X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftt.cpp;h=0b4a59de55915962e7ed9409ae462be2556366f3;hp=770e38b779d932fa2dc8df26f19dab13f79f2a3c;hb=384bff4264f199ded8fa28d241ce0e7dc021a97c;hpb=60b5da4cc8639d907d0beeee67055271b464779f diff --git a/src/tt.cpp b/src/tt.cpp index 770e38b7..0b4a59de 100644 --- a/src/tt.cpp +++ b/src/tt.cpp @@ -1,7 +1,8 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2009 Marco Costalba + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,243 +18,141 @@ along with this program. If not, see . */ +#include // For std::memset +#include +#include -//// -//// Includes -//// - -#include -#include -#include - -#include "movegen.h" +#include "bitboard.h" +#include "misc.h" +#include "thread.h" #include "tt.h" +#include "uci.h" -#if defined(_MSC_VER) -#include -#endif +TranspositionTable TT; // Our global transposition table -// This is the number of TTEntry slots for each position -static const int ClusterSize = 4; +/// TTEntry::save populates the TTEntry with a new node's data, possibly +/// overwriting an old position. Update is not atomic and can be racy. -// The main transposition table -TranspositionTable TT; +void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev) { -//// -//// Functions -//// + // Preserve any existing move for the same position + if (m || (k >> 48) != key16) + move16 = (uint16_t)m; -TranspositionTable::TranspositionTable() { - - size = writes = 0; - entries = 0; - generation = 0; -} - -TranspositionTable::~TranspositionTable() { + // Overwrite less valuable entries + if ( (k >> 48) != key16 + || d - DEPTH_OFFSET > depth8 - 4 + || b == BOUND_EXACT) + { + assert(d >= DEPTH_OFFSET); - delete [] entries; + key16 = (uint16_t)(k >> 48); + value16 = (int16_t)v; + eval16 = (int16_t)ev; + genBound8 = (uint8_t)(TT.generation8 | uint8_t(pv) << 2 | b); + depth8 = (uint8_t)(d - DEPTH_OFFSET); + } } -/// TranspositionTable::set_size sets the size of the transposition table, -/// measured in megabytes. +/// TranspositionTable::resize() sets the size of the transposition table, +/// measured in megabytes. Transposition table consists of a power of 2 number +/// of clusters and each cluster consists of ClusterSize number of TTEntry. -void TranspositionTable::set_size(unsigned mbSize) { +void TranspositionTable::resize(size_t mbSize) { - assert(mbSize >= 4 && mbSize <= 4096); + Threads.main()->wait_for_search_finished(); - unsigned newSize = 1024; + clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster); - // We store a cluster of ClusterSize number of TTEntry for each position - // and newSize is the maximum number of storable positions. - while ((2 * newSize) * ClusterSize * (sizeof(TTEntry)) <= (mbSize << 20)) - newSize *= 2; + free(mem); + mem = malloc(clusterCount * sizeof(Cluster) + CacheLineSize - 1); - if (newSize != size) + if (!mem) { - size = newSize; - delete [] entries; - entries = new TTEntry[size * ClusterSize]; - if (!entries) - { - std::cerr << "Failed to allocate " << mbSize - << " MB for transposition table." << std::endl; - Application::exit_with_failure(); - } - clear(); + std::cerr << "Failed to allocate " << mbSize + << "MB for transposition table." << std::endl; + exit(EXIT_FAILURE); } -} - -/// TranspositionTable::clear overwrites the entire transposition table -/// with zeroes. It is called whenever the table is resized, or when the -/// user asks the program to clear the table (from the UCI interface). -/// Perhaps we should also clear it when the "ucinewgame" command is recieved? - -void TranspositionTable::clear() { - - memset(entries, 0, size * ClusterSize * sizeof(TTEntry)); -} - - -/// TranspositionTable::first_entry returns a pointer to the first -/// entry of a cluster given a position. The low 32 bits of the key -/// are used to get the index in the table. - -inline