From fecefbb99cb0147f37d6895765a315f34c935786 Mon Sep 17 00:00:00 2001 From: Marco Costalba Date: Sun, 24 Apr 2011 09:20:03 +0100 Subject: [PATCH] Move pawn and material tables under Thread class This change allows to remove some quite a bit of code and seems the natural thing to do. Introduced file thread.cpp to move away from search.cpp a lot of threads related stuff. No functional change. Signed-off-by: Marco Costalba --- src/Makefile | 7 +- src/evaluate.cpp | 54 +--- src/evaluate.h | 2 - src/main.cpp | 8 +- src/material.cpp | 2 +- src/material.h | 2 +- src/misc.h | 1 - src/position.cpp | 4 +- src/search.cpp | 693 ++++++++++++----------------------------------- src/search.h | 3 +- src/thread.cpp | 333 +++++++++++++++++++++++ src/thread.h | 50 +++- src/tt.h | 8 +- 13 files changed, 567 insertions(+), 600 deletions(-) create mode 100644 src/thread.cpp diff --git a/src/Makefile b/src/Makefile index 9b8d5982..eb6390aa 100644 --- a/src/Makefile +++ b/src/Makefile @@ -31,10 +31,9 @@ BINDIR = $(PREFIX)/bin PGOBENCH = ./$(EXE) bench 32 1 10 default depth ### Object files -OBJS = bitboard.o pawns.o material.o endgame.o evaluate.o main.o \ - misc.o move.o movegen.o movepick.o search.o position.o \ - tt.o uci.o ucioption.o book.o bitbase.o benchmark.o timeman.o - +OBJS = benchmark.o bitbase.o bitboard.o book.o endgame.o evaluate.o main.o \ + material.o misc.o move.o movegen.o movepick.o pawns.o position.o \ + search.o thread.o timeman.o tt.o uci.o ucioption.o ### ========================================================================== ### Section 2. High-level Configuration diff --git a/src/evaluate.cpp b/src/evaluate.cpp index 25451da5..e75251f4 100644 --- a/src/evaluate.cpp +++ b/src/evaluate.cpp @@ -232,13 +232,6 @@ namespace { PASSED = 12, UNSTOPPABLE = 13, SPACE = 14, TOTAL = 15 }; - // Pawn and material hash tables, indexed by the current thread id. - // We use per-thread tables so that once we get a pointer to an entry - // its life time is unlimited and we don't have to care about someone - // changing the entry under our feet. - MaterialInfoTable* MaterialTable[MAX_THREADS]; - PawnInfoTable* PawnTable[MAX_THREADS]; - // Function prototypes template Value do_evaluate(const Position& pos, Value& margin); @@ -271,16 +264,6 @@ namespace { } -/// prefetchTables() is called in do_move() to prefetch pawn and material -/// hash tables data that will be needed shortly after in evaluation. - -void prefetchTables(Key pKey, Key mKey, int threadID) { - - PawnTable[threadID]->prefetch(pKey); - MaterialTable[threadID]->prefetch(mKey); -} - - /// evaluate() is the main evaluation function. It always computes two /// values, an endgame score and a middle game score, and interpolates /// between them based on the remaining material. @@ -320,7 +303,7 @@ Value do_evaluate(const Position& pos, Value& margin) { margins[WHITE] = margins[BLACK] = VALUE_ZERO; // Probe the material hash table - MaterialInfo* mi = MaterialTable[pos.thread()]->get_material_info(pos); + MaterialInfo* mi = ThreadsMgr[pos.thread()].materialTable.get_material_info(pos); bonus += mi->material_value(); // If we have a specialized evaluation function for the current material @@ -332,7 +315,7 @@ Value do_evaluate(const Position& pos, Value& margin) { } // Probe the pawn hash table - ei.pi = PawnTable[pos.thread()]->get_pawn_info(pos); + ei.pi = ThreadsMgr[pos.thread()].pawnTable.get_pawn_info(pos); bonus += apply_weight(ei.pi->pawns_value(), Weights[PawnStructure]); // Initialize attack and king safety bitboards @@ -433,39 +416,6 @@ Value do_evaluate(const Position& pos, Value& margin) { } // namespace -/// init_eval() initializes various tables used by the evaluation function - -void init_eval(int threads) { - - assert(threads <= MAX_THREADS); - - for (int i = 0; i < MAX_THREADS; i++) - { - if (i >= threads) - { - delete PawnTable[i]; - delete MaterialTable[i]; - PawnTable[i] = NULL; - MaterialTable[i] = NULL; - continue; - } - if (!PawnTable[i]) - PawnTable[i] = new PawnInfoTable(); - - if (!MaterialTable[i]) - MaterialTable[i] = new MaterialInfoTable(); - } -} - - -/// quit_eval() releases heap-allocated memory at program termination - -void quit_eval() { - - init_eval(0); -} - - /// read_weights() reads evaluation weights from the corresponding UCI parameters void read_evaluation_uci_options(Color us) { diff --git a/src/evaluate.h b/src/evaluate.h index 18f4ab0a..4b90bad5 100644 --- a/src/evaluate.h +++ b/src/evaluate.h @@ -26,8 +26,6 @@ class Position; extern Value evaluate(const Position& pos, Value& margin); extern std::string trace_evaluate(const Position& pos); -extern void init_eval(int threads); -extern void quit_eval(); extern void read_evaluation_uci_options(Color sideToMove); #endif // !defined(EVALUATE_H_INCLUDED) diff --git a/src/main.cpp b/src/main.cpp index 4b716dde..0e169044 100644 --- a/src/main.cpp +++ b/src/main.cpp @@ -28,6 +28,7 @@ #include "evaluate.h" #include "position.h" #include "thread.h" +#include "search.h" #include "ucioption.h" #ifdef USE_CALLGRIND @@ -52,9 +53,9 @@ int main(int argc, char* argv[]) { init_bitboards(); Position::init_zobrist(); Position::init_piece_square_tables(); - init_eval(1); init_kpk_bitbase(); - init_threads(); + init_search(); + ThreadsMgr.init_threads(); #ifdef USE_CALLGRIND CALLGRIND_START_INSTRUMENTATION; @@ -81,7 +82,6 @@ int main(int argc, char* argv[]) { << "[limit = 12] [fen positions file = default] " << "[depth, time, perft or node limited = depth]" << endl; - exit_threads(); - quit_eval(); + ThreadsMgr.exit_threads(); return 0; } diff --git a/src/material.cpp b/src/material.cpp index 48cac561..ef7428a3 100644 --- a/src/material.cpp +++ b/src/material.cpp @@ -85,7 +85,7 @@ namespace { /// MaterialInfoTable c'tor and d'tor allocate and free the space for Endgames -MaterialInfoTable::MaterialInfoTable() { funcs = new Endgames(); } +void MaterialInfoTable::init() { Base::init(); funcs = new Endgames(); } MaterialInfoTable::~MaterialInfoTable() { delete funcs; } diff --git a/src/material.h