X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;ds=sidebyside;f=src%2Ftimeman.cpp;h=da08f12d9692994355daf9a27130637b4b871d98;hb=HEAD;hp=d27962b7fc0baf54dcabfe66768ec88158e7435c;hpb=6f15e7fab277c2595633ad08fdc25bdd7e0ab166;p=stockfish diff --git a/src/timeman.cpp b/src/timeman.cpp index d27962b7..9de70fdc 100644 --- a/src/timeman.cpp +++ b/src/timeman.cpp @@ -1,8 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2004-2024 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,82 +16,125 @@ along with this program. If not, see . */ +#include "timeman.h" + #include -#include +#include #include +#include #include "search.h" -#include "timeman.h" -#include "uci.h" - -TimeManagement Time; // Our global time management object - -/// init() is called at the beginning of the search and calculates the bounds -/// of time allowed for the current game ply. We currently support: -// 1) x basetime (+z increment) -// 2) x moves in y seconds (+z increment) - -void TimeManagement::init(Search::LimitsType& limits, Color us, int ply) { - - TimePoint minThinkingTime = TimePoint(Options["Minimum Thinking Time"]); - TimePoint moveOverhead = TimePoint(Options["Move Overhead"]); - TimePoint slowMover = TimePoint(Options["Slow Mover"]); - TimePoint npmsec = TimePoint(Options["nodestime"]); - - // opt_scale is a percentage of available time to use for the current move. - // max_scale is a multiplier applied to optimumTime. - double opt_scale, max_scale; - - // If we have to play in 'nodes as time' mode, then convert from time - // to nodes, and use resulting values in time management formulas. - // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) - // must be much lower than the real engine speed. - if (npmsec) - { - if (!availableNodes) // Only once at game start - availableNodes = npmsec * limits.time[us]; // Time is in msec - - // Convert from milliseconds to nodes - limits.time[us] = TimePoint(availableNodes); - limits.inc[us] *= npmsec; - limits.npmsec = npmsec; - } - - startTime = limits.startTime; - - //Maximum move horizon of 50 moves - int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50; - - // Make sure timeLeft is > 0 since we may use it as a divisor - TimePoint timeLeft = std::max(TimePoint(1), - limits.time[us] + limits.inc[us] * (mtg - 1) - moveOverhead * (2 + mtg)); - - // A user may scale time usage by setting UCI option "Slow Mover" - // Default is 100 and changing this value will probably lose elo. - timeLeft = slowMover * timeLeft / 100; - - // x basetime (+ z increment) - // If there is a healthy increment, timeLeft can exceed actual available - // game time for the current move, so also cap to 20% of available game time. - if (limits.movestogo == 0) - { - opt_scale = std::min(0.008 + std::pow(ply + 3.0, 0.5) / 250.0, - 0.2 * limits.time[us] / double(timeLeft)); - max_scale = std::min(7.0, 4.0 + ply / 12.0); - } - - // x moves in y seconds (+ z increment) - else - { - opt_scale = std::min((0.8 + ply / 128.0) / mtg, - 0.8 * limits.time[us] / double(timeLeft)); - max_scale = std::min(6.3, 1.5 + 0.11 * mtg); - } - - // Never use more than 80% of the available time for this move - optimumTime = std::max(minThinkingTime, TimePoint(opt_scale * timeLeft)); - maximumTime = TimePoint(std::min(0.8 * limits.time[us] - moveOverhead, max_scale * optimumTime)); - - if (Options["Ponder"]) - optimumTime += optimumTime / 4; +#include "ucioption.h" + +namespace Stockfish { + +TimePoint TimeManagement::optimum() const { return optimumTime; } +TimePoint TimeManagement::maximum() const { return maximumTime; } + +void TimeManagement::clear() { + availableNodes = -1; // When in 'nodes as time' mode } + +void