TTEntry* TranspositionTable::first_entry(const Key posKey) const { - - return entries + ((uint32_t(posKey) & (size - 1)) * ClusterSize); + table = (Cluster*)((uintptr_t(mem) + CacheLineSize - 1) & ~(CacheLineSize - 1)); + clear(); } -/// TranspositionTable::store writes a new entry containing a position, -/// a value, a value type, a search depth, and a best move to the -/// transposition table. Transposition table is organized in clusters of -/// four TTEntry objects, and when a new entry is written, it replaces -/// the least valuable of the four entries in a cluster. A TTEntry t1 is -/// considered to be more valuable than a TTEntry t2 if t1 is from the -/// current search and t2 is from a previous search, or if the depth of t1 -/// is bigger than the depth of t2. A TTEntry of type VALUE_TYPE_EVAL -/// never replaces another entry for the same position. +/// TranspositionTable::clear() initializes the entire transposition table to zero, +// in a multi-threaded way. -void TranspositionTable::store(const Key posKey, Value v, ValueType t, Depth d, Move m) { +void TranspositionTable::clear() { - TTEntry *tte, *replace; - uint32_t posKey32 = posKey >> 32; // Use the high 32 bits as key + std::vector threads; - tte = replace = first_entry(posKey); - for (int i = 0; i < ClusterSize; i++, tte++) + for (size_t idx = 0; idx < Options["Threads"]; ++idx) { - if (!tte->key() || tte->key() == posKey32) // empty or overwrite old - { - // Do not overwrite when new type is VALUE_TYPE_EVAL - if (tte->key() && t == VALUE_TYPE_EVAL) - return; - - if (m == MOVE_NONE) - m = tte->move(); + threads.emplace_back([this, idx]() { - *tte = TTEntry(posKey32, v, t, d, m, generation); - return; - } - else if (i == 0) // replace would be a no-op in this common case - continue; + // Thread binding gives faster search on systems with a first-touch policy + if (Options["Threads"] > 8) + WinProcGroup::bindThisThread(idx); - int c1 = (replace->generation() == generation ? 2 : 0); - int c2 = (tte->generation() == generation ? -2 : 0); - int c3 = (tte->depth() < replace->depth() ? 1 : 0); + // Each thread will zero its part of the hash table + const size_t stride = clusterCount / Options["Threads"], + start = stride * idx, + len = idx != Options["Threads"] - 1 ? + stride : clusterCount - start; - if (c1 + c2 + c3 > 0) - replace = tte; + std::memset(&table[start], 0, len * sizeof(Cluster)); + }); } - *replace = TTEntry(posKey32, v, t, d, m, generation); - writes++; -} - -/// TranspositionTable::retrieve looks up the current position in the -/// transposition table. Returns a pointer to the TTEntry or NULL -/// if position is not found. - -TTEntry* TranspositionTable::retrieve(const Key posKey) const { - - uint32_t posKey32 = posKey >> 32; - TTEntry* tte = first_entry(posKey); - - for (int i = 0; i < ClusterSize; i++, tte++) - if (tte->key() == posKey32) - return tte; - - return NULL; + for (std::thread& th: threads) + th.join(); } +/// TranspositionTable::probe() looks up the current position in the transposition +/// table. It returns true and a pointer to the TTEntry if the position is found. +/// Otherwise, it returns false and a pointer to an empty or least valuable TTEntry +/// to be replaced later. The replace value of an entry is calculated as its depth +/// minus 8 times its relative age. TTEntry t1 is considered more valuable than +/// TTEntry t2 if its replace value is greater than that of t2. -/// TranspositionTable::prefetch looks up the current position in the -/// transposition table and load it in L1/L2 cache. This is a non -/// blocking function and do not stalls the CPU waiting for data -/// to be loaded from RAM, that can be very slow. When we will -/// subsequently call retrieve() the TT data will be already -/// quickly accessible in L1/l2 CPU cache. - -void TranspositionTable::prefetch(const