b/src/material.h index 18c0f944..c99320c6 100644 --- a/src/material.h +++ b/src/material.h @@ -65,8 +65,8 @@ private: class MaterialInfoTable : public SimpleHash { public: - MaterialInfoTable(); ~MaterialInfoTable(); + void init(); MaterialInfo* get_material_info(const Position& pos) const; static Phase game_phase(const Position& pos); diff --git a/src/misc.h b/src/misc.h index 1378d007..f3f9576e 100644 --- a/src/misc.h +++ b/src/misc.h @@ -29,7 +29,6 @@ extern int get_system_time(); extern int cpu_count(); extern int input_available(); extern void prefetch(char* addr); -extern void prefetchTables(Key pKey, Key mKey, int threadID); extern void dbg_hit_on(bool b); extern void dbg_hit_on_c(bool c, bool b); diff --git a/src/position.cpp b/src/position.cpp index 3f6400a8..2172180c 100644 --- a/src/position.cpp +++ b/src/position.cpp @@ -29,6 +29,7 @@ #include "position.h" #include "psqtab.h" #include "rkiss.h" +#include "thread.h" #include "tt.h" #include "ucioption.h" @@ -1047,7 +1048,8 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI } // Prefetch pawn and material hash tables - prefetchTables(st->pawnKey, st->materialKey, threadID); + ThreadsMgr[threadID].pawnTable.prefetch(st->pawnKey); + ThreadsMgr[threadID].materialTable.prefetch(st->materialKey); // Update incremental scores st->value += pst_delta(piece, from, to); diff --git a/src/search.cpp b/src/search.cpp index df1c9b50..bb61e2e9 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -32,7 +32,6 @@ #include "move.h" #include "movegen.h" #include "movepick.h" -#include "lock.h" #include "search.h" #include "timeman.h" #include "thread.h" @@ -54,44 +53,6 @@ namespace { const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 }; inline bool piece_is_slider(Piece p) { return Slidings[p]; } - // ThreadsManager class is used to handle all the threads related stuff like init, - // starting, parking and, the most important, launching a slave thread at a split - // point. All the access to shared thread data is done through this class. - - class ThreadsManager { - /* As long as the single ThreadsManager object is defined as a global we don't - need to explicitly initialize to zero its data members because variables with - static storage duration are automatically set to zero before enter main() - */ - public: - Thread& operator[](int threadID) { return threads[threadID]; } - void init_threads(); - void exit_threads(); - - int min_split_depth() const { return minimumSplitDepth; } - int active_threads() const { return activeThreads; } - void set_active_threads(int cnt) { activeThreads = cnt; } - - void read_uci_options(); - bool available_thread_exists(int master) const; - bool thread_is_available(int slave, int master) const; - bool cutoff_at_splitpoint(int threadID) const; - void idle_loop(int threadID, SplitPoint* sp); - - template - void split(Position& pos, SearchStack* ss, Value* alpha, const Value beta, Value* bestValue, - Depth depth, Move threatMove, int moveCount, MovePicker* mp, bool pvNode); - private: - Lock mpLock; - Depth minimumSplitDepth; - int maxThreadsPerSplitPoint; - bool useSleepingThreads; - int activeThreads; - volatile bool allThreadsShouldExit; - Thread threads[MAX_THREADS]; - }; - - // RootMove struct is used for moves at the root of the tree. For each root // move, we store two scores, a node count, and a PV (really a refutation // in the case of moves which fail low). Value pv_score is normally set at @@ -203,27 +164,29 @@ namespace { const Value FutilityMarginQS = Value(0x80); // Futility lookup tables (initialized at startup) and their access functions - Value FutilityMarginsMatrix[16][64]; // [depth][moveNumber] - int FutilityMoveCountArray[32]; // [depth] + Value FutilityMargins[16][64]; // [depth][moveNumber] + int FutilityMoveCounts[32]; // [depth] inline Value futility_margin(Depth d, int mn) { - return d < 7 * ONE_PLY ? FutilityMarginsMatrix[Max(d, 1)][Min(mn, 63)] - : 2 * VALUE_INFINITE; + return d < 7 * ONE_PLY ? FutilityMargins[Max(d, 1)][Min(mn, 63)] + : 2 * VALUE_INFINITE; } inline int futility_move_count(Depth d) { - return d < 16 * ONE_PLY ? FutilityMoveCountArray[d] : MAX_MOVES; + return d < 16 * ONE_PLY ? FutilityMoveCounts[d] : MAX_MOVES; } // Step 14. Reduced search // Reduction lookup tables (initialized at startup) and their access function - int8_t ReductionMatrix[2][64][64]; // [pv][depth][moveNumber] + int8_t Reductions[2][64][64]; // [pv][depth][moveNumber] - template - inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / ONE_PLY, 63)][Min(mn, 63)]; } + template inline Depth reduction(Depth d, int mn) { + + return (Depth) Reductions[PV][Min(d / ONE_PLY, 63)][Min(mn, 63)]; + } // Easy move margin. An easy move candidate must be at least this much // better than the second best move. @@ -254,9 +217,6 @@ namespace { bool SkillLevelEnabled; RKISS RK; - // Multi-threads manager - ThreadsManager ThreadsMgr; - // Node counters, used only by thread[0] but try to keep in different cache // lines (64 bytes each) from the heavy multi-thread read accessed variables. bool SendSearchedNodes; @@ -304,12 +264,6 @@ namespace { void poll(const Position& pos); void wait_for_stop_or_ponderhit(); -#if !defined(_MSC_VER) - void* init_thread(void* threadID); -#else - DWORD WINAPI init_thread(LPVOID threadID); -#endif - // MovePickerExt is an extended MovePicker class used to choose at compile time // the proper move source according to the type of node. @@ -378,10 +332,9 @@ namespace { } // namespace -/// init_threads() is called during startup. It initializes various lookup tables -/// and creates and launches search threads. +/// init_search() is called during startup to initialize various lookup tables -void init_threads() { +void init_search() { int d; // depth (ONE_PLY == 2) int hd; // half depth (ONE_PLY == 1) @@ -392,27 +345,20 @@ void init_threads() { { double pvRed = log(double(hd)) * log(double(mc)) / 3.0; double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25; - ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); - ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); + Reductions[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); + Reductions[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); } // Init futility margins array for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++) - FutilityMarginsMatrix[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45); + FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45); // Init futility move count array for (d = 0; d < 32; d++) - FutilityMoveCountArray[d] = int(3.001 + 0.25 * pow(d, 2.0)); - - // Create and startup threads - ThreadsMgr.init_threads(); + FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(d, 2.0)); } -/// exit_threads() is a trampoline to access ThreadsMgr from outside of current file -void exit_threads() { ThreadsMgr.exit_threads(); } - - /// perft() is our utility to verify move generation. All the legal moves up to /// given depth are generated and counted and the sum returned. @@ -489,6 +435,7 @@ bool think(Position& pos, const SearchLimits& limits, Move searchMoves[]) { UCIMultiPV = Options["MultiPV"].value(); SkillLevel = Options["Skill level"].value(); + ThreadsMgr.read_uci_options(); read_evaluation_uci_options(pos.side_to_move()); if (Options["Clear Hash"].value()) @@ -503,10 +450,6 @@ bool think(Position& pos, const SearchLimits& limits, Move searchMoves[]) { SkillLevelEnabled = (SkillLevel < 20); MultiPV = (SkillLevelEnabled ? Max(UCIMultiPV, 4) : UCIMultiPV); - // Set the number of active threads - ThreadsMgr.read_uci_options(); - init_eval(ThreadsMgr.active_threads()); - // Wake up needed threads and reset maxPly counter for (int i = 0; i < ThreadsMgr.active_threads(); i++) { @@ -1972,414 +1915,45 @@ split_point_start: // At split points actual search starts from here } - // init_thread() is the function which is called when a new thread is - // launched. It simply calls the idle_loop() function with the supplied - // threadID. There are two versions of this function; one for POSIX - // threads and one for Windows threads. - -#if !defined(_MSC_VER) - - void* init_thread(void* threadID) { - - ThreadsMgr.idle_loop(*(int*)threadID, NULL); - return NULL; - } - -#else - - DWORD WINAPI init_thread(LPVOID threadID) { - - ThreadsMgr.idle_loop(*(int*)threadID, NULL); - return 0; - } - -#endif - - - /// The ThreadsManager class - - - // read_uci_options() updates number of active threads and other internal - // parameters according to the UCI options values. It is called before - // to start a new search. - - void ThreadsManager::read_uci_options() { - - maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value(); - minimumSplitDepth = Options["Minimum Split Depth"].value() * ONE_PLY; - useSleepingThreads = Options["Use Sleeping Threads"].value(); - activeThreads = Options["Threads"].value(); - } - - - // idle_loop() is where the threads are parked when they have no work to do. - // The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint - // object for which the current thread is the master. - - void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) { - - assert(threadID >= 0 && threadID < MAX_THREADS); - - int i; - bool allFinished; - - while (true) - { - // Slave threads can exit as soon as AllThreadsShouldExit raises, - // master should exit as last one. - if (allThreadsShouldExit) - { - assert(!sp); - threads[threadID].state = THREAD_TERMINATED; - return; - } - - // If we are not thinking, wait for a condition to be signaled - // instead of wasting CPU time polling for work. - while ( threadID >= activeThreads - || threads[threadID].state == THREAD_INITIALIZING - || (useSleepingThreads && threads[threadID].state == THREAD_AVAILABLE)) - { - assert(!sp || useSleepingThreads); - assert(threadID != 0 || useSleepingThreads); - - if (threads[threadID].state == THREAD_INITIALIZING) - threads[threadID].state = THREAD_AVAILABLE; - - // Grab the lock to avoid races with Thread::wake_up() - lock_grab(&threads[threadID].sleepLock); - - // If we are master and all slaves have finished do not go to sleep - for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} - allFinished = (i == activeThreads); - - if (allFinished || allThreadsShouldExit) - { - lock_release(&threads[threadID].sleepLock); - break; - } - - // Do sleep here after retesting sleep conditions - if (threadID >= activeThreads || threads[threadID].state == THREAD_AVAILABLE) - cond_wait(&threads[threadID].sleepCond, &threads[threadID].sleepLock); - - lock_release(&threads[threadID].sleepLock); - } - - // If this thread has been assigned work, launch a search - if (threads[threadID].state == THREAD_WORKISWAITING) - { - assert(!allThreadsShouldExit); - - threads[threadID].state = THREAD_SEARCHING; - - // Copy split point position and search stack and call search() - // with SplitPoint template parameter set to true. - SearchStack ss[PLY_MAX_PLUS_2]; - SplitPoint* tsp = threads[threadID].splitPoint; - Position pos(*tsp->pos, threadID); - - memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack)); - (ss+1)->sp = tsp; - - if (tsp->pvNode) - search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); - else - search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); - - assert(threads[threadID].state == THREAD_SEARCHING); - - threads[threadID].state = THREAD_AVAILABLE; - - // Wake up master thread so to allow it to return from the idle loop in - // case we are the last slave of the split point. - if ( useSleepingThreads - && threadID != tsp->master - && threads[tsp->master].state == THREAD_AVAILABLE) - threads[tsp->master].wake_up(); - } - - // If this thread is the master of a split point and all slaves have - // finished their work at this split point, return from the idle loop. - for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} - allFinished = (i == activeThreads); - - if (allFinished) - { - // Because sp->slaves[] is reset under lock protection, - // be sure sp->lock has been released before to