From: IIvec Date: Sat, 13 Jan 2018 07:59:20 +0000 (+0100) Subject: Revert to old time management (#1351) X-Git-Url: https://git.sesse.net/?p=stockfish;a=commitdiff_plain;h=aa88261a8f509fdabfe235042de1c1ea7a39a399;ds=sidebyside Revert to old time management (#1351) As many users reported some problems with new time management, and recent tests on longer time controls http://tests.stockfishchess.org/tests/view/5a460e160ebc590ccbb8c35d http://tests.stockfishchess.org/tests/view/5a462f4d0ebc590ccbb8c37a are even little in favor of old time management, this revert seems as a logical step. STC: LLR: 2.95 (-2.94,2.94) [-3.00,1.00] Total: 14060 W: 2562 L: 2430 D: 9068 LTC: LLR: 3.44 (-2.94,2.94) [-3.00,1.00] Total: 31611 W: 3958 L: 3827 D: 23826 bench: 5365777 (same as master) --- diff --git a/src/search.cpp b/src/search.cpp index 66c432fc..a4b2e7e4 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -1497,7 +1497,7 @@ moves_loop: // When in check search starts from here if (Threads.ponder) return; - if ( (Limits.use_time_management() && elapsed > Time.maximum()) + if ( (Limits.use_time_management() && elapsed > Time.maximum() - 10) || (Limits.movetime && elapsed >= Limits.movetime) || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes)) Threads.stop = true; diff --git a/src/timeman.cpp b/src/timeman.cpp index ebbb5fd5..035fe335 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -19,6 +19,8 @@ */ #include +#include +#include #include "search.h" #include "timeman.h" @@ -30,46 +32,41 @@ namespace { enum TimeType { OptimumTime, MaxTime }; - int remaining(int myTime, int myInc, int moveOverhead, int movesToGo, - int moveNum, bool ponder, TimeType type) { + const int MoveHorizon = 50; // Plan time management at most this many moves ahead + const double MaxRatio = 7.09; // When in trouble, we can step over reserved time with this ratio + const double StealRatio = 0.35; // However we must not steal time from remaining moves over this ratio - if (myTime <= 0) - return 0; - double ratio; // Which ratio of myTime we are going to use + // move_importance() is a skew-logistic function based on naive statistical + // analysis of "how many games are still undecided after n half-moves". Game + // is considered "undecided" as long as neither side has >275cp advantage. + // Data was extracted from the CCRL game database with some simple filtering criteria. - // Usage of increment follows quadratic distribution with the maximum at move 25 - double inc = myInc * std::max(55.0, 120 - 0.12 * (moveNum - 25) * (moveNum - 25)); + double move_importance(int ply) { - // In moves-to-go we distribute time according to a quadratic function with - // the maximum around move 20 for 40 moves in y time case. - if (movesToGo) - { - ratio = (type == OptimumTime ? 1.0 : 6.0) / std::min(50, movesToGo); + const double XScale = 7.64; + const double XShift = 58.4; + const double Skew = 0.183; - if (moveNum <= 40) - ratio *= 1.1 - 0.001 * (moveNum - 20) * (moveNum - 20); - else - ratio *= 1.5; + return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero + } + + template + int remaining(int myTime, int movesToGo, int ply, int slowMover) { - if (movesToGo > 1) - ratio = std::min(0.75, ratio); + const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio); + const double TStealRatio = (T == OptimumTime ? 0 : StealRatio); - ratio *= 1 + inc / (myTime * 8.5); - } - // Otherwise we increase usage of remaining time as the game goes on - else - { - double k = 1 + 20 * moveNum / (500.0 + moveNum); - ratio = (type == OptimumTime ? 0.017 : 0.07) * (k + inc / myTime); - } + double moveImportance = (move_importance(ply) * slowMover) / 100; + double otherMovesImportance = 0; - int time = int(std::min(1.0, ratio) * std::max(0, myTime - moveOverhead)); + for (int i = 1; i < movesToGo; ++i) + otherMovesImportance += move_importance(ply + 2 * i); - if (type == OptimumTime && ponder) - time = 5 * time / 4; + double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance); + double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance); - return time; + return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks for an explicit cast } } // namespace @@ -84,11 +81,12 @@ namespace { /// inc > 0 && movestogo == 0 means: x basetime + z increment /// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment -void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) -{ - int moveOverhead = Options["Move Overhead"]; - int npmsec = Options["nodestime"]; - bool ponder = Options["Ponder"]; +void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { + + int minThinkingTime = Options["Minimum Thinking Time"]; + int moveOverhead = Options["Move Overhead"]; + int slowMover = Options["Slow Mover"]; + int npmsec = Options["nodestime"]; // If we have to play in 'nodes as time' mode, then convert from time // to nodes, and use resulting values in time management formulas. @@ -105,11 +103,30 @@ void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) limits.npmsec = npmsec; } - int moveNum = (ply + 1) / 2; - startTime = limits.startTime; - optimumTime = remaining(limits.time[us], limits.inc[us], moveOverhead, - limits.movestogo, moveNum, ponder, OptimumTime); - maximumTime = remaining(limits.time[us], limits.inc[us], moveOverhead, - limits.movestogo, moveNum, ponder, MaxTime); + optimumTime = maximumTime = std::max(limits.time[us], minThinkingTime); + + const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon; + + // We calculate optimum time usage for different hypothetical "moves to go"-values + // and choose the minimum of calculated search time values. Usually the greatest + // hypMTG gives the minimum values. + for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG) + { + // Calculate thinking time for hypothetical "moves to go"-value + int hypMyTime = limits.time[us] + + limits.inc[us] * (hypMTG - 1) + - moveOverhead * (2 + std::min(hypMTG, 40)); + + hypMyTime = std::max(hypMyTime, 0); + + int t1 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + int t2 = minThinkingTime + remaining(hypMyTime, hypMTG, ply, slowMover); + + optimumTime = std::min(t1, optimumTime); + maximumTime = std::min(t2, maximumTime); + } + + if (Options["Ponder"]) + optimumTime += optimumTime / 4; } diff --git a/src/ucioption.cpp b/src/ucioption.cpp index e925fc57..b5d87c3b 100644 --- a/src/ucioption.cpp +++ b/src/ucioption.cpp @@ -66,7 +66,9 @@ void init(OptionsMap& o) { o["Ponder"] << Option(false); o["MultiPV"] << Option(1, 1, 500); o["Skill Level"] << Option(20, 0, 20); - o["Move Overhead"] << Option(100, 0, 5000); + o["Move Overhead"] << Option(30, 0, 5000); + o["Minimum Thinking Time"] << Option(20, 0, 5000); + o["Slow Mover"] << Option(89, 10, 1000); o["nodestime"] << Option(0, 0, 10000); o["UCI_Chess960"] << Option(false); o["SyzygyPath"] << Option("", on_tb_path);