X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftimeman.cpp;h=fafde2aa62033d44a7953d29db8aca23dd78023e;hp=bc9c2e5b4b7876025d9cf86126cdeec4f242a633;hb=ab4b94e1737fcdf9f5174a96e80bbdc985c95267;hpb=aedebe35cfa38b543041bae97e91e8194738b202 diff --git a/src/timeman.cpp b/src/timeman.cpp index bc9c2e5b..fafde2aa 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -2,7 +2,7 @@ Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,7 +18,6 @@ along with this program. If not, see . */ -#include #include #include @@ -32,9 +31,9 @@ namespace { enum TimeType { OptimumTime, MaxTime }; - const int MoveHorizon = 50; // Plan time management at most this many moves ahead - const double MaxRatio = 7.09; // When in trouble, we can step over reserved time with this ratio - const double StealRatio = 0.35; // However we must not steal time from remaining moves over this ratio + constexpr int MoveHorizon = 50; // Plan time management at most this many moves ahead + constexpr double MaxRatio = 7.3; // When in trouble, we can step over reserved time with this ratio + constexpr double StealRatio = 0.34; // However we must not steal time from remaining moves over this ratio // move_importance() is a skew-logistic function based on naive statistical @@ -44,21 +43,21 @@ namespace { double move_importance(int ply) { - const double XScale = 7.64; - const double XShift = 58.4; - const double Skew = 0.183; + constexpr double XScale = 6.85; + constexpr double XShift = 64.5; + constexpr double Skew = 0.171; return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero } template - int remaining(int myTime, int movesToGo, int ply, int slowMover) - { - const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); - const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); + TimePoint remaining(TimePoint myTime, int movesToGo, int ply, TimePoint slowMover) { + + constexpr double TMaxRatio = (T == OptimumTime ? 1.0 : MaxRatio); + constexpr double TStealRatio = (T == OptimumTime ? 0.0 : StealRatio); - double moveImportance = (move_importance(ply) * slowMover) / 100; - double otherMovesImportance = 0; + double moveImportance = (move_importance(ply) * slowMover) / 100.0; + double otherMovesImportance = 0.0; for (int i = 1; i < movesToGo; ++i) otherMovesImportance += move_importance(ply + 2 * i); @@ -66,7 +65,7 @@ namespace { double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); - return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast + return TimePoint(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast } } // namespace @@ -81,24 +80,25 @@ namespace { /// inc > 0 && movestogo == 0 means: x basetime + z increment /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment -void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) -{ - int minThinkingTime = Options["Minimum Thinking Time"]; - int moveOverhead = Options["Move Overhead"]; - int slowMover = Options["Slow Mover"]; - int npmsec = Options["nodestime"]; +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { + + TimePoint minThinkingTime = Options["Minimum Thinking Time"]; + TimePoint moveOverhead = Options["Move Overhead"]; + TimePoint slowMover = Options["Slow Mover"]; + TimePoint npmsec = Options["nodestime"]; + TimePoint hypMyTime; // If we have to play in 'nodes as time' mode, then convert from time // to nodes, and use resulting values in time management formulas. - // WARNING: Given npms (nodes per millisecond) must be much lower then - // the real engine speed to avoid time losses. + // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) + // must be much lower than the real engine speed. if (npmsec) { if (!availableNodes) // Only once at game start availableNodes = npmsec * limits.time[us]; // Time is in msec - // Convert from millisecs to nodes - limits.time[us] = (int)availableNodes; + // Convert from milliseconds to nodes + limits.time[us] = TimePoint(availableNodes); limits.inc[us] *= npmsec; limits.npmsec = npmsec; } @@ -106,22 +106,22 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) startTime = limits.startTime; optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); - const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; + const int maxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; - // We calculate optimum time usage for different hypothetical "moves to go"-values + // We calculate optimum time usage for different hypothetical "moves to go" values // and choose the minimum of calculated search time values. Usually the greatest // hypMTG gives the minimum values. - for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) + for (int hypMTG = 1; hypMTG <= maxMTG; ++hypMTG) { // Calculate thinking time for hypothetical "moves to go"-value - int hypMyTime = limits.time[us] - + limits.inc[us] * (hypMTG - 1) - - moveOverhead * (2 + std::min(hypMTG, 40)); + hypMyTime = limits.time[us] + + limits.inc[us] * (hypMTG - 1) + - moveOverhead * (2 + std::min(hypMTG, 40)); - hypMyTime = std::max(hypMyTime, 0); + hypMyTime = std::max(hypMyTime, TimePoint(0)); - int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); - int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + TimePoint t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + TimePoint t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); optimumTime = std::min(t1, optimumTime); maximumTime = std::min(t2, maximumTime);