return. - lock_grab(&(sp->lock)); - lock_release(&(sp->lock)); - - // In helpful master concept a master can help only a sub-tree, and - // because here is all finished is not possible master is booked. - assert(threads[threadID].state == THREAD_AVAILABLE); - - threads[threadID].state = THREAD_SEARCHING; - return; - } - } - } - - - // init_threads() is called during startup. Initializes locks and condition - // variables and launches all threads sending them immediately to sleep. - - void ThreadsManager::init_threads() { - - int i, arg[MAX_THREADS]; - bool ok; - - // This flag is needed to properly end the threads when program exits - allThreadsShouldExit = false; - - // Threads will sent to sleep as soon as created, only main thread is kept alive - activeThreads = 1; - - lock_init(&mpLock); + // When playing with strength handicap choose best move among the MultiPV set + // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen. + void do_skill_level(Move* best, Move* ponder) { - for (i = 0; i < MAX_THREADS; i++) - { - // Initialize thread and split point locks - lock_init(&threads[i].sleepLock); - cond_init(&threads[i].sleepCond); + assert(MultiPV > 1); - for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_init(&(threads[i].splitPoints[j].lock)); + // Rml list is already sorted by pv_score in descending order + int s; + int max_s = -VALUE_INFINITE; + int size = Min(MultiPV, (int)Rml.size()); + int max = Rml[0].pv_score; + int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame); + int wk = 120 - 2 * SkillLevel; - // All threads but first should be set to THREAD_INITIALIZING - threads[i].state = (i == 0 ? THREAD_SEARCHING : THREAD_INITIALIZING); - } + // PRNG sequence should be non deterministic + for (int i = abs(get_system_time() % 50); i > 0; i--) + RK.rand(); - // Create and startup the threads - for (i = 1; i < MAX_THREADS; i++) + // Choose best move. For each move's score we add two terms both dependent + // on wk, one deterministic and bigger for weaker moves, and one random, + // then we choose the move with the resulting highest score. + for (int i = 0; i < size; i++) { - arg[i] = i; - -#if !defined(_MSC_VER) - pthread_t pthread[1]; - ok = (pthread_create(pthread, NULL, init_thread, (void*)(&arg[i])) == 0); - pthread_detach(pthread[0]); -#else - ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&arg[i]), 0, NULL) != NULL); -#endif - if (!ok) - { - cout << "Failed to create thread number " << i << endl; - exit(EXIT_FAILURE); - } - - // Wait until the thread has finished launching and is gone to sleep - while (threads[i].state == THREAD_INITIALIZING) {} - } - } - - - // exit_threads() is called when the program exits. It makes all the - // helper threads exit cleanly. + s = Rml[i].pv_score; - void ThreadsManager::exit_threads() { + // Don't allow crazy blunders even at very low skills + if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin) + break; - // Force the woken up threads to exit idle_loop() and hence terminate - allThreadsShouldExit = true; + // This is our magical formula + s += ((max - s) * wk + var * (RK.rand() % wk)) / 128; - for (int i = 0; i < MAX_THREADS; i++) - { - // Wake up all the threads and waits for termination - if (i != 0) + if (s > max_s) { - threads[i].wake_up(); - while (threads[i].state != THREAD_TERMINATED) {} + max_s = s; + *best = Rml[i].pv[0]; + *ponder = Rml[i].pv[1]; } - - // Now we can safely destroy the locks and wait conditions - lock_destroy(&threads[i].sleepLock); - cond_destroy(&threads[i].sleepCond); - - for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_destroy(&(threads[i].splitPoints[j].lock)); } - - lock_destroy(&mpLock); - } - - - // cutoff_at_splitpoint() checks whether a beta cutoff has occurred in - // the thread's currently active split point, or in some ancestor of - // the current split point. - - bool ThreadsManager::cutoff_at_splitpoint(int threadID) const { - - assert(threadID >= 0 && threadID < activeThreads); - - SplitPoint* sp = threads[threadID].splitPoint; - - for ( ; sp && !sp->betaCutoff; sp = sp->parent) {} - return sp != NULL; - } - - - // thread_is_available() checks whether the thread with threadID "slave" is - // available to help the thread with threadID "master" at a split point. An - // obvious requirement is that "slave" must be idle. With more than two - // threads, this is not by itself sufficient: If "slave" is the master of - // some active split point, it is only available as a slave to the other - // threads which are busy searching the split point at the top of "slave"'s - // split point stack (the "helpful master concept" in YBWC terminology). - - bool ThreadsManager::thread_is_available(int slave, int master) const { - - assert(slave >= 0 && slave < activeThreads); - assert(master >= 0 && master < activeThreads); - assert(activeThreads > 1); - - if (threads[slave].state != THREAD_AVAILABLE || slave == master) - return false; - - // Make a local copy to be sure doesn't change under our feet - int localActiveSplitPoints = threads[slave].activeSplitPoints; - - // No active split points means that the thread is available as - // a slave for any other thread. - if (localActiveSplitPoints == 0 || activeThreads == 2) - return true; - - // Apply the "helpful master" concept if possible. Use localActiveSplitPoints - // that is known to be > 0, instead of threads[slave].activeSplitPoints that - // could have been set to 0 by another thread leading to an out of bound access. - if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master]) - return true; - - return false; - } - - - // available_thread_exists() tries to find an idle thread which is available as - // a slave for the thread with threadID "master". - - bool ThreadsManager::available_thread_exists(int master) const { - - assert(master >= 0 && master < activeThreads); - assert(activeThreads > 1); - - for (int i = 0; i < activeThreads; i++) - if (thread_is_available(i, master)) - return true; - - return false; - } - - - // split() does the actual work of distributing