Key posKey) const { - -#if defined(_MSC_VER) - _mm_prefetch((char*)first_entry(posKey), _MM_HINT_T0); -#else - __builtin_prefetch((const void*)first_entry(posKey), 0, 3); -#endif -} - - -/// TranspositionTable::new_search() is called at the beginning of every new -/// search. It increments the "generation" variable, which is used to -/// distinguish transposition table entries from previous searches from -/// entries from the current search. - -void TranspositionTable::new_search() { - - generation++; - writes = 0; -} - +TTEntry* TranspositionTable::probe(const Key key, bool& found) const { -/// TranspositionTable::insert_pv() is called at the end of a search -/// iteration, and inserts the PV back into the PV. This makes sure -/// the old PV moves are searched first, even if the old TT entries -/// have been overwritten. + TTEntry* const tte = first_entry(key); + const uint16_t key16 = key >> 48; // Use the high 16 bits as key inside the cluster -void TranspositionTable::insert_pv(const Position& pos, Move pv[]) { + for (int i = 0; i < ClusterSize; ++i) + if (!tte[i].key16 || tte[i].key16 == key16) + { + tte[i].genBound8 = uint8_t(generation8 | (tte[i].genBound8 & 0x7)); // Refresh - StateInfo st; - Position p(pos); + return found = (bool)tte[i].key16, &tte[i]; + } - for (int i = 0; pv[i] != MOVE_NONE; i++) - { - store(p.get_key(), VALUE_NONE, VALUE_TYPE_NONE, Depth(-127*OnePly), pv[i]); - p.do_move(pv[i], st); - } + // Find an entry to be replaced according to the replacement strategy + TTEntry* replace = tte; + for (int i = 1; i < ClusterSize; ++i) + // Due to our packed storage format for generation and its cyclic + // nature we add 263 (256 is the modulus plus 7 to keep the unrelated + // lowest three bits from affecting the result) to calculate the entry + // age correctly even after generation8 overflows into the next cycle. + if ( replace->depth8 - ((263 + generation8 - replace->genBound8) & 0xF8) + > tte[i].depth8 - ((263 + generation8 - tte[i].genBound8) & 0xF8)) + replace = &tte[i]; + + return found = false, replace; } -/// TranspositionTable::extract_pv() extends a PV by adding moves from the -/// transposition table at the end. This should ensure that the PV is almost -/// always at least two plies long, which is important, because otherwise we -/// will often get single-move PVs when the search stops while failing high, -/// and a single-move PV means that we don't have a ponder move. - -void TranspositionTable::extract_pv(const Position& pos, Move pv[]) { - - int ply; - Position p(pos); - StateInfo st[100]; - - for (ply = 0; pv[ply] != MOVE_NONE; ply++) - p.do_move(pv[ply], st[ply]); - - bool stop; - const TTEntry* tte; - for (stop = false, tte = retrieve(p.get_key()); - tte && tte->move() != MOVE_NONE && !stop; - tte = retrieve(p.get_key()), ply++) - { - if (!move_is_legal(p, tte->move())) - break; - pv[ply] = tte->move(); - p.do_move(pv[ply], st[ply]); - for (int j = 0; j < ply; j++) - if (st[j].key == p.get_key()) stop = true; - } - pv[ply] = MOVE_NONE; -} - +/// TranspositionTable::hashfull() returns an approximation of the hashtable +/// occupation during a search. The hash is x permill full, as per UCI protocol. -/// TranspositionTable::full() returns the permill of all transposition table -/// entries which have received at least one write during the current search. -/// It is used to display the "info hashfull ..." information in UCI. +int TranspositionTable::hashfull() const { -int TranspositionTable::full() const { + int cnt = 0; + for (int i = 0; i < 1000 / ClusterSize; ++i) + for (int j = 0; j < ClusterSize; ++j) + cnt += (table[i].entry[j].genBound8 & 0xF8) == generation8; - double N = double(size) * ClusterSize; - return int(1000 * (1 - exp(writes * log(1.0 - 1.0/N)))); + return cnt * 1000 / (ClusterSize * (1000 / ClusterSize)); }