X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftt.cpp;h=cb5af5c85905620a1537d06a7339ce6bca17176f;hp=4afd965b0fabb70abc106fa975a3e5c1ab469a8b;hb=573f0e364ff4c1e5928be2ca947f65c5d4e177d5;hpb=c97b702f4d501a9b3f025cd7f02d84c4638b7c2a diff --git a/src/tt.cpp b/src/tt.cpp index 4afd965b..cb5af5c8 100644 --- a/src/tt.cpp +++ b/src/tt.cpp @@ -1,7 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,104 +16,143 @@ along with this program. If not, see . */ -#include +#include // For std::memset #include +#include #include "bitboard.h" +#include "misc.h" +#include "thread.h" #include "tt.h" +#include "uci.h" TranspositionTable TT; // Our global transposition table +/// TTEntry::save() populates the TTEntry with a new node's data, possibly +/// overwriting an old position. Update is not atomic and can be racy. + +void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev) { + + // Preserve any existing move for the same position + if (m || (uint16_t)k != key16) + move16 = (uint16_t)m; + + // Overwrite less valuable entries (cheapest checks first) + if (b == BOUND_EXACT + || (uint16_t)k != key16 + || d - DEPTH_OFFSET > depth8 - 4) + { + assert(d > DEPTH_OFFSET); + assert(d < 256 + DEPTH_OFFSET); + + key16 = (uint16_t)k; + depth8 = (uint8_t)(d - DEPTH_OFFSET); + genBound8 = (uint8_t)(TT.generation8 | uint8_t(pv) << 2 | b); + value16 = (int16_t)v; + eval16 = (int16_t)ev; + } +} + /// TranspositionTable::resize() sets the size of the transposition table, /// measured in megabytes. Transposition table consists of a power of 2 number -/// of clusters and each cluster consists of TTClusterSize number of TTEntry. +/// of clusters and each cluster consists of ClusterSize number of TTEntry. void TranspositionTable::resize(size_t mbSize) { - size_t newClusterCount = size_t(1) << msb((mbSize * 1024 * 1024) / sizeof(TTCluster)); - - if (newClusterCount == clusterCount) - return; + Threads.main()->wait_for_search_finished(); - clusterCount = newClusterCount; + aligned_large_pages_free(table); - free(mem); - mem = calloc(clusterCount * sizeof(TTCluster) + CACHE_LINE_SIZE - 1, 1); + clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster); - if (!mem) + table = static_cast(aligned_large_pages_alloc(clusterCount * sizeof(Cluster))); + if (!table) { std::cerr << "Failed to allocate " << mbSize << "MB for transposition table." << std::endl; exit(EXIT_FAILURE); } - table = (TTCluster*)((uintptr_t(mem) + CACHE_LINE_SIZE - 1) & ~(CACHE_LINE_SIZE - 1)); + clear(); } -/// TranspositionTable::clear() overwrites the entire transposition table -/// with zeroes. It is called whenever the table is resized, or when the -/// user asks the program to clear the table (from the UCI interface). +/// TranspositionTable::clear() initializes the entire transposition table to zero, +// in a multi-threaded way. void TranspositionTable::clear() { - std::memset(table, 0, clusterCount * sizeof(TTCluster)); -} + std::vector threads; + for (size_t idx = 0; idx < Options["Threads"]; ++idx) + { + threads.emplace_back([this, idx]() { -/// TranspositionTable::probe() looks up the current position in the -/// transposition table. Returns a pointer to the TTEntry or NULL if -/// position is not found. - -const TTEntry* TranspositionTable::probe(const Key key) const { + // Thread binding gives faster search on systems with a first-touch policy + if (Options["Threads"] > 8) + WinProcGroup::bindThisThread(idx); - TTEntry* tte = first_entry(key); - uint16_t key16 = key >> 48; + // Each thread will zero its part of the hash table + const size_t stride = size_t(clusterCount / Options["Threads"]), + start = size_t(stride * idx), + len = idx != Options["Threads"] - 1 ? + stride : clusterCount - start; - for (unsigned i = 0; i < TTClusterSize; ++i, ++tte) - if (tte->key16 == key16) - { - tte->genBound8 = uint8_t(generation | tte->bound()); // Refresh - return tte; - } + std::memset(&table[start], 0, len * sizeof(Cluster)); + }); + } - return NULL; + for (std::thread& th : threads) + th.join(); } -/// TranspositionTable::store() writes a new entry containing position key and -/// valuable information of current position. The lowest order bits of position -/// key are used to decide in which cluster the position will be placed. -/// When a new entry is written and there are no empty entries available in the -/// cluster, it replaces the least valuable of the entries. A TTEntry t1 is considered -/// to be more valuable than a TTEntry t2 if t1 is from the current search and t2 -/// is from a previous search, or if the depth of t1 is bigger than the depth of t2. +/// TranspositionTable::probe() looks up the current position in the transposition +/// table. It returns true and a pointer to the TTEntry if the position is found. +/// Otherwise, it returns false and a pointer to an empty or least valuable TTEntry +/// to be replaced later. The replace value of an entry is calculated as its depth +/// minus 8 times its relative age. TTEntry t1 is considered more valuable than +/// TTEntry t2 if its replace value is greater than that of t2. -void TranspositionTable::store(const Key key, Value v, Bound b, Depth d, Move m, Value statV) { +TTEntry* TranspositionTable::probe(const Key key, bool& found) const { - TTEntry *tte, *replace; - uint16_t key16 = key >> 48; // Use the high 16 bits as key inside the cluster + TTEntry* const tte = first_entry(key); + const uint16_t key16 = (uint16_t)key; // Use the low 16 bits as key inside the cluster - tte = replace = first_entry(key); - - for (unsigned i = 0; i < TTClusterSize; ++i, ++tte) - { - if (!tte->key16 || tte->key16 == key16) // Empty or overwrite old + for (int i = 0; i < ClusterSize; ++i) + if (tte[i].key16 == key16 || !tte[i].depth8) { - if (!m) - m = tte->move(); // Preserve any existing ttMove + tte[i].genBound8 = uint8_t(generation8 | (tte[i].genBound8 & (GENERATION_DELTA - 1))); // Refresh - replace = tte; - break; + return found = (bool)tte[i].depth8, &tte[i]; } - // Implement replace strategy - if ( (( tte->genBound8 & 0xFC) == generation || tte->bound() == BOUND_EXACT) - - ((replace->genBound8 & 0xFC) == generation) - - (tte->depth8 < replace->depth8) < 0) - replace = tte; - } + // Find an entry to be replaced according to the replacement strategy + TTEntry* replace = tte; + for (int i = 1; i < ClusterSize; ++i) + // Due to our packed storage format for generation and its cyclic + // nature we add GENERATION_CYCLE (256 is the modulus, plus what + // is needed to keep the unrelated lowest n bits from affecting + // the result) to calculate the entry age correctly even after + // generation8 overflows into the next cycle. + if ( replace->depth8 - ((GENERATION_CYCLE + generation8 - replace->genBound8) & GENERATION_MASK) + > tte[i].depth8 - ((GENERATION_CYCLE + generation8 - tte[i].genBound8) & GENERATION_MASK)) + replace = &tte[i]; + + return found = false, replace; +} + + +/// TranspositionTable::hashfull() returns an approximation of the hashtable +/// occupation during a search. The hash is x permill full, as per UCI protocol. + +int TranspositionTable::hashfull() const { + + int cnt = 0; + for (int i = 0; i < 1000; ++i) + for (int j = 0; j < ClusterSize; ++j) + cnt += table[i].entry[j].depth8 && (table[i].entry[j].genBound8 & GENERATION_MASK) == generation8; - replace->save(key16, v, b, d, m, generation, statV); + return cnt / ClusterSize; }