the work at a node between - // several available threads. If it does not succeed in splitting the - // node (because no idle threads are available, or because we have no unused - // split point objects), the function immediately returns. If splitting is - // possible, a SplitPoint object is initialized with all the data that must be - // copied to the helper threads and we tell our helper threads that they have - // been assigned work. This will cause them to instantly leave their idle loops and - // call search().When all threads have returned from search() then split() returns. - - template - void ThreadsManager::split(Position& pos, SearchStack* ss, Value* alpha, const Value beta, - Value* bestValue, Depth depth, Move threatMove, - int moveCount, MovePicker* mp, bool pvNode) { - assert(pos.is_ok()); - assert(*bestValue >= -VALUE_INFINITE); - assert(*bestValue <= *alpha); - assert(*alpha < beta); - assert(beta <= VALUE_INFINITE); - assert(depth > DEPTH_ZERO); - assert(pos.thread() >= 0 && pos.thread() < activeThreads); - assert(activeThreads > 1); - - int i, master = pos.thread(); - Thread& masterThread = threads[master]; - - lock_grab(&mpLock); - - // If no other thread is available to help us, or if we have too many - // active split points, don't split. - if ( !available_thread_exists(master) - || masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS) - { - lock_release(&mpLock); - return; - } - - // Pick the next available split point object from the split point stack - SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++]; - - // Initialize the split point object - splitPoint.parent = masterThread.splitPoint; - splitPoint.master = master; - splitPoint.betaCutoff = false; - splitPoint.depth = depth; - splitPoint.threatMove = threatMove; - splitPoint.alpha = *alpha; - splitPoint.beta = beta; - splitPoint.pvNode = pvNode; - splitPoint.bestValue = *bestValue; - splitPoint.mp = mp; - splitPoint.moveCount = moveCount; - splitPoint.pos = &pos; - splitPoint.nodes = 0; - splitPoint.ss = ss; - for (i = 0; i < activeThreads; i++) - splitPoint.slaves[i] = 0; - - masterThread.splitPoint = &splitPoint; - - // If we are here it means we are not available - assert(masterThread.state != THREAD_AVAILABLE); - - int workersCnt = 1; // At least the master is included - - // Allocate available threads setting state to THREAD_BOOKED - for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++) - if (thread_is_available(i, master)) - { - threads[i].state = THREAD_BOOKED; - threads[i].splitPoint = &splitPoint; - splitPoint.slaves[i] = 1; - workersCnt++; - } - - assert(Fake || workersCnt > 1); - - // We can release the lock because slave threads are already booked and master is not available - lock_release(&mpLock); - - // Tell the threads that they have work to do. This will make them leave - // their idle loop. - for (i = 0; i < activeThreads; i++) - if (i == master || splitPoint.slaves[i]) - { - assert(i == master || threads[i].state == THREAD_BOOKED); - - threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop() - - if (useSleepingThreads && i != master) - threads[i].wake_up(); - } - - // Everything is set up. The master thread enters the idle loop, from - // which it will instantly launch a search, because its state is - // THREAD_WORKISWAITING. We send the split point as a second parameter to the - // idle loop, which means that the main thread will return from the idle - // loop when all threads have finished their work at this split point. - idle_loop(master, &splitPoint); - - // We have returned from the idle loop, which means that all threads are - // finished. Update alpha and bestValue, and return. - lock_grab(&mpLock); - - *alpha = splitPoint.alpha; - *bestValue = splitPoint.bestValue; - masterThread.activeSplitPoints--; - masterThread.splitPoint = splitPoint.parent; - pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes); - - lock_release(&mpLock); } @@ -2406,6 +1980,33 @@ split_point_start: // At split points actual search starts from here return *this; } + void RootMoveList::init(Position& pos, Move searchMoves[]) { + + MoveStack mlist[MAX_MOVES]; + Move* sm; + + clear(); + bestMoveChanges = 0; + + // Generate all legal moves and add them to RootMoveList + MoveStack* last = generate(pos, mlist); + for (MoveStack* cur = mlist; cur != last; cur++) + { + // If we have a searchMoves[] list then verify cur->move + // is in the list before to add it. + for (sm = searchMoves; *sm && *sm != cur->move; sm++) {} + + if (searchMoves[0] && *sm != cur->move) + continue; + + RootMove rm; + rm.pv[0] = cur->move; + rm.pv[1] = MOVE_NONE; + rm.pv_score = -VALUE_INFINITE; + push_back(rm); + } + } + // extract_pv_from_tt() builds a PV by adding moves from the transposition table. // We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This // allow to always have a ponder move even when we fail high at root and also a @@ -2487,74 +2088,114 @@ split_point_start: // At split points actual search starts from here return s.str(); } +} // namespace - void RootMoveList::init(Position& pos, Move searchMoves[]) { - MoveStack mlist[MAX_MOVES]; - Move* sm; +// ThreadsManager::idle_loop() is where the threads are parked when they have no work +// to do. The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint +// object for which the current thread is the master. - clear(); - bestMoveChanges = 0; +void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) { - // Generate all legal moves and add them to RootMoveList - MoveStack* last = generate(pos, mlist); - for (MoveStack* cur = mlist; cur != last; cur++) - { - // If we have a searchMoves[] list then verify cur->move - // is in the list before to add it. - for (sm = searchMoves; *sm && *sm != cur->move; sm++) {} + assert(threadID >= 0 && threadID < MAX_THREADS); - if (searchMoves[0] && *sm != cur->move) - continue; + int i; + bool allFinished; - RootMove rm; - rm.pv[0] = cur->move; - rm.pv[1] = MOVE_NONE; - rm.pv_score = -VALUE_INFINITE; - push_back(rm); - } - } + while (true) + { + // Slave threads can exit as soon as AllThreadsShouldExit raises, + // master should exit as last one. + if (allThreadsShouldExit) + { + assert(!sp); + threads[threadID].state = THREAD_TERMINATED; + return; + } + // If we are not thinking, wait for a condition to be signaled + // instead of wasting CPU time polling for work. + while ( threadID >= activeThreads + || threads[threadID].state == THREAD_INITIALIZING + || (useSleepingThreads && threads[threadID].state == THREAD_AVAILABLE)) + { + assert(!sp || useSleepingThreads); + assert(threadID != 0 || useSleepingThreads); - // When playing with strength handicap choose best move among the MultiPV set - // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen. - void do_skill_level(Move* best, Move* ponder) { + if (threads[threadID].state == THREAD_INITIALIZING) + threads[threadID].state = THREAD_AVAILABLE; - assert(MultiPV > 1); + // Grab the lock to avoid races with Thread::wake_up() + lock_grab(&threads[threadID].sleepLock); - // Rml list is already sorted by pv_score in descending order - int s; - int max_s = -VALUE_INFINITE; - int size = Min(MultiPV, (int)Rml.size()); - int max = Rml[0].pv_score; - int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame); - int wk = 120 - 2 * SkillLevel; + // If we are master and all slaves have finished do not go to sleep + for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} + allFinished = (i == activeThreads); - // PRNG sequence should be non deterministic - for (int i = abs(get_system_time() % 50); i > 0; i--) - RK.rand(); + if (allFinished || allThreadsShouldExit) + { + lock_release(&threads[threadID].sleepLock); + break; + } - // Choose best move. For each move's score we add two terms both dependent - // on wk, one deterministic and bigger for weaker moves, and one random, - // then we choose the move with the resulting highest score. - for (int i = 0; i < size; i++) - { - s = Rml[i].pv_score; + // Do sleep here after retesting sleep conditions + if (threadID >= activeThreads || threads[threadID].state == THREAD_AVAILABLE) + cond_wait(&threads[threadID].sleepCond, &threads[threadID].sleepLock); - // Don't allow crazy blunders even at very low skills - if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin) - break; + lock_release(&threads[threadID].sleepLock); + } - // This is our magical formula - s += ((max - s) * wk + var * (RK.rand() % wk)) / 128; + // If this thread has been assigned work, launch a search + if (threads[threadID].state == THREAD_WORKISWAITING) + { + assert(!allThreadsShouldExit); - if (s > max_s) - { - max_s = s; - *best = Rml[i].pv[0]; - *ponder = Rml[i].pv[1]; - } - } - } + threads[threadID].state = THREAD_SEARCHING; -} // namespace + // Copy split point position and search stack and call search() + // with SplitPoint template parameter set to true. + SearchStack ss[PLY_MAX_PLUS_2]; + SplitPoint* tsp = threads[threadID].splitPoint; + Position pos(*tsp->pos, threadID); + + memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack)); + (ss+1)->sp = tsp; + + if (tsp->pvNode) + search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); + else + search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); + + assert(threads[threadID].state == THREAD_SEARCHING); + + threads[threadID].state = THREAD_AVAILABLE; + + // Wake up master thread so to allow it to return from the idle loop in + // case we are the last slave of the split point. + if ( useSleepingThreads + && threadID != tsp->master + && threads[tsp->master].state == THREAD_AVAILABLE) + threads[tsp->master].wake_up(); + } + + // If this thread is the master of a split point and all slaves have + // finished their work at this split point, return from the idle loop. + for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} + allFinished = (i == activeThreads); + + if (allFinished) + { + // Because sp->slaves[] is reset under lock protection, + // be sure sp->lock has been released before to return. + lock_grab(&(sp->lock)); + lock_release(&(sp->lock)); + + // In helpful master concept a master can help only a sub-tree, and + // because here is all finished is not possible master is booked. + assert(threads[threadID].state == THREAD_AVAILABLE); + + threads[threadID].state = THREAD_SEARCHING; + return; + } + } +} diff --git a/src/search.h b/src/search.h index a2e783b1..06e384fb 100644 --- a/src/search.h +++ b/src/search.h @@ -63,8 +63,7 @@ struct SearchLimits { bool infinite, ponder; }; -extern void init_threads(); -extern void exit_threads(); +extern void init_search(); extern int64_t perft(Position& pos, Depth depth); extern bool think(Position& pos, const SearchLimits& limits, Move searchMoves[]); diff --git a/src/thread.cpp b/src/thread.cpp new file mode 100644 index 00000000..30c921d1 --- /dev/null +++ b/src/thread.cpp @@ -0,0 +1,333 @@ +/* + Stockfish, a UCI chess playing engine derived from Glaurung 2.1 + Copyright (C) 2004-2008 Tord Romstad (Glaurung author) + Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + + Stockfish is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Stockfish is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . +*/ + +#include + +#include "thread.h" +#include "ucioption.h" + +ThreadsManager ThreadsMgr; // Global object definition + +namespace { + + // init_thread() is the function which is called when a new thread is + // launched. It simply calls the idle_loop() function with the supplied + // threadID. There are two versions of this function; one for POSIX + // threads and one for Windows threads. + +#if !defined(_MSC_VER) + + void* init_thread(void* threadID) { + + ThreadsMgr.idle_loop(*(int*)threadID, NULL); + return NULL; + } + +#else + + DWORD WINAPI init_thread(LPVOID threadID) { + + ThreadsMgr.idle_loop(*(int*)threadID, NULL); + return 0; + } + +#endif + +} + + +// read_uci_options() updates number of active threads and other internal +// parameters according to the UCI options values. It is called before +// to start a new search. + +void