TimeManagement::advance_nodes_time(std::int64_t nodes) { + assert(useNodesTime); + availableNodes = std::max(int64_t(0), availableNodes - nodes); +} + +// Called at the beginning of the search and calculates +// the bounds of time allowed for the current game ply. We currently support: +// 1) x basetime (+ z increment) +// 2) x moves in y seconds (+ z increment) +void TimeManagement::init(Search::LimitsType& limits, + Color us, + int ply, + const OptionsMap& options, + double& originalTimeAdjust) { + TimePoint npmsec = TimePoint(options["nodestime"]); + + // If we have no time, we don't need to fully initialize TM. + // startTime is used by movetime and useNodesTime is used in elapsed calls. + startTime = limits.startTime; + useNodesTime = npmsec != 0; + + if (limits.time[us] == 0) + return; + + TimePoint moveOverhead = TimePoint(options["Move Overhead"]); + + // optScale is a percentage of available time to use for the current move. + // maxScale is a multiplier applied to optimumTime. + double optScale, maxScale; + + // If we have to play in 'nodes as time' mode, then convert from time + // to nodes, and use resulting values in time management formulas. + // WARNING: to avoid time losses, the given npmsec (nodes per millisecond) + // must be much lower than the real engine speed. + if (useNodesTime) + { + if (availableNodes == -1) // Only once at game start + availableNodes = npmsec * limits.time[us]; // Time is in msec + + // Convert from milliseconds to nodes + limits.time[us] = TimePoint(availableNodes); + limits.inc[us] *= npmsec; + limits.npmsec = npmsec; + moveOverhead *= npmsec; + } + + // These numbers are used where multiplications, divisions or comparisons + // with constants are involved. + const int64_t scaleFactor = useNodesTime ? npmsec : 1; + const TimePoint scaledTime = limits.time[us] / scaleFactor; + const TimePoint scaledInc = limits.inc[us] / scaleFactor; + + // Maximum move horizon of 50 moves + int mtg = limits.movestogo ? std::min(limits.movestogo, 50) : 50; + + // If less than one second, gradually reduce mtg + if (scaledTime < 1000 && double(mtg) / scaledInc > 0.05) + { + mtg = scaledTime * 0.05; + } + + // Make sure timeLeft is > 0 since we may use it as a divisor + TimePoint timeLeft = std::max(TimePoint(1), limits.time[us] + limits.inc[us] * (mtg - 1) + - moveOverhead * (2 + mtg)); + + // x basetime (+ z increment) + // If there is a healthy increment, timeLeft can exceed the actual available + // game time for the current move, so also cap to a percentage of available game time. + if (limits.movestogo == 0) + { + // Extra time according to timeLeft + if (originalTimeAdjust < 0) + originalTimeAdjust = 0.3285 * std::log10(timeLeft) - 0.4830; + + // Calculate time constants based on current time left. + double logTimeInSec = std::log10(scaledTime / 1000.0); + double optConstant = std::min(0.00308 + 0.000319 * logTimeInSec, 0.00506); + double maxConstant = std::max(3.39 + 3.01 * logTimeInSec, 2.93); + + optScale = std::min(0.0122 + std::pow(ply + 2.95, 0.462) * optConstant, + 0.213 * limits.time[us] / timeLeft) + * originalTimeAdjust; + + maxScale = std::min(6.64, maxConstant + ply / 12.0); + } + + // x moves in y seconds (+ z increment) + else + { + optScale = std::min((0.88 + ply / 116.4) / mtg, 0.88 * limits.time[us] / timeLeft); + maxScale = std::min(6.3, 1.5 + 0.11 * mtg); + } + + // Limit the maximum possible time for this move + optimumTime = TimePoint(optScale * timeLeft); + maximumTime = + TimePoint(std::min(0.825 * limits.time[us] - moveOverhead, maxScale * optimumTime)) - 10; + + if (options["Ponder"]) + optimumTime += optimumTime / 4; +} + +} // namespace Stockfish