X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftt.cpp;h=9dbfcb5ac92e5fada772fd8c20a74a4a41921c63;hp=c1a8b1b950b24edbc514fdb43baaae2dc6909288;hb=55df3fa2d7631ed67e46f9433aa7f3a71c18e5e7;hpb=2fff532f4e80c8e2e61d8b3955447f13124d40f0 diff --git a/src/tt.cpp b/src/tt.cpp index c1a8b1b9..9dbfcb5a 100644 --- a/src/tt.cpp +++ b/src/tt.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2009 Marco Costalba + Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,28 +17,18 @@ along with this program. If not, see . */ - -//// -//// Includes -//// - -#include -#include #include +#include -#include "movegen.h" +#include "bitboard.h" #include "tt.h" - -//// -//// Functions -//// +TranspositionTable TT; // Our global transposition table TranspositionTable::TranspositionTable() { - size = writes = 0; - entries = 0; - generation = 0; + size = generation = 0; + entries = NULL; } TranspositionTable::~TranspositionTable() { @@ -47,183 +37,105 @@ TranspositionTable::~TranspositionTable() { } -/// TranspositionTable::set_size sets the size of the transposition table, -/// measured in megabytes. +/// TranspositionTable::set_size() sets the size of the transposition table, +/// measured in megabytes. Transposition table consists of a power of 2 number of +/// TTCluster and each cluster consists of ClusterSize number of TTEntries. Each +/// non-empty entry contains information of exactly one position. -void TranspositionTable::set_size(unsigned mbSize) { +void TranspositionTable::set_size(size_t mbSize) { - assert(mbSize >= 4 && mbSize <= 4096); + size_t newSize = 1ULL << msb((mbSize << 20) / sizeof(TTCluster)); - unsigned newSize = 1024; + if (newSize == size) + return; - // We store a cluster of 4 TTEntry for each position and newSize is - // the maximum number of storable positions - while ((2 * newSize) * 4 * (sizeof(TTEntry)) <= (mbSize << 20)) - newSize *= 2; + size = newSize; + delete [] entries; + entries = new (std::nothrow) TTCluster[size]; - if (newSize != size) + if (!entries) { - size = newSize; - delete [] entries; - entries = new TTEntry[size * 4]; - if (!entries) - { - std::cerr << "Failed to allocate " << mbSize - << " MB for transposition table." << std::endl; - Application::exit_with_failure(); - } - clear(); + std::cerr << "Failed to allocate " << mbSize + << "MB for transposition table." << std::endl; + exit(EXIT_FAILURE); } + + clear(); // Operator new is not guaranteed to initialize memory to zero } -/// TranspositionTable::clear overwrites the entire transposition table +/// TranspositionTable::clear() overwrites the entire transposition table /// with zeroes. It is called whenever the table is resized, or when the /// user asks the program to clear the table (from the UCI interface). -/// Perhaps we should also clear it when the "ucinewgame" command is recieved? void TranspositionTable::clear() { - memset(entries, 0, size * 4 * sizeof(TTEntry)); + memset(entries, 0, size * sizeof(TTCluster)); } -/// TranspositionTable::store writes a new entry containing a position, -/// a value, a value type, a search depth, and a best move to the -/// transposition table. Transposition table is organized in clusters of -/// four TTEntry objects, and when a new entry is written, it replaces -/// the least valuable of the four entries in a cluster. A TTEntry t1 is -/// considered to be more valuable than a TTEntry t2 if t1 is from the -/// current search and t2 is from a previous search, or if the depth of t1 -/// is bigger than the depth of t2. A TTEntry of type VALUE_TYPE_EVAL -/// never replaces another entry for the same position. +/// TranspositionTable::store() writes a new entry containing position key and +/// valuable information of current position. The lowest order bits of position +/// key are used to decide on which cluster the position will be placed. +/// When a new entry is written and there are no empty entries available in cluster, +/// it replaces the least valuable of entries. A TTEntry t1 is considered to be +/// more valuable than a TTEntry t2 if t1 is from the current search and t2 is from +/// a previous search, or if the depth of t1 is bigger than the depth of t2. -void TranspositionTable::store(const Key posKey, Value v, ValueType t, Depth d, Move m) { +void TranspositionTable::store(const Key posKey, Value v, Bound t, Depth d, Move m, Value statV, Value kingD) { + int c1, c2, c3; TTEntry *tte, *replace; + uint32_t posKey32 = posKey >> 32; // Use