -25,34 +26,36 @@ #include "timeman.h" #include "uci.h" +TimeManagement Time; // Our global time management object + namespace { enum TimeType { OptimumTime, MaxTime }; - const int MoveHorizon = 50; // Plan time management at most this many moves ahead - const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio - const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio + constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead + constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio + constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio // move_importance() is a skew-logistic function based on naive statistical // analysis of "how many games are still undecided after n half-moves". Game // is considered "undecided" as long as neither side has >275cp advantage. - // Data was extracted from CCRL game database with some simple filtering criteria. + // Data was extracted from the CCRL game database with some simple filtering criteria. double move_importance(int ply) { - const double XScale = 9.3; - const double XShift = 59.8; - const double Skew = 0.172; + constexpr double XScale = 6.85; + constexpr double XShift = 64.5; + constexpr double Skew = 0.171; return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero } template - int remaining(int myTime, int movesToGo, int ply, int slowMover) - { - const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); - const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); + int remaining(int myTime, int movesToGo, int ply, int slowMover) { + + constexpr double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); + constexpr double TStealRatio = (T == OptimumTime ? 0 : StealRatio); double moveImportance = (move_importance(ply) * slowMover) / 100; double otherMovesImportance = 0; @@ -63,7 +66,7 @@ namespace { double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); - return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks an explicit cast + return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast } } // namespace @@ -78,22 +81,37 @@ namespace { /// inc > 0 && movestogo == 0 means: x basetime + z increment /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment -void TimeManager::init(const Search::LimitsType& limits, Color us, int ply) -{ +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { + int minThinkingTime = Options["Minimum Thinking Time"]; int moveOverhead = Options["Move Overhead"]; int slowMover = Options["Slow Mover"]; + int npmsec = Options["nodestime"]; - // Initialize unstablePvFactor to 1 and search times to maximum values - unstablePvFactor = 1; - optimumSearchTime = maximumSearchTime = std::max(limits.time[us], minThinkingTime); + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: Given npms (nodes per millisecond) must be much lower then + // the real engine speed to avoid time losses. + if (npmsec) + { + if (!availableNodes) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec - const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; + // Convert from millisecs to nodes + limits.time[us] = (int)availableNodes; + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; + } + + startTime = limits.startTime; + optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); + + const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; // We calculate optimum time usage for different hypothetical "moves to go"-values // and choose the minimum of calculated search time values. Usually the greatest // hypMTG gives the minimum values. - for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) + for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG) { // Calculate thinking time for hypothetical "moves to go"-value int hypMyTime = limits.time[us] @@ -105,12 +123,10 @@ void TimeManager::init(const Search::LimitsType& limits, Color us, int ply) int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); - optimumSearchTime = std::min(t1, optimumSearchTime); - maximumSearchTime = std::min(t2, maximumSearchTime); + optimumTime = std::min(t1, optimumTime); + maximumTime = std::min(t2, maximumTime); } if (Options["Ponder"]) - optimumSearchTime += optimumSearchTime / 4; - - optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); + optimumTime += optimumTime / 4; }