From 7615e3485e75c2f1715d372f7bb1f546738a5c76 Mon Sep 17 00:00:00 2001 From: MaximMolchanov Date: Sat, 14 Nov 2020 02:55:29 +0200 Subject: [PATCH] Calculate sum from first elements in affine transform for AVX512/AVX2/SSSE3 The idea is to initialize sum with the first element instead of zero. Reduce one add_epi32 and one set_zero SIMD instructions for each output dimension. sum = 0; for i = 1 to n sum += a[i] -> sum = a[1]; for i = 2 to n sum += a[i] STC: LLR: 2.95 (-2.94,2.94) {-0.25,1.25} Total: 69048 W: 7024 L: 6799 D: 55225 Ptnml(0-2): 260, 5175, 23458, 5342, 289 https://tests.stockfishchess.org/tests/view/5faf2cf467cbf42301d6aa06 closes https://github.com/official-stockfish/Stockfish/pull/3227 No functional change. --- AUTHORS | 1 + src/nnue/layers/affine_transform.h | 211 ++++++++++++++++++++--------- 2 files changed, 148 insertions(+), 64 deletions(-) diff --git a/AUTHORS b/AUTHORS index 71b718b8..b31a36e9 100644 --- a/AUTHORS +++ b/AUTHORS @@ -112,6 +112,7 @@ Mark Tenzer (31m059) marotear Matthew Lai (matthewlai) Matthew Sullivan (Matt14916) +Maxim Molchanov (Maxim) Michael An (man) Michael Byrne (MichaelB7) Michael Chaly (Vizvezdenec) diff --git a/src/nnue/layers/affine_transform.h b/src/nnue/layers/affine_transform.h index 47c9c488..caf315b2 100644 --- a/src/nnue/layers/affine_transform.h +++ b/src/nnue/layers/affine_transform.h @@ -181,13 +181,13 @@ namespace Eval::NNUE::Layers { return _mm512_add_epi32(_mm512_permutexvar_epi32(indices, x), bias); }; - [[maybe_unused]] auto m512_add_dpbusd_epi32 = [=](__m512i& acc, __m512i a, __m512i b) { #if defined (USE_VNNI) + [[maybe_unused]] auto m512_add_dpbusd_epi32 = [=](__m512i& acc, __m512i a, __m512i b) { acc = _mm512_dpbusd_epi32(acc, a, b); #else + [[maybe_unused]] auto m512_dpbusd_epi32 = [=](__m512i a, __m512i b) -> __m512i { __m512i product0 = _mm512_maddubs_epi16(a, b); - product0 = _mm512_madd_epi16(product0, kOnes512); - acc = _mm512_add_epi32(acc, product0); + return _mm512_madd_epi16(product0, kOnes512); #endif }; @@ -214,14 +214,13 @@ namespace Eval::NNUE::Layers { return _mm_add_epi32(_mm_add_epi32(sum128lo, sum128hi), bias); }; - - [[maybe_unused]] auto m256_add_dpbusd_epi32 = [=](__m256i& acc, __m256i a, __m256i b) { #if defined (USE_VNNI) + [[maybe_unused]] auto m256_add_dpbusd_epi32 = [=](__m256i& acc, __m256i a, __m256i b) { acc = _mm256_dpbusd_epi32(acc, a, b); #else + [[maybe_unused]] auto m256_dpbusd_epi32 = [=](__m256i a, __m256i b) -> __m256i { __m256i product0 = _mm256_maddubs_epi16(a, b); - product0 = _mm256_madd_epi16(product0, kOnes256); - acc = _mm256_add_epi32(acc, product0); + return _mm256_madd_epi16(product0, kOnes256); #endif }; @@ -246,10 +245,9 @@ namespace Eval::NNUE::Layers { return _mm_add_epi32(sum0, bias); }; - [[maybe_unused]] auto m128_add_dpbusd_epi32 = [=](__m128i& acc, __m128i a, __m128i