the high 32 bits as key inside the cluster tte = replace = first_entry(posKey); - for (int i = 0; i < 4; i++, tte++) + + for (int i = 0; i < ClusterSize; i++, tte++) { - if (!tte->key() || tte->key() == posKey) // empty or overwrite old + if (!tte->key() || tte->key() == posKey32) // Empty or overwrite old { - // Do not overwrite when new type is VALUE_TYPE_EVAL - if (tte->key() && t == VALUE_TYPE_EVAL) - return; - + // Preserve any existing ttMove if (m == MOVE_NONE) m = tte->move(); - *tte = TTEntry(posKey, v, t, d, m, generation); + tte->save(posKey32, v, t, d, m, generation, statV, kingD); return; } - else if (i == 0) // replace would be a no-op in this common case - continue; - int c1 = (replace->generation() == generation ? 2 : 0); - int c2 = (tte->generation() == generation ? -2 : 0); - int c3 = (tte->depth() < replace->depth() ? 1 : 0); + // Implement replace strategy + c1 = (replace->generation() == generation ? 2 : 0); + c2 = (tte->generation() == generation || tte->type() == BOUND_EXACT ? -2 : 0); + c3 = (tte->depth() < replace->depth() ? 1 : 0); if (c1 + c2 + c3 > 0) replace = tte; } - *replace = TTEntry(posKey, v, t, d, m, generation); - writes++; + replace->save(posKey32, v, t, d, m, generation, statV, kingD); } -/// TranspositionTable::retrieve looks up the current position in the -/// transposition table. Returns a pointer to the TTEntry or NULL -/// if position is not found. +/// TranspositionTable::probe() looks up the current position in the +/// transposition table. Returns a pointer to the TTEntry or NULL if +/// position is not found. -TTEntry* TranspositionTable::retrieve(const Key posKey) const { +TTEntry* TranspositionTable::probe(const Key posKey) const { - TTEntry *tte = first_entry(posKey); + uint32_t posKey32 = posKey >> 32; + TTEntry* tte = first_entry(posKey); - for (int i = 0; i < 4; i++, tte++) - if (tte->key() == posKey) + for (int i = 0; i < ClusterSize; i++, tte++) + if (tte->key() == posKey32) return tte; return NULL; } -/// TranspositionTable::first_entry returns a pointer to the first -/// entry of a cluster given a position. - -inline TTEntry* TranspositionTable::first_entry(const Key posKey) const { - - return entries + (int(posKey & (size - 1)) << 2); -} - /// TranspositionTable::new_search() is called at the beginning of every new /// search. It increments the "generation" variable, which is used to /// distinguish transposition table entries from previous searches from /// entries from the current search. void TranspositionTable::new_search() { - generation++; - writes = 0; -} - - -/// TranspositionTable::insert_pv() is called at the end of a search -/// iteration, and inserts the PV back into the PV. This makes sure -/// the old PV moves are searched first, even if the old TT entries -/// have been overwritten. - -void TranspositionTable::insert_pv(const Position& pos, Move pv[]) { - - StateInfo st; - Position p(pos); - - for (int i = 0; pv[i] != MOVE_NONE; i++) - { - store(p.get_key(), VALUE_NONE, VALUE_TYPE_NONE, Depth(-127*OnePly), pv[i]); - p.do_move(pv[i], st); - } -} - - -/// TranspositionTable::extract_pv() extends a PV by adding moves from the -/// transposition table at the end. This should ensure that the PV is almost -/// always at least two plies long, which is important, because otherwise we -/// will often get single-move PVs when the search stops while failing high, -/// and a single-move PV means that we don't have a ponder move. - -void TranspositionTable::extract_pv(const Position& pos, Move pv[]) { - - int ply; - Position p(pos); - StateInfo st[100]; - - for (ply = 0; pv[ply] != MOVE_NONE; ply++) - p.do_move(pv[ply], st[ply]); - - bool stop; - const TTEntry* tte; - for (stop = false, tte = retrieve(p.get_key()); - tte && tte->move() != MOVE_NONE && !stop; - tte = retrieve(p.get_key()), ply++) - { - if (!move_is_legal(p, tte->move(), p.pinned_pieces(p.side_to_move()))) - break; - pv[ply] = tte->move(); - p.do_move(pv[ply], st[ply]); - for (int j = 0; j < ply; j++) - if (st[j].key == p.get_key()) stop = true; - } - pv[ply] = MOVE_NONE; -} - - -/// TranspositionTable::full() returns the permill of all transposition table -/// entries which have received at least one write during the current search. -/// It is used to display the "info hashfull ..." information in UCI. - -int TranspositionTable::full() const { - - double N = double(size) * 4.0; - return int(1000 * (1 - exp(writes * log(1.0 - 1.0/N)))); }