X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Ftt.cpp;h=d494c27d4ec654fc705d1f45b11fb844cc47314d;hp=33768ca4117d099e8fc0a46284a14ea803c60195;hb=8b8412ef87825d8e341e160585307dc89843b7f6;hpb=05f7d59a9a27d9f8bce8bde4e9fed7ecefeb03b9 diff --git a/src/tt.cpp b/src/tt.cpp index 33768ca4..d494c27d 100644 --- a/src/tt.cpp +++ b/src/tt.cpp @@ -1,8 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -30,27 +28,27 @@ TranspositionTable TT; // Our global transposition table -/// TTEntry::save populates the TTEntry with a new node's data, possibly +/// TTEntry::save() populates the TTEntry with a new node's data, possibly /// overwriting an old position. Update is not atomic and can be racy. void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev) { - assert(d / ONE_PLY * ONE_PLY == d); - // Preserve any existing move for the same position - if (m || (k >> 48) != key16) + if (m || (uint16_t)k != key16) move16 = (uint16_t)m; // Overwrite less valuable entries - if ( (k >> 48) != key16 - || d / ONE_PLY > depth8 - 4 + if ((uint16_t)k != key16 + || d - DEPTH_OFFSET > depth8 - 4 || b == BOUND_EXACT) { - key16 = (uint16_t)(k >> 48); + assert(d >= DEPTH_OFFSET); + + key16 = (uint16_t)k; value16 = (int16_t)v; eval16 = (int16_t)ev; genBound8 = (uint8_t)(TT.generation8 | uint8_t(pv) << 2 | b); - depth8 = (int8_t)(d / ONE_PLY); + depth8 = (uint8_t)(d - DEPTH_OFFSET); } } @@ -63,11 +61,10 @@ void TranspositionTable::resize(size_t mbSize) { Threads.main()->wait_for_search_finished(); - clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster); - - free(mem); - mem = malloc(clusterCount * sizeof(Cluster) + CacheLineSize - 1); + aligned_ttmem_free(mem); + clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster); + table = static_cast(aligned_ttmem_alloc(clusterCount * sizeof(Cluster), mem)); if (!mem) { std::cerr << "Failed to allocate " << mbSize @@ -75,7 +72,6 @@ void TranspositionTable::resize(size_t mbSize) { exit(EXIT_FAILURE); } - table = (Cluster*)((uintptr_t(mem) + CacheLineSize - 1) & ~(CacheLineSize - 1)); clear(); } @@ -96,8 +92,8 @@ void TranspositionTable::clear() { WinProcGroup::bindThisThread(idx); // Each thread will zero its part of the hash table - const size_t stride = clusterCount / Options["Threads"], - start = stride * idx, + const size_t stride = size_t(clusterCount / Options["Threads"]), + start = size_t(stride * idx), len = idx != Options["Threads"] - 1 ? stride : clusterCount - start; @@ -105,10 +101,11 @@ void TranspositionTable::clear() { }); } - for (std::thread& th: threads) + for (std::thread& th : threads) th.join(); } + /// TranspositionTable::probe() looks up the current position in the transposition /// table. It returns true and a pointer to the TTEntry if the position is found. /// Otherwise, it returns false and a pointer to an empty or least valuable TTEntry @@ -119,7 +116,7 @@ void TranspositionTable::clear() { TTEntry* TranspositionTable::probe(const Key key, bool& found) const { TTEntry* const tte = first_entry(key); - const uint16_t key16 = key >> 48; // Use the high 16 bits as key inside the cluster + const uint16_t key16 = (uint16_t)key; // Use the low 16 bits as key inside the cluster for (int i = 0; i < ClusterSize; ++i) if (!tte[i].key16 || tte[i].key16 == key16) @@ -150,9 +147,9 @@ TTEntry* TranspositionTable::probe(const Key key, bool& found) const { int TranspositionTable::hashfull() const { int cnt = 0; - for (int i = 0; i < 1000 / ClusterSize; ++i) + for (int i = 0; i < 1000; ++i) for (int j = 0; j < ClusterSize; ++j) cnt += (table[i].entry[j].genBound8 & 0xF8) == generation8; - return cnt * 1000 / (ClusterSize * (1000 / ClusterSize)); + return cnt / ClusterSize; }