b) { + [[maybe_unused]] auto m128_dpbusd_epi32 = [=](__m128i a, __m128i b) -> __m128i { __m128i product0 = _mm_maddubs_epi16(a, b); - product0 = _mm_madd_epi16(product0, kOnes128); - acc = _mm_add_epi32(acc, product0); + return _mm_madd_epi16(product0, kOnes128); }; #endif @@ -293,15 +291,6 @@ namespace Eval::NNUE::Layers { const __m512i bias = *reinterpret_cast(&biases_[i]); __m512i* outptr = reinterpret_cast<__m512i*>(&output[i]); - __m512i sum01a = _mm512_setzero_si512(); - __m512i sum23a = _mm512_setzero_si512(); - __m512i sum45a = _mm512_setzero_si512(); - __m512i sum67a = _mm512_setzero_si512(); - __m512i sum01b = _mm512_setzero_si512(); - __m512i sum23b = _mm512_setzero_si512(); - __m512i sum45b = _mm512_setzero_si512(); - __m512i sum67b = _mm512_setzero_si512(); - const auto row01a = *reinterpret_cast(&weights_[offset01a]); const auto row23a = *reinterpret_cast(&weights_[offset23a]); const auto row45a = *reinterpret_cast(&weights_[offset45a]); @@ -314,6 +303,16 @@ namespace Eval::NNUE::Layers { const __m256i in256 = input_vector256[0]; const __m512i in = _mm512_inserti64x4(_mm512_castsi256_si512(in256), in256, 1); +#if defined (USE_VNNI) + __m512i sum01a = _mm512_setzero_si512(); + __m512i sum23a = _mm512_setzero_si512(); + __m512i sum45a = _mm512_setzero_si512(); + __m512i sum67a = _mm512_setzero_si512(); + __m512i sum01b = _mm512_setzero_si512(); + __m512i sum23b = _mm512_setzero_si512(); + __m512i sum45b = _mm512_setzero_si512(); + __m512i sum67b = _mm512_setzero_si512(); + m512_add_dpbusd_epi32(sum01a, in, row01a); m512_add_dpbusd_epi32(sum23a, in, row23a); m512_add_dpbusd_epi32(sum45a, in, row45a); @@ -322,6 +321,16 @@ namespace Eval::NNUE::Layers { m512_add_dpbusd_epi32(sum23b, in, row23b); m512_add_dpbusd_epi32(sum45b, in, row45b); m512_add_dpbusd_epi32(sum67b, in, row67b); +#else + __m512i sum01a = m512_dpbusd_epi32(in, row01a); + __m512i sum23a = m512_dpbusd_epi32(in, row23a); + __m512i sum45a = m512_dpbusd_epi32(in, row45a); + __m512i sum67a = m512_dpbusd_epi32(in, row67a); + __m512i sum01b = m512_dpbusd_epi32(in, row01b); + __m512i sum23b = m512_dpbusd_epi32(in, row23b); + __m512i sum45b = m512_dpbusd_epi32(in, row45b); + __m512i sum67b = m512_dpbusd_epi32(in, row67b); +#endif *outptr = m512_hadd256x16( sum01a, sum23a, sum45a, sum67a, @@ -342,48 +351,80 @@ namespace Eval::NNUE::Layers { if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) == 0) { - __m512i sum0 = _mm512_setzero_si512(); - __m512i sum1 = _mm512_setzero_si512(); - __m512i sum2 = _mm512_setzero_si512(); - __m512i sum3 = _mm512_setzero_si512(); - const auto row0 = reinterpret_cast(&weights_[offset0]); const auto row1 = reinterpret_cast(&weights_[offset1]); const auto row2 = reinterpret_cast(&weights_[offset2]); const auto row3 = reinterpret_cast(&weights_[offset3]); - for (IndexType j = 0; j < kNumChunks512; ++j) +#if defined (USE_VNNI) + __m512i sum0 = _mm512_setzero_si512(); + __m512i sum1 = _mm512_setzero_si512(); + __m512i sum2 = _mm512_setzero_si512(); + __m512i sum3 = _mm512_setzero_si512(); + const IndexType kStart = 0; +#else + __m512i sum0 = m512_dpbusd_epi32(input_vector512[0], row0[0]); + __m512i sum1 = m512_dpbusd_epi32(input_vector512[0], row1[0]); + __m512i sum2 = m512_dpbusd_epi32(input_vector512[0], row2[0]); + __m512i sum3 = m512_dpbusd_epi32(input_vector512[0], row3[0]); + const IndexType kStart = 1; +#endif + + for (IndexType j = kStart; j < kNumChunks512; ++j) { const __m512i in = input_vector512[j]; +#if defined (USE_VNNI) m512_add_dpbusd_epi32(sum0, in, row0[j]); m512_add_dpbusd_epi32(sum1, in, row1[j]); m512_add_dpbusd_epi32(sum2, in, row2[j]); m512_add_dpbusd_epi32(sum3, in, row3[j]); +#else + sum0 = _mm512_add_epi32(sum0, m512_dpbusd_epi32(in, row0[j])); + sum1 = _mm512_add_epi32(sum1, m512_dpbusd_epi32(in, row1[j])); + sum2 = _mm512_add_epi32(sum2, m512_dpbusd_epi32(in, row2[j])); + sum3 = _mm512_add_epi32(sum3, m512_dpbusd_epi32(in, row3[j])); +#endif } *outptr = m512_haddx4(sum0, sum1, sum2, sum3, bias); } else { - __m256i sum0 = _mm256_setzero_si256(); - __m256i sum1 = _mm256_setzero_si256(); - __m256i sum2 = _mm256_setzero_si256(); - __m256i sum3 = _mm256_setzero_si256(); - const auto row0 = reinterpret_cast(&weights_[offset0]); const auto row1 = reinterpret_cast(&weights_[offset1]); const auto row2 = reinterpret_cast(&weights_[offset2]); const auto row3 = reinterpret_cast(&weights_[offset3]); - for (IndexType j = 0; j < kNumChunks256; ++j) +#if defined (USE_VNNI) + __m256i sum0 = _mm256_setzero_si256(); + __m256i sum1 = _mm256_setzero_si256(); + __m256i sum2 = _mm256_setzero_si256(); + __m256i sum3 = _mm256_setzero_si256(); + const IndexType kStart = 0; +#else + __m256i sum0 = m256_dpbusd_epi32(input_vector256[0], row0[0]); + __m256i sum1 = m256_dpbusd_epi32(input_vector256[0], row1[0]); + __m256i sum2 = m256_dpbusd_epi32(input_vector256[0], row2[0]); + __m256i sum3 = m256_dpbusd_epi32(input_vector256[0], row3[0]); + const IndexType kStart = 1; +#endif + + for (IndexType j = kStart; j < kNumChunks256; ++j) { const __m256i in = input_vector256[j]; +#if defined (USE_VNNI) m256_add_dpbusd_epi32(sum0, in, row0[j]); m256_add_dpbusd_epi32(sum1, in, row1[j]); m256_add_dpbusd_epi32(sum2, in, row2[j]); m256_add_dpbusd_epi32(sum3, in, row3[j]); +#else + sum0 = _mm256_add_epi32(sum0, m256_dpbusd_epi32(in, row0[j])); + sum1 = _mm256_add_epi32(sum1, m256_dpbusd_epi32(in, row1[j])); + sum2 = _mm256_add_epi32(sum2, m256_dpbusd_epi32(in, row2[j])); + sum3 = _mm256_add_epi32(sum3, m256_dpbusd_epi32(in, row3[j])); +#endif } *outptr = m256_haddx4(sum0, sum1, sum2, sum3, bias); @@ -394,30 +435,50 @@ namespace Eval::NNUE::Layers { { if constexpr (kPaddedInputDimensions % (kSimdWidth * 2) == 0) { - __m512i sum0 = _mm512_setzero_si512(); - const auto row0 = reinterpret_cast(&weights_[0]); - for (IndexType j = 0; j < kNumChunks512; ++j) +#if defined (USE_VNNI) + __m512i sum0 = _mm512_setzero_si512(); + const IndexType kStart = 0; +#else + __m512i sum0 = m512_dpbusd_epi32(input_vector512[0], row0[0]); + const IndexType kStart = 1; +#endif + + for (IndexType j = kStart; j < kNumChunks512; ++j) { const __m512i in = input_vector512[j]; +#if defined (USE_VNNI) m512_add_dpbusd_epi32(sum0, in, row0[j]); +#else + sum0 = _mm512_add_epi32(sum0, m512_dpbusd_epi32(in, row0[j])); +#endif } output[0] = m512_hadd(sum0, biases_[0]); } else { - __m256i sum0 = _mm256_setzero_si256(); - const auto row0 = reinterpret_cast(&weights_[0]); - for (IndexType j = 0; j < kNumChunks256; ++j) +#if defined (USE_VNNI) + __m256i sum0 = _mm256_setzero_si256(); + const IndexType kStart = 0; +#else + __m256i sum0 = m256_dpbusd_epi32(input_vector256[0], row0[0]); + const IndexType kStart = 1; +#endif + + for (IndexType j = kStart; j < kNumChunks256; ++j) { const __m256i in = input_vector256[j]; +#if defined (USE_VNNI) m256_add_dpbusd_epi32(sum0, in, row0[j]); +#else + sum0 = _mm256_add_epi32(sum0, m256_dpbusd_epi32(in, row0[j])); +#endif } output[0] = m256_hadd(sum0, biases_[0]); @@ -451,24 +512,40 @@ namespace Eval::NNUE::Layers { const __m128i bias = *reinterpret_cast(&biases_[i]); __m128i* outptr = reinterpret_cast<__m128i*>(&output[i]); - __m256i sum0 = _mm256_setzero_si256(); - __m256i sum1 = _mm256_setzero_si256(); - __m256i sum2 = _mm256_setzero_si256(); - __m256i sum3 = _mm256_setzero_si256(); - const auto row0 = reinterpret_cast(&weights_[offset0]); const auto row1 = reinterpret_cast(&weights_[offset1]); const auto row2 = reinterpret_cast(&weights_[offset2]); const auto row3 = reinterpret_cast(&weights_[offset3]); - for (IndexType j = 0; j < kNumChunks; ++j) +#if defined (USE_VNNI) + __m256i sum0 = _mm256_setzero_si256(); + __m256i sum1 = _mm256_setzero_si256(); + __m256i sum2 = _mm256_setzero_si256(); + __m256i sum3 = _mm256_setzero_si256(); + const IndexType kStart = 0; +#else + __m256i sum0 = m256_dpbusd_epi32(input_vector[0], row0[0]); + __m256i sum1 = m256_dpbusd_epi32(input_vector[0], row1[0]); + __m256i sum2 = m256_dpbusd_epi32(input_vector[0], row2[0]); + __m256i sum3 = m256_dpbusd_epi32(input_vector[0], row3[0]); + const IndexType kStart = 1; +#endif + + for (IndexType j = kStart; j < kNumChunks; ++j) { const __m256i in = input_vector[j]; +#if defined (USE_VNNI) m256_add_dpbusd_epi32(sum0, in, row0[j]); m256_add_dpbusd_epi32(sum1, in, row1[j]); m256_add_dpbusd_epi32(sum2, in, row2[j]); m256_add_dpbusd_epi32(sum3, in, row3[j]); +#else + sum0 = _mm256_add_epi32(sum0, m256_dpbusd_epi32(in, row0[j])); + sum1 = _mm256_add_epi32(sum1, m256_dpbusd_epi32(in, row1[j])); + sum2 = _mm256_add_epi32(sum2, m256_dpbusd_epi32(in, row2[j])); + sum3 = _mm256_add_epi32(sum3, m256_dpbusd_epi32(in, row3[j])); +#endif } *outptr = m256_haddx4(sum0, sum1, sum2, sum3, bias); @@ -476,15 +553,25 @@ namespace Eval::NNUE::Layers { } else if constexpr (kOutputDimensions == 1) { - __m256i sum0 = _mm256_setzero_si256(); - const auto row0 = reinterpret_cast(&weights_[0]); - for (IndexType j = 0; j < kNumChunks; ++j) +#if defined (USE_VNNI) + __m256i sum0 = _mm256_setzero_si256(); + const IndexType kStart = 0; +#else + __m256i sum0 = m256_dpbusd_epi32(input_vector[0], row0[0]); + const IndexType kStart = 1; +#endif + + for (IndexType j = kStart; j < kNumChunks; ++j) { const __m256i in = input_vector[j]; - m256_add_dpbusd_epi32(sum0, in, row0[j]); +#if defined (USE_VNNI) + m256_add_dpbusd_epi32(sum0, in, row0[j]); +#else + sum0 = _mm256_add_epi32(sum0, m256_dpbusd_epi32(in, row0[j])); +#endif } output[0] = m256_hadd(sum0, biases_[0]); @@ -517,24 +604,24 @@ namespace Eval::NNUE::Layers { const __m128i bias = *reinterpret_cast(&biases_[i]); __m128i* outptr = reinterpret_cast<__m128i*>(&output[i]); - __m128i sum0 = _mm_setzero_si128(); - __m128i sum1 = _mm_setzero_si128(); - __m128i sum2 = _mm_setzero_si128(); - __m128i sum3 = _mm_setzero_si128(); - const auto row0 = reinterpret_cast(&weights_[offset0]); const auto row1 = reinterpret_cast(&weights_[offset1]); const auto row2 = reinterpret_cast(&weights_[offset2]); const auto row3 = reinterpret_cast(&weights_[offset3]); - for (int j = 0; j < (int)kNumChunks; j += 1) + __m128i sum0 = m128_dpbusd_epi32(input_vector[0], row0[0]); + __m128i sum1 = m128_dpbusd_epi32(input_vector[0], row1[0]); + __m128i sum2 = m128_dpbusd_epi32(input_vector[0], row2[0]); + __m128i sum3 = m128_dpbusd_epi32(input_vector[0], row3[0]); + + for (int j = 1; j < (int)kNumChunks; ++j) { const __m128i in = input_vector[j]; - m128_add_dpbusd_epi32(sum0, in, row0[j]); - m128_add_dpbusd_epi32(sum1, in, row1[j]); - m128_add_dpbusd_epi32(sum2, in, row2[j]); - m128_add_dpbusd_epi32(sum3, in, row3[j]); + sum0 = _mm_add_epi32(sum0, m128_dpbusd_epi32(in, row0[j])); + sum1 = _mm_add_epi32(sum1, m128_dpbusd_epi32(in, row1[j])); + sum2 = _mm_add_epi32(sum2, m128_dpbusd_epi32(in, row2[j])); + sum3 = _mm_add_epi32(sum3, m128_dpbusd_epi32(in, row3[j])); } *outptr = m128_haddx4(sum0, sum1, sum2, sum3, bias); @@ -542,16 +629,12 @@ namespace Eval::NNUE::Layers { } else if constexpr (kOutputDimensions == 1) { - __m128i sum0 = _mm_setzero_si128(); - const auto row0 = reinterpret_cast(&weights_[0]); - for (int j = 0; j < (int)kNumChunks; j += 1) - { - const __m128i in = input_vector[j]; + __m128i sum0 = m128_dpbusd_epi32(input_vector[0], row0[0]); - m128_add_dpbusd_epi32(sum0, in, row0[j]); - } + for (int j = 1; j < (int)kNumChunks; ++j) + sum0 = _mm_add_epi32(sum0, m128_dpbusd_epi32(input_vector[j], row0[j])); output[0] = m128_hadd(sum0, biases_[0]); } -- 2.30.2