ThreadsManager::read_uci_options() { + + maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value(); + minimumSplitDepth = Options["Minimum Split Depth"].value() * ONE_PLY; + useSleepingThreads = Options["Use Sleeping Threads"].value(); + activeThreads = Options["Threads"].value(); +} + +// init_threads() is called during startup. Initializes locks and condition +// variables and launches all threads sending them immediately to sleep. + +void ThreadsManager::init_threads() { + + int i, arg[MAX_THREADS]; + bool ok; + + // This flag is needed to properly end the threads when program exits + allThreadsShouldExit = false; + + // Threads will sent to sleep as soon as created, only main thread is kept alive + activeThreads = 1; + + lock_init(&mpLock); + + for (i = 0; i < MAX_THREADS; i++) + { + // Initialize thread and split point locks + lock_init(&threads[i].sleepLock); + cond_init(&threads[i].sleepCond); + + for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) + lock_init(&(threads[i].splitPoints[j].lock)); + + // All threads but first should be set to THREAD_INITIALIZING + threads[i].state = (i == 0 ? THREAD_SEARCHING : THREAD_INITIALIZING); + + // Not in Threads c'tor to avoid global initialization order issues + threads[i].pawnTable.init(); + threads[i].materialTable.init(); + } + + // Create and startup the threads + for (i = 1; i < MAX_THREADS; i++) + { + arg[i] = i; + +#if !defined(_MSC_VER) + pthread_t pthread[1]; + ok = (pthread_create(pthread, NULL, init_thread, (void*)(&arg[i])) == 0); + pthread_detach(pthread[0]); +#else + ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&arg[i]), 0, NULL) != NULL); +#endif + if (!ok) + { + std::cout << "Failed to create thread number " << i << std::endl; + exit(EXIT_FAILURE); + } + + // Wait until the thread has finished launching and is gone to sleep + while (threads[i].state == THREAD_INITIALIZING) {} + } +} + + +// exit_threads() is called when the program exits. It makes all the +// helper threads exit cleanly. + +void ThreadsManager::exit_threads() { + + // Force the woken up threads to exit idle_loop() and hence terminate + allThreadsShouldExit = true; + + for (int i = 0; i < MAX_THREADS; i++) + { + // Wake up all the threads and waits for termination + if (i != 0) + { + threads[i].wake_up(); + while (threads[i].state != THREAD_TERMINATED) {} + } + + // Now we can safely destroy the locks and wait conditions + lock_destroy(&threads[i].sleepLock); + cond_destroy(&threads[i].sleepCond); + + for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) + lock_destroy(&(threads[i].splitPoints[j].lock)); + } + + lock_destroy(&mpLock); +} + + +// cutoff_at_splitpoint() checks whether a beta cutoff has occurred in +// the thread's currently active split point, or in some ancestor of +// the current split point. + +bool ThreadsManager::cutoff_at_splitpoint(int threadID) const { + + assert(threadID >= 0 && threadID < activeThreads); + + SplitPoint* sp = threads[threadID].splitPoint; + + for ( ; sp && !sp->betaCutoff; sp = sp->parent) {} + return sp != NULL; +} + + +// thread_is_available() checks whether the thread with threadID "slave" is +// available to help the thread with threadID "master" at a split point. An +// obvious requirement is that "slave" must be idle. With more than two +// threads, this is not by itself sufficient: If "slave" is the master of +// some active split point, it is only available as a slave to the other +// threads which are busy searching the split point at the top of "slave"'s +// split point stack (the "helpful master concept" in YBWC terminology). + +bool ThreadsManager::thread_is_available(int slave, int master) const { + + assert(slave >= 0 && slave < activeThreads); + assert(master >= 0 && master < activeThreads); + assert(activeThreads > 1); + + if (threads[slave].state != THREAD_AVAILABLE || slave == master) + return false; + + // Make a local copy to be sure doesn't change under our feet + int localActiveSplitPoints = threads[slave].activeSplitPoints; + + // No active split points means that the thread is available as + // a slave for any other thread. + if (localActiveSplitPoints == 0 || activeThreads == 2) + return true; + + // Apply the "helpful master" concept if possible. Use localActiveSplitPoints + // that is known to be > 0, instead of threads[slave].activeSplitPoints that + // could have been set to 0 by another thread leading to an out of bound access. + if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master]) + return true; + + return false; +} + + +// available_thread_exists() tries to find an idle thread which is available as +// a slave for the thread with threadID "master". + +bool ThreadsManager::available_thread_exists(int master) const { + + assert(master >= 0 && master < activeThreads); + assert(activeThreads > 1); + + for (int i = 0; i < activeThreads; i++) + if (thread_is_available(i, master)) + return true; + + return false; +} + + +// split() does the actual work of distributing the work at a node between +// several available threads. If it does not succeed in splitting the +// node (because no idle threads are available, or because we have no unused +// split point objects), the function immediately returns. If splitting is +// possible, a SplitPoint object is initialized with all the data that must be +// copied to the helper threads and we tell our helper threads that they have +// been assigned work. This will cause them to instantly leave their idle loops and +// call search().When all threads have returned from search() then split() returns. + +template +void ThreadsManager::split(Position& pos, SearchStack* ss, Value* alpha, const Value beta, + Value* bestValue, Depth depth, Move threatMove, + int moveCount, MovePicker* mp, bool pvNode) { + assert(pos.is_ok()); + assert(*bestValue >= -VALUE_INFINITE); + assert(*bestValue <= *alpha); + assert(*alpha < beta); + assert(beta <= VALUE_INFINITE); + assert(depth > DEPTH_ZERO); + assert(pos.thread() >= 0 && pos.thread() < activeThreads); + assert(activeThreads > 1); + + int i, master = pos.thread(); + Thread& masterThread = threads[master]; + + lock_grab(&mpLock); + + // If no other thread is available to help us, or if we have too many + // active split points, don't split. + if ( !available_thread_exists(master) + || masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS) + { + lock_release(&mpLock); + return; + } + + // Pick the next available split point object from the split point stack + SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++]; + + // Initialize the split point object + splitPoint.parent = masterThread.splitPoint; + splitPoint.master = master; + splitPoint.betaCutoff = false; + splitPoint.depth = depth; + splitPoint.threatMove = threatMove; + splitPoint.alpha = *alpha; + splitPoint.beta = beta; + splitPoint.pvNode = pvNode; + splitPoint.bestValue = *bestValue; + splitPoint.mp = mp; + splitPoint.moveCount = moveCount; + splitPoint.pos = &pos; + splitPoint.nodes = 0; + splitPoint.ss = ss; + for (i = 0; i < activeThreads; i++) + splitPoint.slaves[i] = 0; + + masterThread.splitPoint = &splitPoint; + + // If we are here it means we are not available + assert(masterThread.state != THREAD_AVAILABLE); + + int workersCnt = 1; // At least the master is included + + // Allocate available threads setting state to THREAD_BOOKED + for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++) + if (thread_is_available(i, master)) + { + threads[i].state = THREAD_BOOKED; + threads[i].splitPoint = &splitPoint; + splitPoint.slaves[i] = 1; + workersCnt++; + } + + assert(Fake || workersCnt > 1); + + // We can release the lock because slave threads are already booked and master is not available + lock_release(&mpLock); + + // Tell the threads that they have work to do. This will make them leave + // their idle loop. + for (i = 0; i < activeThreads; i++) + if (i == master || splitPoint.slaves[i]) + { + assert(i == master || threads[i].state == THREAD_BOOKED); + + threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop() + + if (useSleepingThreads && i != master) + threads[i].wake_up(); + } + + // Everything is set up. The master thread enters the idle loop, from + // which it will instantly launch a search, because its state is + // THREAD_WORKISWAITING. We send the split point as a second parameter to the + // idle loop, which means that the main thread will return from the idle + // loop when all threads have finished their work at this split point. + idle_loop(master, &splitPoint); + + // We have returned from the idle loop, which means that all threads are + // finished. Update alpha and bestValue, and return. + lock_grab(&mpLock); + + *alpha = splitPoint.alpha; + *bestValue = splitPoint.bestValue; + masterThread.activeSplitPoints--; + masterThread.splitPoint = splitPoint.parent; + pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes); + + lock_release(&mpLock); +} + +// Explicit template instantiations +template void ThreadsManager::split<0>(Position&, SearchStack*, Value*, const Value, Value*, Depth, Move, int, MovePicker*, bool); +template void ThreadsManager::split<1>(Position&, SearchStack*, Value*, const Value, Value*, Depth, Move, int, MovePicker*, bool); diff --git a/src/thread.h b/src/thread.h index b476d529..e576a5c4 100644 --- a/src/thread.h +++ b/src/thread.h @@ -23,9 +23,10 @@ #include #include "lock.h" +#include "material.h" #include "movepick.h" +#include "pawns.h" #include "position.h" -#include "search.h" const int MAX_THREADS = 32; const int MAX_ACTIVE_SPLIT_POINTS = 8; @@ -67,7 +68,14 @@ enum ThreadState THREAD_TERMINATED // we are quitting and thread is terminated }; + +// We use per-thread Pawn and material hash tables so that once we get a +// pointer to an entry its life time is unlimited and we don't have to +// care about someone changing the entry under our feet. + struct Thread { + MaterialInfoTable materialTable; + PawnInfoTable pawnTable; int maxPly; Lock sleepLock; WaitCondition sleepCond; @@ -83,4 +91,44 @@ struct Thread { } }; + +// ThreadsManager class is used to handle all the threads related stuff like init, +// starting, parking and, the most important, launching a slave thread at a split +// point. All the access to shared thread data is done through this class. + +class ThreadsManager { + /* As long as the single ThreadsManager object is defined as a global we don't + need to explicitly initialize to zero its data members because variables with + static storage duration are automatically set to zero before enter main() + */ +public: + Thread& operator[](int threadID) { return threads[threadID]; } + void init_threads(); + void exit_threads(); + + int min_split_depth() const { return minimumSplitDepth; } + int active_threads() const { return activeThreads; } + void set_active_threads(int cnt) { activeThreads = cnt; } + + void read_uci_options(); + bool available_thread_exists(int master) const; + bool thread_is_available(int slave, int master) const; + bool cutoff_at_splitpoint(int threadID) const; + void idle_loop(int threadID, SplitPoint* sp); + + template + void split(Position& pos, SearchStack* ss, Value* alpha, const Value beta, Value* bestValue, + Depth depth, Move threatMove, int moveCount, MovePicker* mp, bool pvNode); +private: + Lock mpLock; + Depth minimumSplitDepth; + int maxThreadsPerSplitPoint; + bool useSleepingThreads; + int activeThreads; + volatile bool allThreadsShouldExit; + Thread threads[MAX_THREADS]; +}; + +extern ThreadsManager ThreadsMgr; + #endif // !defined(THREAD_H_INCLUDED) diff --git a/src/tt.h b/src/tt.h index daa66c33..a4ccd8be 100644 --- a/src/tt.h +++ b/src/tt.h @@ -142,13 +142,11 @@ inline void TranspositionTable::refresh(const TTEntry* tte) const { /// Without cluster concept or overwrite policy. template -class SimpleHash { +struct SimpleHash { - SimpleHash(const SimpleHash&); - SimpleHash& operator=(const SimpleHash&); + typedef SimpleHash Base; -public: - SimpleHash() { + void init() { entries = new (std::nothrow) Entry[HashSize]; if (!entries) -- 2.39.2