X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=e63454ebd7b3f85f4d6dedaafbe4df949e7133d2;hp=e9f1ffe5389597fa52e58fc9fdf604c49ee0af85;hb=759b3c79cf94d101163f646b1eb2a9f9c64293ab;hpb=77fa960f8923ca83ba0391835d50f4230ac6a345 diff --git a/src/timeman.cpp b/src/timeman.cpp index e9f1ffe5..e63454eb 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -2,7 +2,7 @@ Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -32,30 +32,32 @@ namespace { enum TimeType { OptimumTime, MaxTime }; - const int MoveHorizon = 50; // Plan time management at most this many moves ahead - const double MaxRatio = 7.09; // When in trouble, we can step over reserved time with this ratio - const double StealRatio = 0.35; // However we must not steal time from remaining moves over this ratio + constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead + constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio + constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio - // move_importance() is an exponential function based on naive observation - // that a game is closer to be decided after each half-move. This function - // should be decreasing and with "nice" convexity properties. + // move_importance() is a skew-logistic function based on naive statistical + // analysis of "how many games are still undecided after n half-moves". Game + // is considered "undecided" as long as neither side has >275cp advantage. + // Data was extracted from the CCRL game database with some simple filtering criteria. double move_importance(int ply) { - const double PlyScale = 109.3265; - const double PlyGrowth = 4.0; + constexpr double XScale = 6.85; + constexpr double XShift = 64.5; + constexpr double Skew = 0.171; - return exp(-pow(ply / PlyScale, PlyGrowth)) + DBL_MIN; // Ensure non-zero + return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero } template - int remaining(int myTime, int movesToGo, int ply) - { - const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); - const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); + int remaining(int myTime, int movesToGo, int ply, int slowMover) { + + constexpr double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); + constexpr double TStealRatio = (T == OptimumTime ? 0 : StealRatio); - double moveImportance = move_importance(ply); + double moveImportance = (move_importance(ply) * slowMover) / 100; double otherMovesImportance = 0; for (int i = 1; i < movesToGo; ++i) @@ -79,10 +81,11 @@ namespace { /// inc > 0 && movestogo == 0 means: x basetime + z increment /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment -void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) -{ +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { + int minThinkingTime = Options["Minimum Thinking Time"]; int moveOverhead = Options["Move Overhead"]; + int slowMover = Options["Slow Mover"]; int npmsec = Options["nodestime"]; // If we have to play in 'nodes as time' mode, then convert from time @@ -103,12 +106,12 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) startTime = limits.startTime; optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); - const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; + const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; // We calculate optimum time usage for different hypothetical "moves to go"-values // and choose the minimum of calculated search time values. Usually the greatest // hypMTG gives the minimum values. - for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) + for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG) { // Calculate thinking time for hypothetical "moves to go"-value int hypMyTime = limits.time[us] @@ -117,8 +120,8 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) hypMyTime = std::max(hypMyTime, 0); - int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply); - int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply); + int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); optimumTime = std::min(t1, optimumTime); maximumTime = std::min(t2, maximumTime);