X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftt.cpp;h=0b4a59de55915962e7ed9409ae462be2556366f3;hp=11173e0a1243511e24618f82a4def19a67f925dd;hb=bae019b53e5c2bfcf0d69b4ebfc52b4f4de762eb;hpb=a71209868bdd8361d0607acf7725f70e9d1f2019 diff --git a/src/tt.cpp b/src/tt.cpp index 11173e0a..0b4a59de 100644 --- a/src/tt.cpp +++ b/src/tt.cpp @@ -1,7 +1,8 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,31 +18,55 @@ along with this program. If not, see . */ -#include +#include // For std::memset #include +#include #include "bitboard.h" +#include "misc.h" +#include "thread.h" #include "tt.h" +#include "uci.h" TranspositionTable TT; // Our global transposition table +/// TTEntry::save populates the TTEntry with a new node's data, possibly +/// overwriting an old position. Update is not atomic and can be racy. -/// TranspositionTable::set_size() sets the size of the transposition table, +void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev) { + + // Preserve any existing move for the same position + if (m || (k >> 48) != key16) + move16 = (uint16_t)m; + + // Overwrite less valuable entries + if ( (k >> 48) != key16 + || d - DEPTH_OFFSET > depth8 - 4 + || b == BOUND_EXACT) + { + assert(d >= DEPTH_OFFSET); + + key16 = (uint16_t)(k >> 48); + value16 = (int16_t)v; + eval16 = (int16_t)ev; + genBound8 = (uint8_t)(TT.generation8 | uint8_t(pv) << 2 | b); + depth8 = (uint8_t)(d - DEPTH_OFFSET); + } +} + + +/// TranspositionTable::resize() sets the size of the transposition table, /// measured in megabytes. Transposition table consists of a power of 2 number /// of clusters and each cluster consists of ClusterSize number of TTEntry. -void TranspositionTable::set_size(size_t mbSize) { - - assert(msb((mbSize << 20) / sizeof(TTEntry)) < 32); +void TranspositionTable::resize(size_t mbSize) { - uint32_t size = ClusterSize << msb((mbSize << 20) / sizeof(TTEntry[ClusterSize])); + Threads.main()->wait_for_search_finished(); - if (hashMask == size - ClusterSize) - return; + clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster); - hashMask = size - ClusterSize; free(mem); - mem = calloc(size * sizeof(TTEntry) + CACHE_LINE_SIZE - 1, 1); + mem = malloc(clusterCount * sizeof(Cluster) + CacheLineSize - 1); if (!mem) { @@ -50,72 +75,84 @@ void TranspositionTable::set_size(size_t mbSize) { exit(EXIT_FAILURE); } - table = (TTEntry*)((uintptr_t(mem) + CACHE_LINE_SIZE - 1) & ~(CACHE_LINE_SIZE - 1)); + table = (Cluster*)((uintptr_t(mem) + CacheLineSize - 1) & ~(CacheLineSize - 1)); + clear(); } -/// TranspositionTable::clear() overwrites the entire transposition table -/// with zeroes. It is called whenever the table is resized, or when the -/// user asks the program to clear the table (from the UCI interface). +/// TranspositionTable::clear() initializes the entire transposition table to zero, +// in a multi-threaded way. void TranspositionTable::clear() { - std::memset(table, 0, (hashMask + ClusterSize) * sizeof(TTEntry)); -} - + std::vector threads; -/// TranspositionTable::probe() looks up the current position in the -/// transposition table. Returns a pointer to the TTEntry or NULL if -/// position is not found. + for (size_t idx = 0; idx < Options["Threads"]; ++idx) + { + threads.emplace_back([this, idx]() { -const TTEntry* TranspositionTable::probe(const Key key) const { + // Thread binding gives faster search on systems with a first-touch policy + if (Options["Threads"] > 8) + WinProcGroup::bindThisThread(idx); - const TTEntry* tte = first_entry(key); - uint32_t key32 = key >> 32; + // Each thread will zero its part of the hash table + const size_t stride = clusterCount / Options["Threads"], + start = stride * idx, + len = idx != Options["Threads"] - 1 ? + stride : clusterCount - start; - for (unsigned i = 0; i < ClusterSize; ++i, tte++) - if (tte->key() == key32) - return tte; + std::memset(&table[start], 0, len * sizeof(Cluster)); + }); + } - return NULL; + for (std::thread& th: threads) + th.join(); } +/// TranspositionTable::probe() looks up the current position in the transposition +/// table. It returns true and a pointer to the TTEntry if the position is found. +/// Otherwise, it returns false and a pointer to an empty or least valuable TTEntry +/// to be replaced later. The replace value of an entry is calculated as its depth +/// minus 8 times its relative age. TTEntry t1 is considered more valuable than +/// TTEntry t2 if its replace value is greater than that of t2. -/// TranspositionTable::store() writes a new entry containing position key and -/// valuable information of current position. The lowest order bits of position -/// key are used to decide on which cluster the position will be placed. -/// When a new entry is written and there are no empty entries available in cluster, -/// it replaces the least valuable of entries. A TTEntry t1 is considered to be -/// more valuable than a TTEntry t2 if t1 is from the current search and t2 is from -/// a previous search, or if the depth of t1 is bigger than the depth of t2. - -void TranspositionTable::store(const Key key, Value v, Bound b, Depth d, Move m, Value statV, Value evalM) { +TTEntry* TranspositionTable::probe(const Key key, bool& found) const { - int c1, c2, c3; - TTEntry *tte, *replace; - uint32_t key32 = key >> 32; // Use the high 32 bits as key inside the cluster + TTEntry* const tte = first_entry(key); + const uint16_t key16 = key >> 48; // Use the high 16 bits as key inside the cluster - tte = replace = first_entry(key); - - for (unsigned i = 0; i < ClusterSize; ++i, tte++) - { - if (!tte->key() || tte->key() == key32) // Empty or overwrite old + for (int i = 0; i < ClusterSize; ++i) + if (!tte[i].key16 || tte[i].key16 == key16) { - if (!m) - m = tte->move(); // Preserve any existing ttMove + tte[i].genBound8 = uint8_t(generation8 | (tte[i].genBound8 & 0x7)); // Refresh - replace = tte; - break; + return found = (bool)tte[i].key16, &tte[i]; } - // Implement replace strategy - c1 = (replace->generation() == generation ? 2 : 0); - c2 = (tte->generation() == generation || tte->bound() == BOUND_EXACT ? -2 : 0); - c3 = (tte->depth() < replace->depth() ? 1 : 0); + // Find an entry to be replaced according to the replacement strategy + TTEntry* replace = tte; + for (int i = 1; i < ClusterSize; ++i) + // Due to our packed storage format for generation and its cyclic + // nature we add 263 (256 is the modulus plus 7 to keep the unrelated + // lowest three bits from affecting the result) to calculate the entry + // age correctly even after generation8 overflows into the next cycle. + if ( replace->depth8 - ((263 + generation8 - replace->genBound8) & 0xF8) + > tte[i].depth8 - ((263 + generation8 - tte[i].genBound8) & 0xF8)) + replace = &tte[i]; + + return found = false, replace; +} - if (c1 + c2 + c3 > 0) - replace = tte; - } - replace->save(key32, v, b, d, m, generation, statV, evalM); +/// TranspositionTable::hashfull() returns an approximation of the hashtable +/// occupation during a search. The hash is x permill full, as per UCI protocol. + +int TranspositionTable::hashfull() const { + + int cnt = 0; + for (int i = 0; i < 1000 / ClusterSize; ++i) + for (int j = 0; j < ClusterSize; ++j) + cnt += (table[i].entry[j].genBound8 & 0xF8) == generation8; + + return cnt * 1000 / (ClusterSize * (1000 / ClusterSize)); }