X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=e9f1ffe5389597fa52e58fc9fdf604c49ee0af85;hp=04730abcc4a0f68eebb078a6044b1316eaae8d2b;hb=77fa960f8923ca83ba0391835d50f4230ac6a345;hpb=42b48b08e81b55e385e55b3074b7c59d81809a45 diff --git a/src/timeman.cpp b/src/timeman.cpp index 04730abc..e9f1ffe5 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -2,6 +2,7 @@ Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -25,36 +26,36 @@ #include "timeman.h" #include "uci.h" +TimeManagement Time; // Our global time management object + namespace { enum TimeType { OptimumTime, MaxTime }; const int MoveHorizon = 50; // Plan time management at most this many moves ahead - const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio - const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio + const double MaxRatio = 7.09; // When in trouble, we can step over reserved time with this ratio + const double StealRatio = 0.35; // However we must not steal time from remaining moves over this ratio - // move_importance() is a skew-logistic function based on naive statistical - // analysis of "how many games are still undecided after n half-moves". Game - // is considered "undecided" as long as neither side has >275cp advantage. - // Data was extracted from CCRL game database with some simple filtering criteria. + // move_importance() is an exponential function based on naive observation + // that a game is closer to be decided after each half-move. This function + // should be decreasing and with "nice" convexity properties. double move_importance(int ply) { - const double XScale = 9.3; - const double XShift = 59.8; - const double Skew = 0.172; + const double PlyScale = 109.3265; + const double PlyGrowth = 4.0; - return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero + return exp(-pow(ply / PlyScale, PlyGrowth)) + DBL_MIN; // Ensure non-zero } template - int remaining(int myTime, int movesToGo, int ply, int slowMover) + int remaining(int myTime, int movesToGo, int ply) { const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); - double moveImportance = (move_importance(ply) * slowMover) / 100; + double moveImportance = move_importance(ply); double otherMovesImportance = 0; for (int i = 1; i < movesToGo; ++i) @@ -63,7 +64,7 @@ namespace { double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); - return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks an explicit cast + return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast } } // namespace @@ -78,15 +79,29 @@ namespace { /// inc > 0 && movestogo == 0 means: x basetime + z increment /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment -void TimeManager::init(const Search::LimitsType& limits, Color us, int ply) +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { int minThinkingTime = Options["Minimum Thinking Time"]; int moveOverhead = Options["Move Overhead"]; - int slowMover = Options["Slow Mover"]; + int npmsec = Options["nodestime"]; + + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: Given npms (nodes per millisecond) must be much lower then + // the real engine speed to avoid time losses. + if (npmsec) + { + if (!availableNodes) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec - // Initialize unstablePvFactor to 1 and search times to maximum values - unstablePvFactor = 1; - optimumSearchTime = maximumSearchTime = std::max(limits.time[us], minThinkingTime); + // Convert from millisecs to nodes + limits.time[us] = (int)availableNodes; + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; + } + + startTime = limits.startTime; + optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; @@ -102,15 +117,13 @@ void TimeManager::init(const Search::LimitsType& limits, Color us, int ply) hypMyTime = std::max(hypMyTime, 0); - int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); - int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply); + int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply); - optimumSearchTime = std::min(t1, optimumSearchTime); - maximumSearchTime = std::min(t2, maximumSearchTime); + optimumTime = std::min(t1, optimumTime); + maximumTime = std::min(t2, maximumTime); } if (Options["Ponder"]) - optimumSearchTime += optimumSearchTime / 4; - - optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime); + optimumTime += optimumTime / 4; }