X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=encoder%2Fme.c;h=b5552fb40ade4183bdb198c6df4e2d19694af405;hb=867c1eca89477f4022b447207da3013acb538d57;hp=0d98f910950f93e054627d4de139224c594b9476;hpb=fd1cf29494463f0dd9ac9b01158a78f7c7913a0f;p=x264 diff --git a/encoder/me.c b/encoder/me.c index 0d98f910..b5552fb4 100644 --- a/encoder/me.c +++ b/encoder/me.c @@ -1,7 +1,7 @@ /***************************************************************************** - * me.c: h264 encoder library (Motion Estimation) + * me.c: motion estimation ***************************************************************************** - * Copyright (C) 2003-2008 x264 project + * Copyright (C) 2003-2016 x264 project * * Authors: Loren Merritt * Laurent Aimar @@ -20,6 +20,9 @@ * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. + * + * This program is also available under a commercial proprietary license. + * For more information, contact us at licensing@x264.com. *****************************************************************************/ #include "common/common.h" @@ -32,7 +35,7 @@ * and refine_* are run only on the winner. * the subme=8,9 values are much higher because any amount of satd search makes * up its time by reducing the number of qpel-rd iterations. */ -static const int subpel_iterations[][4] = +static const uint8_t subpel_iterations[][4] = {{0,0,0,0}, {1,1,0,0}, {0,1,1,0}, @@ -43,13 +46,14 @@ static const int subpel_iterations[][4] = {0,0,2,2}, {0,0,4,10}, {0,0,4,10}, + {0,0,4,10}, {0,0,4,10}}; /* (x-1)%6 */ -static const int mod6m1[8] = {5,0,1,2,3,4,5,0}; +static const uint8_t mod6m1[8] = {5,0,1,2,3,4,5,0}; /* radius 2 hexagon. repeated entries are to avoid having to compute mod6 every time. */ -static const int hex2[8][2] = {{-1,-2}, {-2,0}, {-1,2}, {1,2}, {2,0}, {1,-2}, {-1,-2}, {-2,0}}; -static const int square1[9][2] = {{0,0}, {0,-1}, {0,1}, {-1,0}, {1,0}, {-1,-1}, {-1,1}, {1,-1}, {1,1}}; +static const int8_t hex2[8][2] = {{-1,-2}, {-2,0}, {-1,2}, {1,2}, {2,0}, {1,-2}, {-1,-2}, {-2,0}}; +static const int8_t square1[9][2] = {{0,0}, {0,-1}, {0,1}, {-1,0}, {1,0}, {-1,-1}, {-1,1}, {1,-1}, {1,1}}; static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_iters, int *p_halfpel_thresh, int b_refine_qpel ); @@ -57,25 +61,26 @@ static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_ite (p_cost_mvx[(mx)<<2] + p_cost_mvy[(my)<<2]) #define COST_MV( mx, my )\ +do\ {\ int cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE,\ &p_fref_w[(my)*stride+(mx)], stride )\ + BITS_MVD(mx,my);\ COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my );\ -} +} while(0) -#define COST_MV_HPEL( mx, my ) \ -{ \ - int stride2 = 16; \ - uint8_t *src = h->mc.get_ref( pix, &stride2, m->p_fref, stride, mx, my, bw, bh, &m->weight[0] ); \ - int cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, src, stride2 ) \ - + p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \ - COPY3_IF_LT( bpred_cost, cost, bpred_mx, mx, bpred_my, my ); \ -} +#define COST_MV_HPEL( mx, my, cost )\ +do\ +{\ + intptr_t stride2 = 16;\ + pixel *src = h->mc.get_ref( pix, &stride2, m->p_fref, stride, mx, my, bw, bh, &m->weight[0] );\ + cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, src, stride2 )\ + + p_cost_mvx[ mx ] + p_cost_mvy[ my ];\ +} while(0) #define COST_MV_X3_DIR( m0x, m0y, m1x, m1y, m2x, m2y, costs )\ {\ - uint8_t *pix_base = p_fref_w + bmx + bmy*stride;\ + pixel *pix_base = p_fref_w + bmx + bmy*stride;\ h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\ pix_base + (m0x) + (m0y)*stride,\ pix_base + (m1x) + (m1y)*stride,\ @@ -88,7 +93,7 @@ static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_ite #define COST_MV_X4_DIR( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y, costs )\ {\ - uint8_t *pix_base = p_fref_w + bmx + bmy*stride;\ + pixel *pix_base = p_fref_w + bmx + bmy*stride;\ h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\ pix_base + (m0x) + (m0y)*stride,\ pix_base + (m1x) + (m1y)*stride,\ @@ -103,7 +108,7 @@ static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_ite #define COST_MV_X4( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y )\ {\ - uint8_t *pix_base = p_fref_w + omx + omy*stride;\ + pixel *pix_base = p_fref_w + omx + omy*stride;\ h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\ pix_base + (m0x) + (m0y)*stride,\ pix_base + (m1x) + (m1y)*stride,\ @@ -146,11 +151,11 @@ static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_ite #define CROSS( start, x_max, y_max )\ {\ - i = start;\ - if( x_max <= X264_MIN(mv_x_max-omx, omx-mv_x_min) )\ - for( ; i < x_max-2; i+=4 )\ + int i = start;\ + if( (x_max) <= X264_MIN(mv_x_max-omx, omx-mv_x_min) )\ + for( ; i < (x_max)-2; i+=4 )\ COST_MV_X4( i,0, -i,0, i+2,0, -i-2,0 );\ - for( ; i < x_max; i+=2 )\ + for( ; i < (x_max); i+=2 )\ {\ if( omx+i <= mv_x_max )\ COST_MV( omx+i, omy );\ @@ -158,10 +163,10 @@ static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_ite COST_MV( omx-i, omy );\ }\ i = start;\ - if( y_max <= X264_MIN(mv_y_max-omy, omy-mv_y_min) )\ - for( ; i < y_max-2; i+=4 )\ + if( (y_max) <= X264_MIN(mv_y_max-omy, omy-mv_y_min) )\ + for( ; i < (y_max)-2; i+=4 )\ COST_MV_X4( 0,i, 0,-i, 0,i+2, 0,-i-2 );\ - for( ; i < y_max; i+=2 )\ + for( ; i < (y_max); i+=2 )\ {\ if( omy+i <= mv_y_max )\ COST_MV( omx, omy+i );\ @@ -170,6 +175,10 @@ static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_ite }\ } +#define FPEL(mv) (((mv)+2)>>2) /* Convert subpel MV to fullpel with rounding... */ +#define SPEL(mv) ((mv)<<2) /* ... and the reverse. */ +#define SPELx2(mv) (SPEL(mv)&0xFFFCFFFC) /* for two packed MVs */ + void x264_me_search_ref( x264_t *h, x264_me_t *m, int16_t (*mvc)[2], int i_mvc, int *p_halfpel_thresh ) { const int bw = x264_pixel_size[m->i_pixel].w; @@ -177,180 +186,245 @@ void x264_me_search_ref( x264_t *h, x264_me_t *m, int16_t (*mvc)[2], int i_mvc, const int i_pixel = m->i_pixel; const int stride = m->i_stride[0]; int i_me_range = h->param.analyse.i_me_range; - int bmx, bmy, bcost; - int bpred_mx = 0, bpred_my = 0, bpred_cost = COST_MAX; + int bmx, bmy, bcost = COST_MAX; + int bpred_cost = COST_MAX; int omx, omy, pmx, pmy; - uint8_t *p_fenc = m->p_fenc[0]; - uint8_t *p_fref_w = m->p_fref_w; - ALIGNED_ARRAY_16( uint8_t, pix,[16*16] ); + pixel *p_fenc = m->p_fenc[0]; + pixel *p_fref_w = m->p_fref_w; + ALIGNED_ARRAY_N( pixel, pix,[16*16] ); + ALIGNED_ARRAY_8( int16_t, mvc_temp,[16],[2] ); - int i, j; - int dir; - int costs[16]; + ALIGNED_ARRAY_16( int, costs,[16] ); - int mv_x_min = h->mb.mv_min_fpel[0]; - int mv_y_min = h->mb.mv_min_fpel[1]; - int mv_x_max = h->mb.mv_max_fpel[0]; - int mv_y_max = h->mb.mv_max_fpel[1]; + int mv_x_min = h->mb.mv_limit_fpel[0][0]; + int mv_y_min = h->mb.mv_limit_fpel[0][1]; + int mv_x_max = h->mb.mv_limit_fpel[1][0]; + int mv_y_max = h->mb.mv_limit_fpel[1][1]; +/* Special version of pack to allow shortcuts in CHECK_MVRANGE */ +#define pack16to32_mask2(mx,my) ((mx<<16)|(my&0x7FFF)) + uint32_t mv_min = pack16to32_mask2( -mv_x_min, -mv_y_min ); + uint32_t mv_max = pack16to32_mask2( mv_x_max, mv_y_max )|0x8000; + uint32_t pmv, bpred_mv = 0; -#define CHECK_MVRANGE(mx,my) ( mx >= mv_x_min && mx <= mv_x_max && my >= mv_y_min && my <= mv_y_max ) +#define CHECK_MVRANGE(mx,my) (!(((pack16to32_mask2(mx,my) + mv_min) | (mv_max - pack16to32_mask2(mx,my))) & 0x80004000)) const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0]; const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1]; - bmx = x264_clip3( m->mvp[0], mv_x_min*4, mv_x_max*4 ); - bmy = x264_clip3( m->mvp[1], mv_y_min*4, mv_y_max*4 ); - pmx = ( bmx + 2 ) >> 2; - pmy = ( bmy + 2 ) >> 2; - bcost = COST_MAX; - - /* try extra predictors if provided */ + /* Try extra predictors if provided. If subme >= 3, check subpel predictors, + * otherwise round them to fullpel. */ if( h->mb.i_subpel_refine >= 3 ) { - uint32_t bmv = pack16to32_mask(bmx,bmy); - COST_MV_HPEL( bmx, bmy ); - for( i = 0; i < i_mvc; i++ ) + /* Calculate and check the MVP first */ + int bpred_mx = x264_clip3( m->mvp[0], SPEL(mv_x_min), SPEL(mv_x_max) ); + int bpred_my = x264_clip3( m->mvp[1], SPEL(mv_y_min), SPEL(mv_y_max) ); + pmv = pack16to32_mask( bpred_mx, bpred_my ); + pmx = FPEL( bpred_mx ); + pmy = FPEL( bpred_my ); + + COST_MV_HPEL( bpred_mx, bpred_my, bpred_cost ); + int pmv_cost = bpred_cost; + + if( i_mvc > 0 ) { - if( M32( mvc[i] ) && (bmv - M32( mvc[i] )) ) + /* Clip MV candidates and eliminate those equal to zero and pmv. */ + int valid_mvcs = x264_predictor_clip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv ); + if( valid_mvcs > 0 ) { - int mx = x264_clip3( mvc[i][0], mv_x_min*4, mv_x_max*4 ); - int my = x264_clip3( mvc[i][1], mv_y_min*4, mv_y_max*4 ); - COST_MV_HPEL( mx, my ); + int i = 1, cost; + /* We stuff pmv here to branchlessly pick between pmv and the various + * MV candidates. [0] gets skipped in order to maintain alignment for + * x264_predictor_clip. */ + M32( mvc_temp[1] ) = pmv; + bpred_cost <<= 4; + do + { + int mx = mvc_temp[i+1][0]; + int my = mvc_temp[i+1][1]; + COST_MV_HPEL( mx, my, cost ); + COPY1_IF_LT( bpred_cost, (cost << 4) + i ); + } while( ++i <= valid_mvcs ); + bpred_mx = mvc_temp[(bpred_cost&15)+1][0]; + bpred_my = mvc_temp[(bpred_cost&15)+1][1]; + bpred_cost >>= 4; } } - bmx = ( bpred_mx + 2 ) >> 2; - bmy = ( bpred_my + 2 ) >> 2; - COST_MV( bmx, bmy ); + + /* Round the best predictor back to fullpel and get the cost, since this is where + * we'll be starting the fullpel motion search. */ + bmx = FPEL( bpred_mx ); + bmy = FPEL( bpred_my ); + bpred_mv = pack16to32_mask(bpred_mx, bpred_my); + if( bpred_mv&0x00030003 ) /* Only test if the tested predictor is actually subpel... */ + COST_MV( bmx, bmy ); + else /* Otherwise just copy the cost (we already know it) */ + bcost = bpred_cost; + + /* Test the zero vector if it hasn't been tested yet. */ + if( pmv ) + { + if( bmx|bmy ) COST_MV( 0, 0 ); + } + /* If a subpel mv candidate was better than the zero vector, the previous + * fullpel check won't have gotten it even if the pmv was zero. So handle + * that possibility here. */ + else + { + COPY3_IF_LT( bcost, pmv_cost, bmx, 0, bmy, 0 ); + } } else { - /* check the MVP */ - COST_MV( pmx, pmy ); + /* Calculate and check the fullpel MVP first */ + bmx = pmx = x264_clip3( FPEL(m->mvp[0]), mv_x_min, mv_x_max ); + bmy = pmy = x264_clip3( FPEL(m->mvp[1]), mv_y_min, mv_y_max ); + pmv = pack16to32_mask( bmx, bmy ); + /* Because we are rounding the predicted motion vector to fullpel, there will be * an extra MV cost in 15 out of 16 cases. However, when the predicted MV is * chosen as the best predictor, it is often the case that the subpel search will - * result in a vector at or next to the predicted motion vector. Therefore, it is - * sensible to remove the cost of the MV from the rounded MVP to avoid unfairly - * biasing against use of the predicted motion vector. */ - bcost -= BITS_MVD( pmx, pmy ); - for( i = 0; i < i_mvc; i++ ) + * result in a vector at or next to the predicted motion vector. Therefore, we omit + * the cost of the MV from the rounded MVP to avoid unfairly biasing against use of + * the predicted motion vector. + * + * Disclaimer: this is a post-hoc rationalization for why this hack works. */ + bcost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[bmy*stride+bmx], stride ); + + if( i_mvc > 0 ) { - int mx = (mvc[i][0] + 2) >> 2; - int my = (mvc[i][1] + 2) >> 2; - if( (mx | my) && ((mx-bmx) | (my-bmy)) ) + /* Like in subme>=3, except we also round the candidates to fullpel. */ + int valid_mvcs = x264_predictor_roundclip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv ); + if( valid_mvcs > 0 ) { - mx = x264_clip3( mx, mv_x_min, mv_x_max ); - my = x264_clip3( my, mv_y_min, mv_y_max ); - COST_MV( mx, my ); + int i = 1, cost; + M32( mvc_temp[1] ) = pmv; + bcost <<= 4; + do + { + int mx = mvc_temp[i+1][0]; + int my = mvc_temp[i+1][1]; + cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[my*stride+mx], stride ) + BITS_MVD( mx, my ); + COPY1_IF_LT( bcost, (cost << 4) + i ); + } while( ++i <= valid_mvcs ); + bmx = mvc_temp[(bcost&15)+1][0]; + bmy = mvc_temp[(bcost&15)+1][1]; + bcost >>= 4; } } + + /* Same as above, except the condition is simpler. */ + if( pmv ) + COST_MV( 0, 0 ); } - COST_MV( 0, 0 ); switch( h->mb.i_me_method ) { - case X264_ME_DIA: - /* diamond search, radius 1 */ - i = 0; - bcost <<= 4; - do + case X264_ME_DIA: { - COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs ); - COPY1_IF_LT( bcost, (costs[0]<<4)+1 ); - COPY1_IF_LT( bcost, (costs[1]<<4)+3 ); - COPY1_IF_LT( bcost, (costs[2]<<4)+4 ); - COPY1_IF_LT( bcost, (costs[3]<<4)+12 ); - if( !(bcost&15) ) - break; - bmx -= (bcost<<28)>>30; - bmy -= (bcost<<30)>>30; - bcost &= ~15; - if( !CHECK_MVRANGE(bmx, bmy) ) - break; - } while( ++i < i_me_range ); - bcost >>= 4; - break; - - case X264_ME_HEX: -me_hex2: - /* hexagon search, radius 2 */ -#if 0 - for( i = 0; i < i_me_range/2; i++ ) - { - omx = bmx; omy = bmy; - COST_MV( omx-2, omy ); - COST_MV( omx-1, omy+2 ); - COST_MV( omx+1, omy+2 ); - COST_MV( omx+2, omy ); - COST_MV( omx+1, omy-2 ); - COST_MV( omx-1, omy-2 ); - if( bmx == omx && bmy == omy ) - break; - if( !CHECK_MVRANGE(bmx, bmy) ) - break; + /* diamond search, radius 1 */ + bcost <<= 4; + int i = i_me_range; + do + { + COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs ); + COPY1_IF_LT( bcost, (costs[0]<<4)+1 ); + COPY1_IF_LT( bcost, (costs[1]<<4)+3 ); + COPY1_IF_LT( bcost, (costs[2]<<4)+4 ); + COPY1_IF_LT( bcost, (costs[3]<<4)+12 ); + if( !(bcost&15) ) + break; + bmx -= (bcost<<28)>>30; + bmy -= (bcost<<30)>>30; + bcost &= ~15; + } while( --i && CHECK_MVRANGE(bmx, bmy) ); + bcost >>= 4; + break; } -#else - /* equivalent to the above, but eliminates duplicate candidates */ - - /* hexagon */ - COST_MV_X3_DIR( -2,0, -1, 2, 1, 2, costs ); - COST_MV_X3_DIR( 2,0, 1,-2, -1,-2, costs+3 ); - bcost <<= 3; - COPY1_IF_LT( bcost, (costs[0]<<3)+2 ); - COPY1_IF_LT( bcost, (costs[1]<<3)+3 ); - COPY1_IF_LT( bcost, (costs[2]<<3)+4 ); - COPY1_IF_LT( bcost, (costs[3]<<3)+5 ); - COPY1_IF_LT( bcost, (costs[4]<<3)+6 ); - COPY1_IF_LT( bcost, (costs[5]<<3)+7 ); - - if( bcost&7 ) + + case X264_ME_HEX: { - dir = (bcost&7)-2; - bmx += hex2[dir+1][0]; - bmy += hex2[dir+1][1]; - /* half hexagon, not overlapping the previous iteration */ - for( i = 1; i < i_me_range/2 && CHECK_MVRANGE(bmx, bmy); i++ ) + me_hex2: + /* hexagon search, radius 2 */ + #if 0 + for( int i = 0; i < i_me_range/2; i++ ) { - COST_MV_X3_DIR( hex2[dir+0][0], hex2[dir+0][1], - hex2[dir+1][0], hex2[dir+1][1], - hex2[dir+2][0], hex2[dir+2][1], - costs ); - bcost &= ~7; - COPY1_IF_LT( bcost, (costs[0]<<3)+1 ); - COPY1_IF_LT( bcost, (costs[1]<<3)+2 ); - COPY1_IF_LT( bcost, (costs[2]<<3)+3 ); - if( !(bcost&7) ) + omx = bmx; omy = bmy; + COST_MV( omx-2, omy ); + COST_MV( omx-1, omy+2 ); + COST_MV( omx+1, omy+2 ); + COST_MV( omx+2, omy ); + COST_MV( omx+1, omy-2 ); + COST_MV( omx-1, omy-2 ); + if( bmx == omx && bmy == omy ) break; - dir += (bcost&7)-2; - dir = mod6m1[dir+1]; + if( !CHECK_MVRANGE(bmx, bmy) ) + break; + } + #else + /* equivalent to the above, but eliminates duplicate candidates */ + + /* hexagon */ + COST_MV_X3_DIR( -2,0, -1, 2, 1, 2, costs ); + COST_MV_X3_DIR( 2,0, 1,-2, -1,-2, costs+4 ); /* +4 for 16-byte alignment */ + bcost <<= 3; + COPY1_IF_LT( bcost, (costs[0]<<3)+2 ); + COPY1_IF_LT( bcost, (costs[1]<<3)+3 ); + COPY1_IF_LT( bcost, (costs[2]<<3)+4 ); + COPY1_IF_LT( bcost, (costs[4]<<3)+5 ); + COPY1_IF_LT( bcost, (costs[5]<<3)+6 ); + COPY1_IF_LT( bcost, (costs[6]<<3)+7 ); + + if( bcost&7 ) + { + int dir = (bcost&7)-2; bmx += hex2[dir+1][0]; bmy += hex2[dir+1][1]; + + /* half hexagon, not overlapping the previous iteration */ + for( int i = (i_me_range>>1) - 1; i > 0 && CHECK_MVRANGE(bmx, bmy); i-- ) + { + COST_MV_X3_DIR( hex2[dir+0][0], hex2[dir+0][1], + hex2[dir+1][0], hex2[dir+1][1], + hex2[dir+2][0], hex2[dir+2][1], + costs ); + bcost &= ~7; + COPY1_IF_LT( bcost, (costs[0]<<3)+1 ); + COPY1_IF_LT( bcost, (costs[1]<<3)+2 ); + COPY1_IF_LT( bcost, (costs[2]<<3)+3 ); + if( !(bcost&7) ) + break; + dir += (bcost&7)-2; + dir = mod6m1[dir+1]; + bmx += hex2[dir+1][0]; + bmy += hex2[dir+1][1]; + } } + bcost >>= 3; + #endif + /* square refine */ + bcost <<= 4; + COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs ); + COPY1_IF_LT( bcost, (costs[0]<<4)+1 ); + COPY1_IF_LT( bcost, (costs[1]<<4)+2 ); + COPY1_IF_LT( bcost, (costs[2]<<4)+3 ); + COPY1_IF_LT( bcost, (costs[3]<<4)+4 ); + COST_MV_X4_DIR( -1,-1, -1,1, 1,-1, 1,1, costs ); + COPY1_IF_LT( bcost, (costs[0]<<4)+5 ); + COPY1_IF_LT( bcost, (costs[1]<<4)+6 ); + COPY1_IF_LT( bcost, (costs[2]<<4)+7 ); + COPY1_IF_LT( bcost, (costs[3]<<4)+8 ); + bmx += square1[bcost&15][0]; + bmy += square1[bcost&15][1]; + bcost >>= 4; + break; } - bcost >>= 3; -#endif - /* square refine */ - dir = 0; - COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs ); - COPY2_IF_LT( bcost, costs[0], dir, 1 ); - COPY2_IF_LT( bcost, costs[1], dir, 2 ); - COPY2_IF_LT( bcost, costs[2], dir, 3 ); - COPY2_IF_LT( bcost, costs[3], dir, 4 ); - COST_MV_X4_DIR( -1,-1, -1,1, 1,-1, 1,1, costs ); - COPY2_IF_LT( bcost, costs[0], dir, 5 ); - COPY2_IF_LT( bcost, costs[1], dir, 6 ); - COPY2_IF_LT( bcost, costs[2], dir, 7 ); - COPY2_IF_LT( bcost, costs[3], dir, 8 ); - bmx += square1[dir][0]; - bmy += square1[dir][1]; - break; - case X264_ME_UMH: + case X264_ME_UMH: { /* Uneven-cross Multi-Hexagon-grid Search * as in JM, except with different early termination */ - static const int x264_pixel_size_shift[7] = { 0, 1, 1, 2, 3, 3, 4 }; + static const uint8_t x264_pixel_size_shift[7] = { 0, 1, 1, 2, 3, 3, 4 }; int ucost1, ucost2; int cross_start = 1; @@ -361,7 +435,7 @@ me_hex2: if( pmx | pmy ) DIA1_ITER( 0, 0 ); - if(i_pixel == PIXEL_4x4) + if( i_pixel == PIXEL_4x4 ) goto me_hex2; ucost2 = bcost; @@ -397,7 +471,7 @@ me_hex2: /* range multipliers based on casual inspection of some statistics of * average distance between current predictor and final mv found by ESA. * these have not been tuned much by actual encoding. */ - static const int range_mul[4][4] = + static const uint8_t range_mul[4][4] = { { 3, 3, 4, 4 }, { 3, 4, 4, 4 }, @@ -441,12 +515,12 @@ me_hex2: : mvd < 20*denom ? 1 : mvd < 40*denom ? 2 : 3; - i_me_range = i_me_range * range_mul[mvd_ctx][sad_ctx] / 4; + i_me_range = i_me_range * range_mul[mvd_ctx][sad_ctx] >> 2; } /* FIXME if the above DIA2/OCT2/CROSS found a new mv, it has not updated omx/omy. * we are still centered on the same place as the DIA2. is this desirable? */ - CROSS( cross_start, i_me_range, i_me_range/2 ); + CROSS( cross_start, i_me_range, i_me_range>>1 ); COST_MV_X4( -2,-2, -2,2, 2,-2, 2,2 ); @@ -454,10 +528,10 @@ me_hex2: omx = bmx; omy = bmy; const uint16_t *p_cost_omvx = p_cost_mvx + omx*4; const uint16_t *p_cost_omvy = p_cost_mvy + omy*4; - i = 1; + int i = 1; do { - static const int hex4[16][2] = { + static const int8_t hex4[16][2] = { { 0,-4}, { 0, 4}, {-2,-3}, { 2,-3}, {-4,-2}, { 4,-2}, {-4,-1}, { 4,-1}, {-4, 0}, { 4, 0}, {-4, 1}, { 4, 1}, @@ -467,7 +541,7 @@ me_hex2: if( 4*i > X264_MIN4( mv_x_max-omx, omx-mv_x_min, mv_y_max-omy, omy-mv_y_min ) ) { - for( j = 0; j < 16; j++ ) + for( int j = 0; j < 16; j++ ) { int mx = omx + hex4[j][0]*i; int my = omy + hex4[j][1]*i; @@ -478,7 +552,7 @@ me_hex2: else { int dir = 0; - uint8_t *pix_base = p_fref_w + omx + (omy-4*i)*stride; + pixel *pix_base = p_fref_w + omx + (omy-4*i)*stride; int dy = i*stride; #define SADS(k,x0,y0,x1,y1,x2,y2,x3,y3)\ h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\ @@ -535,14 +609,14 @@ me_hex2: bmy = omy + i*((dir<<28)>>28); } } - } while( ++i <= i_me_range/4 ); + } while( ++i <= i_me_range>>2 ); if( bmy <= mv_y_max && bmy >= mv_y_min && bmx <= mv_x_max && bmx >= mv_x_min ) goto me_hex2; break; } - case X264_ME_ESA: - case X264_ME_TESA: + case X264_ME_ESA: + case X264_ME_TESA: { const int min_x = X264_MAX( bmx - i_me_range, mv_x_min ); const int min_y = X264_MAX( bmy - i_me_range, mv_y_min ); @@ -550,26 +624,22 @@ me_hex2: const int max_y = X264_MIN( bmy + i_me_range, mv_y_max ); /* SEA is fastest in multiples of 4 */ const int width = (max_x - min_x + 3) & ~3; - int my; #if 0 /* plain old exhaustive search */ - int mx; - for( my = min_y; my <= max_y; my++ ) - for( mx = min_x; mx <= max_x; mx++ ) + for( int my = min_y; my <= max_y; my++ ) + for( int mx = min_x; mx < min_x + width; mx++ ) COST_MV( mx, my ); #else /* successive elimination by comparing DC before a full SAD, * because sum(abs(diff)) >= abs(diff(sum)). */ uint16_t *sums_base = m->integral; - /* due to a GCC bug on some platforms (win32?), zero[] may not actually be aligned. - * this is not a problem because it is not used for any SSE instructions. */ - ALIGNED_16( static uint8_t zero[8*FENC_STRIDE] ); + ALIGNED_16( static pixel zero[8*FENC_STRIDE] ) = {0}; ALIGNED_ARRAY_16( int, enc_dc,[4] ); int sad_size = i_pixel <= PIXEL_8x8 ? PIXEL_8x8 : PIXEL_4x4; int delta = x264_pixel_size[sad_size].w; int16_t *xs = h->scratch_buffer; int xn; - uint16_t *cost_fpel_mvx = h->cost_mv_fpel[x264_lambda_tab[h->mb.i_qp]][-m->mvp[0]&3] + (-m->mvp[0]>>2); + uint16_t *cost_fpel_mvx = h->cost_mv_fpel[h->mb.i_qp][-m->mvp[0]&3] + (-m->mvp[0]>>2); h->pixf.sad_x4[sad_size]( zero, p_fenc, p_fenc+delta, p_fenc+delta*FENC_STRIDE, p_fenc+delta+delta*FENC_STRIDE, @@ -584,38 +654,39 @@ me_hex2: if( h->mb.i_me_method == X264_ME_TESA ) { // ADS threshold, then SAD threshold, then keep the best few SADs, then SATD - mvsad_t *mvsads = (mvsad_t *)(xs + ((width+15)&~15)); + mvsad_t *mvsads = (mvsad_t *)(xs + ((width+31)&~31) + 4); int nmvsad = 0, limit; int sad_thresh = i_me_range <= 16 ? 10 : i_me_range <= 24 ? 11 : 12; int bsad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+bmy*stride+bmx, stride ) + BITS_MVD( bmx, bmy ); - for( my = min_y; my <= max_y; my++ ) + for( int my = min_y; my <= max_y; my++ ) { + int i; int ycost = p_cost_mvy[my<<2]; if( bsad <= ycost ) continue; bsad -= ycost; xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta, - cost_fpel_mvx+min_x, xs, width, bsad*17/16 ); - for( i=0; i> 4 ); + for( i = 0; i < xn-2; i += 3 ) { - uint8_t *ref = p_fref_w+min_x+my*stride; - int sads[3]; + pixel *ref = p_fref_w+min_x+my*stride; + ALIGNED_ARRAY_16( int, sads,[4] ); /* padded to [4] for asm */ h->pixf.sad_x3[i_pixel]( p_fenc, ref+xs[i], ref+xs[i+1], ref+xs[i+2], stride, sads ); - for( j=0; j<3; j++ ) + for( int j = 0; j < 3; j++ ) { int sad = sads[j] + cost_fpel_mvx[xs[i+j]]; if( sad < bsad*sad_thresh>>3 ) { COPY1_IF_LT( bsad, sad ); mvsads[nmvsad].sad = sad + ycost; - mvsads[nmvsad].mx = min_x+xs[i+j]; - mvsads[nmvsad].my = my; + mvsads[nmvsad].mv[0] = min_x+xs[i+j]; + mvsads[nmvsad].mv[1] = my; nmvsad++; } } } - for( ; ipixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+mx+my*stride, stride ) @@ -624,63 +695,75 @@ me_hex2: { COPY1_IF_LT( bsad, sad ); mvsads[nmvsad].sad = sad + ycost; - mvsads[nmvsad].mx = mx; - mvsads[nmvsad].my = my; + mvsads[nmvsad].mv[0] = mx; + mvsads[nmvsad].mv[1] = my; nmvsad++; } } bsad += ycost; } - limit = i_me_range / 2; + limit = i_me_range >> 1; sad_thresh = bsad*sad_thresh>>3; while( nmvsad > limit*2 && sad_thresh > bsad ) { + int i = 0; // halve the range if the domain is too large... eh, close enough sad_thresh = (sad_thresh + bsad) >> 1; - for( i=0; i>= 32; +#endif + sad = mvsad; + } else - mvsads[i] = mvsads[j]; - i += mvsads[j].sad <= sad_thresh; + { + sad = mvsads[j].sad; + CP32( mvsads[i].mv, mvsads[j].mv ); + mvsads[i].sad = sad; + } + i += (sad - (sad_thresh+1)) >> 31; } nmvsad = i; } while( nmvsad > limit ) { - int bsad = mvsads[0].sad; int bi = 0; - for( i=1; i mvsads[bi].sad ) + bi = i; nmvsad--; - mvsads[bi] = mvsads[nmvsad]; if( sizeof( mvsad_t ) == sizeof( uint64_t ) ) CP64( &mvsads[bi], &mvsads[nmvsad] ); else mvsads[bi] = mvsads[nmvsad]; } - for( i=0; ipixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta, cost_fpel_mvx+min_x, xs, width, bcost ); - for( i=0; i qpel mv */ - if( bpred_cost < bcost ) + uint32_t bmv = pack16to32_mask(bmx,bmy); + uint32_t bmv_spel = SPELx2(bmv); + if( h->mb.i_subpel_refine < 3 ) { - m->mv[0] = bpred_mx; - m->mv[1] = bpred_my; - m->cost = bpred_cost; + m->cost_mv = p_cost_mvx[bmx<<2] + p_cost_mvy[bmy<<2]; + m->cost = bcost; + /* compute the real cost */ + if( bmv == pmv ) m->cost += m->cost_mv; + M32( m->mv ) = bmv_spel; } else { - m->mv[0] = bmx << 2; - m->mv[1] = bmy << 2; - m->cost = bcost; + M32(m->mv) = bpred_cost < bcost ? bpred_mv : bmv_spel; + m->cost = X264_MIN( bpred_cost, bcost ); } - /* compute the real cost */ - m->cost_mv = p_cost_mvx[ m->mv[0] ] + p_cost_mvy[ m->mv[1] ]; - if( bmx == pmx && bmy == pmy && h->mb.i_subpel_refine < 3 ) - m->cost += m->cost_mv; - /* subpel refine */ if( h->mb.i_subpel_refine >= 2 ) { @@ -723,7 +804,7 @@ void x264_me_refine_qpel( x264_t *h, x264_me_t *m ) int hpel = subpel_iterations[h->mb.i_subpel_refine][0]; int qpel = subpel_iterations[h->mb.i_subpel_refine][1]; - if( m->i_pixel <= PIXEL_8x8 && h->sh.i_type == SLICE_TYPE_P ) + if( m->i_pixel <= PIXEL_8x8 ) m->cost -= m->i_ref_cost; refine_subpel( h, m, hpel, qpel, NULL, 1 ); @@ -736,8 +817,8 @@ void x264_me_refine_qpel_refdupe( x264_t *h, x264_me_t *m, int *p_halfpel_thresh #define COST_MV_SAD( mx, my ) \ { \ - int stride = 16; \ - uint8_t *src = h->mc.get_ref( pix[0], &stride, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \ + intptr_t stride = 16; \ + pixel *src = h->mc.get_ref( pix, &stride, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \ int cost = h->pixf.fpelcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \ + p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \ COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my ); \ @@ -746,33 +827,40 @@ void x264_me_refine_qpel_refdupe( x264_t *h, x264_me_t *m, int *p_halfpel_thresh #define COST_MV_SATD( mx, my, dir ) \ if( b_refine_qpel || (dir^1) != odir ) \ { \ - int stride = 16; \ - uint8_t *src = h->mc.get_ref( pix[0], &stride, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \ + intptr_t stride = 16; \ + pixel *src = h->mc.get_ref( pix, &stride, &m->p_fref[0], m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \ int cost = h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \ + p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \ if( b_chroma_me && cost < bcost ) \ { \ - h->mc.mc_chroma( pix[0], 8, m->p_fref[4], m->i_stride[1], mx, my + mvy_offset, bw/2, bh/2 ); \ - if( m->weight[1].weightfn ) \ - m->weight[1].weightfn[x264_pixel_size[i_pixel].w>>3]( pix[0], 8, pix[0], 8, \ - &m->weight[1], x264_pixel_size[i_pixel].h>>1 ); \ - cost += h->pixf.mbcmp[i_pixel+3]( m->p_fenc[1], FENC_STRIDE, pix[0], 8 ); \ - if( cost < bcost ) \ + if( CHROMA444 ) \ { \ - h->mc.mc_chroma( pix[0], 8, m->p_fref[5], m->i_stride[1], mx, my + mvy_offset, bw/2, bh/2 ); \ - cost += h->pixf.mbcmp[i_pixel+3]( m->p_fenc[2], FENC_STRIDE, pix[0], 8 ); \ - if( m->weight[2].weightfn ) \ - m->weight[2].weightfn[x264_pixel_size[i_pixel].w>>3]( pix[0], 8, pix[0], 8, \ - &m->weight[2], x264_pixel_size[i_pixel].h>>1 ); \ + stride = 16; \ + src = h->mc.get_ref( pix, &stride, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \ + cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[1], FENC_STRIDE, src, stride ); \ + if( cost < bcost ) \ + { \ + stride = 16; \ + src = h->mc.get_ref( pix, &stride, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \ + cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[2], FENC_STRIDE, src, stride ); \ + } \ + } \ + else \ + { \ + h->mc.mc_chroma( pix, pix+8, 16, m->p_fref[4], m->i_stride[1], \ + mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \ + if( m->weight[1].weightfn ) \ + m->weight[1].weightfn[bw>>3]( pix, 16, pix, 16, &m->weight[1], bh>>chroma_v_shift ); \ + cost += h->pixf.mbcmp[chromapix]( m->p_fenc[1], FENC_STRIDE, pix, 16 ); \ + if( cost < bcost ) \ + { \ + if( m->weight[2].weightfn ) \ + m->weight[2].weightfn[bw>>3]( pix+8, 16, pix+8, 16, &m->weight[2], bh>>chroma_v_shift ); \ + cost += h->pixf.mbcmp[chromapix]( m->p_fenc[2], FENC_STRIDE, pix+8, 16 ); \ + } \ } \ } \ - if( cost < bcost ) \ - { \ - bcost = cost; \ - bmx = mx; \ - bmy = my; \ - bdir = dir; \ - } \ + COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, bdir, dir ); \ } static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_iters, int *p_halfpel_thresh, int b_refine_qpel ) @@ -782,48 +870,60 @@ static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_ite const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0]; const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1]; const int i_pixel = m->i_pixel; - const int b_chroma_me = h->mb.b_chroma_me && i_pixel <= PIXEL_8x8; - const int mvy_offset = h->mb.b_interlaced & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0; + const int b_chroma_me = h->mb.b_chroma_me && (i_pixel <= PIXEL_8x8 || CHROMA444); + int chromapix = h->luma2chroma_pixel[i_pixel]; + int chroma_v_shift = CHROMA_V_SHIFT; + int mvy_offset = chroma_v_shift & MB_INTERLACED & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0; - ALIGNED_ARRAY_16( uint8_t, pix,[2],[32*18] ); // really 17x17, but round up for alignment - int omx, omy; - int i; + ALIGNED_ARRAY_N( pixel, pix,[64*18] ); // really 17x17x2, but round up for alignment + ALIGNED_ARRAY_16( int, costs,[4] ); int bmx = m->mv[0]; int bmy = m->mv[1]; int bcost = m->cost; int odir = -1, bdir; - /* try the subpel component of the predicted mv */ - if( hpel_iters && h->mb.i_subpel_refine < 3 ) - { - int mx = x264_clip3( m->mvp[0], h->mb.mv_min_spel[0]+2, h->mb.mv_max_spel[0]-2 ); - int my = x264_clip3( m->mvp[1], h->mb.mv_min_spel[1]+2, h->mb.mv_max_spel[1]-2 ); - if( (mx-bmx)|(my-bmy) ) - COST_MV_SAD( mx, my ); - } - /* halfpel diamond search */ - for( i = hpel_iters; i > 0; i-- ) + if( hpel_iters ) { - int omx = bmx, omy = bmy; - int costs[4]; - int stride = 32; // candidates are either all hpel or all qpel, so one stride is enough - uint8_t *src0, *src1, *src2, *src3; - src0 = h->mc.get_ref( pix[0], &stride, m->p_fref, m->i_stride[0], omx, omy-2, bw, bh+1, &m->weight[0] ); - src2 = h->mc.get_ref( pix[1], &stride, m->p_fref, m->i_stride[0], omx-2, omy, bw+4, bh, &m->weight[0] ); - src1 = src0 + stride; - src3 = src2 + 1; - h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], src0, src1, src2, src3, stride, costs ); - COPY2_IF_LT( bcost, costs[0] + p_cost_mvx[omx ] + p_cost_mvy[omy-2], bmy, omy-2 ); - COPY2_IF_LT( bcost, costs[1] + p_cost_mvx[omx ] + p_cost_mvy[omy+2], bmy, omy+2 ); - COPY3_IF_LT( bcost, costs[2] + p_cost_mvx[omx-2] + p_cost_mvy[omy ], bmx, omx-2, bmy, omy ); - COPY3_IF_LT( bcost, costs[3] + p_cost_mvx[omx+2] + p_cost_mvy[omy ], bmx, omx+2, bmy, omy ); - if( (bmx == omx) & (bmy == omy) ) - break; + /* try the subpel component of the predicted mv */ + if( h->mb.i_subpel_refine < 3 ) + { + int mx = x264_clip3( m->mvp[0], h->mb.mv_min_spel[0]+2, h->mb.mv_max_spel[0]-2 ); + int my = x264_clip3( m->mvp[1], h->mb.mv_min_spel[1]+2, h->mb.mv_max_spel[1]-2 ); + if( (mx-bmx)|(my-bmy) ) + COST_MV_SAD( mx, my ); + } + + bcost <<= 6; + for( int i = hpel_iters; i > 0; i-- ) + { + int omx = bmx, omy = bmy; + intptr_t stride = 64; // candidates are either all hpel or all qpel, so one stride is enough + pixel *src0, *src1, *src2, *src3; + src0 = h->mc.get_ref( pix, &stride, m->p_fref, m->i_stride[0], omx, omy-2, bw, bh+1, &m->weight[0] ); + src2 = h->mc.get_ref( pix+32, &stride, m->p_fref, m->i_stride[0], omx-2, omy, bw+4, bh, &m->weight[0] ); + src1 = src0 + stride; + src3 = src2 + 1; + h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], src0, src1, src2, src3, stride, costs ); + costs[0] += p_cost_mvx[omx ] + p_cost_mvy[omy-2]; + costs[1] += p_cost_mvx[omx ] + p_cost_mvy[omy+2]; + costs[2] += p_cost_mvx[omx-2] + p_cost_mvy[omy ]; + costs[3] += p_cost_mvx[omx+2] + p_cost_mvy[omy ]; + COPY1_IF_LT( bcost, (costs[0]<<6)+2 ); + COPY1_IF_LT( bcost, (costs[1]<<6)+6 ); + COPY1_IF_LT( bcost, (costs[2]<<6)+16 ); + COPY1_IF_LT( bcost, (costs[3]<<6)+48 ); + if( !(bcost&63) ) + break; + bmx -= (bcost<<26)>>29; + bmy -= (bcost<<29)>>29; + bcost &= ~63; + } + bcost >>= 6; } - if( !b_refine_qpel ) + if( !b_refine_qpel && (h->pixf.mbcmp_unaligned[0] != h->pixf.fpelcmp[0] || b_chroma_me) ) { bcost = COST_MAX; COST_MV_SATD( bmx, bmy, -1 ); @@ -845,44 +945,80 @@ static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_ite } /* quarterpel diamond search */ - bdir = -1; - for( i = qpel_iters; i > 0; i-- ) + if( h->mb.i_subpel_refine != 1 ) { - if( bmy <= h->mb.mv_min_spel[1] || bmy >= h->mb.mv_max_spel[1] || bmx <= h->mb.mv_min_spel[0] || bmx >= h->mb.mv_max_spel[0] ) - break; - odir = bdir; - omx = bmx; - omy = bmy; - COST_MV_SATD( omx, omy - 1, 0 ); - COST_MV_SATD( omx, omy + 1, 1 ); - COST_MV_SATD( omx - 1, omy, 2 ); - COST_MV_SATD( omx + 1, omy, 3 ); - if( bmx == omx && bmy == omy ) - break; + bdir = -1; + for( int i = qpel_iters; i > 0; i-- ) + { + if( bmy <= h->mb.mv_min_spel[1] || bmy >= h->mb.mv_max_spel[1] || bmx <= h->mb.mv_min_spel[0] || bmx >= h->mb.mv_max_spel[0] ) + break; + odir = bdir; + int omx = bmx, omy = bmy; + COST_MV_SATD( omx, omy - 1, 0 ); + COST_MV_SATD( omx, omy + 1, 1 ); + COST_MV_SATD( omx - 1, omy, 2 ); + COST_MV_SATD( omx + 1, omy, 3 ); + if( (bmx == omx) & (bmy == omy) ) + break; + } + } + /* Special simplified case for subme=1 */ + else if( bmy > h->mb.mv_min_spel[1] && bmy < h->mb.mv_max_spel[1] && bmx > h->mb.mv_min_spel[0] && bmx < h->mb.mv_max_spel[0] ) + { + int omx = bmx, omy = bmy; + /* We have to use mc_luma because all strides must be the same to use fpelcmp_x4 */ + h->mc.mc_luma( pix , 64, m->p_fref, m->i_stride[0], omx, omy-1, bw, bh, &m->weight[0] ); + h->mc.mc_luma( pix+16, 64, m->p_fref, m->i_stride[0], omx, omy+1, bw, bh, &m->weight[0] ); + h->mc.mc_luma( pix+32, 64, m->p_fref, m->i_stride[0], omx-1, omy, bw, bh, &m->weight[0] ); + h->mc.mc_luma( pix+48, 64, m->p_fref, m->i_stride[0], omx+1, omy, bw, bh, &m->weight[0] ); + h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], pix, pix+16, pix+32, pix+48, 64, costs ); + costs[0] += p_cost_mvx[omx ] + p_cost_mvy[omy-1]; + costs[1] += p_cost_mvx[omx ] + p_cost_mvy[omy+1]; + costs[2] += p_cost_mvx[omx-1] + p_cost_mvy[omy ]; + costs[3] += p_cost_mvx[omx+1] + p_cost_mvy[omy ]; + bcost <<= 4; + COPY1_IF_LT( bcost, (costs[0]<<4)+1 ); + COPY1_IF_LT( bcost, (costs[1]<<4)+3 ); + COPY1_IF_LT( bcost, (costs[2]<<4)+4 ); + COPY1_IF_LT( bcost, (costs[3]<<4)+12 ); + bmx -= (bcost<<28)>>30; + bmy -= (bcost<<30)>>30; + bcost >>= 4; } m->cost = bcost; m->mv[0] = bmx; m->mv[1] = bmy; - m->cost_mv = p_cost_mvx[ bmx ] + p_cost_mvy[ bmy ]; + m->cost_mv = p_cost_mvx[bmx] + p_cost_mvy[bmy]; } -#define BIME_CACHE( dx, dy, list ) \ -{ \ +#define BIME_CACHE( dx, dy, list )\ +{\ x264_me_t *m = m##list;\ - int i = 4 + 3*dx + dy; \ - int mvx = om##list##x+dx;\ - int mvy = om##list##y+dy;\ - stride##list[i] = bw;\ - src##list[i] = h->mc.get_ref( pixy_buf[list][i], &stride##list[i], m->p_fref, m->i_stride[0], mvx, mvy, bw, bh, weight_none ); \ + int i = 4 + 3*dx + dy;\ + int mvx = bm##list##x+dx;\ + int mvy = bm##list##y+dy;\ + stride[0][list][i] = bw;\ + src[0][list][i] = h->mc.get_ref( pixy_buf[list][i], &stride[0][list][i], &m->p_fref[0],\ + m->i_stride[0], mvx, mvy, bw, bh, x264_weight_none );\ if( rd )\ {\ - h->mc.mc_chroma( pixu_buf[list][i], 8, m->p_fref[4], m->i_stride[1], mvx, mvy + mv##list##y_offset, bw>>1, bh>>1 );\ - h->mc.mc_chroma( pixv_buf[list][i], 8, m->p_fref[5], m->i_stride[1], mvx, mvy + mv##list##y_offset, bw>>1, bh>>1 );\ + if( CHROMA444 )\ + {\ + stride[1][list][i] = bw;\ + src[1][list][i] = h->mc.get_ref( pixu_buf[list][i], &stride[1][list][i], &m->p_fref[4],\ + m->i_stride[1], mvx, mvy, bw, bh, x264_weight_none );\ + stride[2][list][i] = bw;\ + src[2][list][i] = h->mc.get_ref( pixv_buf[list][i], &stride[2][list][i], &m->p_fref[8],\ + m->i_stride[2], mvx, mvy, bw, bh, x264_weight_none );\ + }\ + else\ + h->mc.mc_chroma( pixu_buf[list][i], pixv_buf[list][i], 8, m->p_fref[4], m->i_stride[1],\ + mvx, 2*(mvy+mv##list##y_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift );\ }\ } -#define SATD_THRESH 17/16 +#define SATD_THRESH(cost) (cost+(cost>>4)) /* Don't unroll the BIME_CACHE loop. I couldn't find any way to force this * other than making its iteration count not a compile-time constant. */ @@ -890,45 +1026,43 @@ int x264_iter_kludge = 0; static void ALWAYS_INLINE x264_me_refine_bidir( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight, int i8, int i_lambda2, int rd ) { - static const int pixel_mv_offs[] = { 0, 4, 4*8, 0 }; - int16_t *cache0_mv = h->mb.cache.mv[0][x264_scan8[i8*4]]; - int16_t *cache0_mv2 = cache0_mv + pixel_mv_offs[m0->i_pixel]; - int16_t *cache1_mv = h->mb.cache.mv[1][x264_scan8[i8*4]]; - int16_t *cache1_mv2 = cache1_mv + pixel_mv_offs[m0->i_pixel]; + int x = i8&1; + int y = i8>>1; + int s8 = X264_SCAN8_0 + 2*x + 16*y; + int16_t *cache0_mv = h->mb.cache.mv[0][s8]; + int16_t *cache1_mv = h->mb.cache.mv[1][s8]; const int i_pixel = m0->i_pixel; const int bw = x264_pixel_size[i_pixel].w; const int bh = x264_pixel_size[i_pixel].h; - const uint16_t *p_cost_m0x = m0->p_cost_mv - m0->mvp[0]; - const uint16_t *p_cost_m0y = m0->p_cost_mv - m0->mvp[1]; - const uint16_t *p_cost_m1x = m1->p_cost_mv - m1->mvp[0]; - const uint16_t *p_cost_m1y = m1->p_cost_mv - m1->mvp[1]; - ALIGNED_ARRAY_16( uint8_t, pixy_buf,[2],[9][16*16] ); - ALIGNED_8( uint8_t pixu_buf[2][9][8*8] ); - ALIGNED_8( uint8_t pixv_buf[2][9][8*8] ); - uint8_t *src0[9]; - uint8_t *src1[9]; - uint8_t *pix = &h->mb.pic.p_fdec[0][(i8>>1)*8*FDEC_STRIDE+(i8&1)*8]; - uint8_t *pixu = &h->mb.pic.p_fdec[1][(i8>>1)*4*FDEC_STRIDE+(i8&1)*4]; - uint8_t *pixv = &h->mb.pic.p_fdec[2][(i8>>1)*4*FDEC_STRIDE+(i8&1)*4]; - const int ref0 = h->mb.cache.ref[0][x264_scan8[i8*4]]; - const int ref1 = h->mb.cache.ref[1][x264_scan8[i8*4]]; - const int mv0y_offset = h->mb.b_interlaced & ref0 ? (h->mb.i_mb_y & 1)*4 - 2 : 0; - const int mv1y_offset = h->mb.b_interlaced & ref1 ? (h->mb.i_mb_y & 1)*4 - 2 : 0; - int stride0[9]; - int stride1[9]; - int bm0x = m0->mv[0], om0x = bm0x; - int bm0y = m0->mv[1], om0y = bm0y; - int bm1x = m1->mv[0], om1x = bm1x; - int bm1y = m1->mv[1], om1y = bm1y; + ALIGNED_ARRAY_N( pixel, pixy_buf,[2],[9][16*16] ); + ALIGNED_ARRAY_N( pixel, pixu_buf,[2],[9][16*16] ); + ALIGNED_ARRAY_N( pixel, pixv_buf,[2],[9][16*16] ); + pixel *src[3][2][9]; + int chromapix = h->luma2chroma_pixel[i_pixel]; + int chroma_v_shift = CHROMA_V_SHIFT; + int chroma_x = (8 >> CHROMA_H_SHIFT) * x; + int chroma_y = (8 >> chroma_v_shift) * y; + pixel *pix = &h->mb.pic.p_fdec[0][8*x + 8*y*FDEC_STRIDE]; + pixel *pixu = &h->mb.pic.p_fdec[1][chroma_x + chroma_y*FDEC_STRIDE]; + pixel *pixv = &h->mb.pic.p_fdec[2][chroma_x + chroma_y*FDEC_STRIDE]; + int ref0 = h->mb.cache.ref[0][s8]; + int ref1 = h->mb.cache.ref[1][s8]; + const int mv0y_offset = chroma_v_shift & MB_INTERLACED & ref0 ? (h->mb.i_mb_y & 1)*4 - 2 : 0; + const int mv1y_offset = chroma_v_shift & MB_INTERLACED & ref1 ? (h->mb.i_mb_y & 1)*4 - 2 : 0; + intptr_t stride[3][2][9]; + int bm0x = m0->mv[0]; + int bm0y = m0->mv[1]; + int bm1x = m1->mv[0]; + int bm1y = m1->mv[1]; int bcost = COST_MAX; - int pass = 0; - int j; int mc_list0 = 1, mc_list1 = 1; uint64_t bcostrd = COST_MAX64; + uint16_t amvd; /* each byte of visited represents 8 possible m1y positions, so a 4D array isn't needed */ - ALIGNED_ARRAY_16( uint8_t, visited,[8],[8][8] ); + ALIGNED_ARRAY_N( uint8_t, visited,[8],[8][8] ); /* all permutations of an offset in up to 2 of the dimensions */ - static const int8_t dia4d[33][4] = { + ALIGNED_4( static const int8_t dia4d[33][4] ) = + { {0,0,0,0}, {0,0,0,1}, {0,0,0,-1}, {0,0,1,0}, {0,0,-1,0}, {0,1,0,0}, {0,-1,0,0}, {1,0,0,0}, {-1,0,0,0}, @@ -946,65 +1080,95 @@ static void ALWAYS_INLINE x264_me_refine_bidir( x264_t *h, x264_me_t *m0, x264_m bm0x > h->mb.mv_max_spel[0] - 8 || bm1x > h->mb.mv_max_spel[0] - 8 ) return; + if( rd && m0->i_pixel != PIXEL_16x16 && i8 != 0 ) + { + x264_mb_predict_mv( h, 0, i8<<2, bw>>2, m0->mvp ); + x264_mb_predict_mv( h, 1, i8<<2, bw>>2, m1->mvp ); + } + + const uint16_t *p_cost_m0x = m0->p_cost_mv - m0->mvp[0]; + const uint16_t *p_cost_m0y = m0->p_cost_mv - m0->mvp[1]; + const uint16_t *p_cost_m1x = m1->p_cost_mv - m1->mvp[0]; + const uint16_t *p_cost_m1y = m1->p_cost_mv - m1->mvp[1]; + h->mc.memzero_aligned( visited, sizeof(uint8_t[8][8][8]) ); - for( pass = 0; pass < 8; pass++ ) + for( int pass = 0; pass < 8; pass++ ) { + int bestj = 0; /* check all mv pairs that differ in at most 2 components from the current mvs. */ /* doesn't do chroma ME. this probably doesn't matter, as the gains * from bidir ME are the same with and without chroma ME. */ if( mc_list0 ) - for( j = x264_iter_kludge; j < 9; j++ ) + for( int j = x264_iter_kludge; j < 9; j++ ) BIME_CACHE( square1[j][0], square1[j][1], 0 ); if( mc_list1 ) - for( j = x264_iter_kludge; j < 9; j++ ) + for( int j = x264_iter_kludge; j < 9; j++ ) BIME_CACHE( square1[j][0], square1[j][1], 1 ); - for( j = !!pass; j < 33; j++ ) + for( int j = !!pass; j < 33; j++ ) { - int m0x = dia4d[j][0] + om0x; - int m0y = dia4d[j][1] + om0y; - int m1x = dia4d[j][2] + om1x; - int m1y = dia4d[j][3] + om1y; + int m0x = dia4d[j][0] + bm0x; + int m0y = dia4d[j][1] + bm0y; + int m1x = dia4d[j][2] + bm1x; + int m1y = dia4d[j][3] + bm1y; if( !pass || !((visited[(m0x)&7][(m0y)&7][(m1x)&7] & (1<<((m1y)&7)))) ) { - int i0 = 4 + 3*(m0x-om0x) + (m0y-om0y); - int i1 = 4 + 3*(m1x-om1x) + (m1y-om1y); + int i0 = 4 + 3*dia4d[j][0] + dia4d[j][1]; + int i1 = 4 + 3*dia4d[j][2] + dia4d[j][3]; visited[(m0x)&7][(m0y)&7][(m1x)&7] |= (1<<((m1y)&7)); - h->mc.avg[i_pixel]( pix, FDEC_STRIDE, src0[i0], stride0[i0], src1[i1], stride1[i1], i_weight ); + h->mc.avg[i_pixel]( pix, FDEC_STRIDE, src[0][0][i0], stride[0][0][i0], src[0][1][i1], stride[0][1][i1], i_weight ); int cost = h->pixf.mbcmp[i_pixel]( m0->p_fenc[0], FENC_STRIDE, pix, FDEC_STRIDE ) + p_cost_m0x[m0x] + p_cost_m0y[m0y] + p_cost_m1x[m1x] + p_cost_m1y[m1y]; if( rd ) { - if( cost < bcost * SATD_THRESH ) + if( cost < SATD_THRESH(bcost) ) { bcost = X264_MIN( cost, bcost ); - M32( cache0_mv ) = pack16to32_mask(m0x,m0y); - M32( cache0_mv2 ) = pack16to32_mask(m0x,m0y); - M32( cache1_mv ) = pack16to32_mask(m1x,m1y); - M32( cache1_mv2 ) = pack16to32_mask(m1x,m1y); - h->mc.avg[i_pixel+3]( pixu, FDEC_STRIDE, pixu_buf[0][i0], 8, pixu_buf[1][i1], 8, i_weight ); - h->mc.avg[i_pixel+3]( pixv, FDEC_STRIDE, pixv_buf[0][i0], 8, pixv_buf[1][i1], 8, i_weight ); + M32( cache0_mv ) = pack16to32_mask(m0x,m0y); + M32( cache1_mv ) = pack16to32_mask(m1x,m1y); + if( CHROMA444 ) + { + h->mc.avg[i_pixel]( pixu, FDEC_STRIDE, src[1][0][i0], stride[1][0][i0], src[1][1][i1], stride[1][1][i1], i_weight ); + h->mc.avg[i_pixel]( pixv, FDEC_STRIDE, src[2][0][i0], stride[2][0][i0], src[2][1][i1], stride[2][1][i1], i_weight ); + } + else + { + h->mc.avg[chromapix]( pixu, FDEC_STRIDE, pixu_buf[0][i0], 8, pixu_buf[1][i1], 8, i_weight ); + h->mc.avg[chromapix]( pixv, FDEC_STRIDE, pixv_buf[0][i0], 8, pixv_buf[1][i1], 8, i_weight ); + } uint64_t costrd = x264_rd_cost_part( h, i_lambda2, i8*4, m0->i_pixel ); - COPY5_IF_LT( bcostrd, costrd, bm0x, m0x, bm0y, m0y, bm1x, m1x, bm1y, m1y ); + COPY2_IF_LT( bcostrd, costrd, bestj, j ); } } else - COPY5_IF_LT( bcost, cost, bm0x, m0x, bm0y, m0y, bm1x, m1x, bm1y, m1y ); + COPY2_IF_LT( bcost, cost, bestj, j ); } } - mc_list0 = (om0x-bm0x)|(om0y-bm0y); - mc_list1 = (om1x-bm1x)|(om1y-bm1y); - if( !mc_list0 && !mc_list1 ) + if( !bestj ) break; - om0x = bm0x; - om0y = bm0y; - om1x = bm1x; - om1y = bm1y; + bm0x += dia4d[bestj][0]; + bm0y += dia4d[bestj][1]; + bm1x += dia4d[bestj][2]; + bm1y += dia4d[bestj][3]; + + mc_list0 = M16( &dia4d[bestj][0] ); + mc_list1 = M16( &dia4d[bestj][2] ); + } + + if( rd ) + { + x264_macroblock_cache_mv ( h, 2*x, 2*y, bw>>2, bh>>2, 0, pack16to32_mask(bm0x, bm0y) ); + amvd = pack8to16( X264_MIN(abs(bm0x - m0->mvp[0]),33), X264_MIN(abs(bm0y - m0->mvp[1]),33) ); + x264_macroblock_cache_mvd( h, 2*x, 2*y, bw>>2, bh>>2, 0, amvd ); + + x264_macroblock_cache_mv ( h, 2*x, 2*y, bw>>2, bh>>2, 1, pack16to32_mask(bm1x, bm1y) ); + amvd = pack8to16( X264_MIN(abs(bm1x - m1->mvp[0]),33), X264_MIN(abs(bm1y - m1->mvp[1]),33) ); + x264_macroblock_cache_mvd( h, 2*x, 2*y, bw>>2, bh>>2, 1, amvd ); } m0->mv[0] = bm0x; @@ -1043,16 +1207,24 @@ void x264_me_refine_bidir_rd( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_wei #define COST_MV_RD( mx, my, satd, do_dir, mdir ) \ { \ - if( satd <= bsatd * SATD_THRESH ) \ + if( satd <= SATD_THRESH(bsatd) ) \ { \ uint64_t cost; \ - M32( cache_mv ) = pack16to32_mask(mx,my); \ - M32( cache_mv2 ) = pack16to32_mask(mx,my); \ - if( m->i_pixel <= PIXEL_8x8 )\ - {\ - h->mc.mc_chroma( pixu, FDEC_STRIDE, m->p_fref[4], m->i_stride[1], mx, my + mvy_offset, bw>>1, bh>>1 );\ - h->mc.mc_chroma( pixv, FDEC_STRIDE, m->p_fref[5], m->i_stride[1], mx, my + mvy_offset, bw>>1, bh>>1 );\ - }\ + M32( cache_mv ) = pack16to32_mask(mx,my); \ + if( CHROMA444 ) \ + { \ + h->mc.mc_luma( pixu, FDEC_STRIDE, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \ + h->mc.mc_luma( pixv, FDEC_STRIDE, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \ + } \ + else if( m->i_pixel <= PIXEL_8x8 ) \ + { \ + h->mc.mc_chroma( pixu, pixv, FDEC_STRIDE, m->p_fref[4], m->i_stride[1], \ + mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \ + if( m->weight[1].weightfn ) \ + m->weight[1].weightfn[bw>>3]( pixu, FDEC_STRIDE, pixu, FDEC_STRIDE, &m->weight[1], bh>>chroma_v_shift ); \ + if( m->weight[2].weightfn ) \ + m->weight[2].weightfn[bw>>3]( pixv, FDEC_STRIDE, pixv, FDEC_STRIDE, &m->weight[2], bh>>chroma_v_shift ); \ + } \ cost = x264_rd_cost_part( h, i_lambda2, i4, m->i_pixel ); \ COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, dir, do_dir?mdir:dir ); \ } \ @@ -1060,28 +1232,35 @@ void x264_me_refine_bidir_rd( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_wei void x264_me_refine_qpel_rd( x264_t *h, x264_me_t *m, int i_lambda2, int i4, int i_list ) { - // don't have to fill the whole mv cache rectangle - static const int pixel_mv_offs[] = { 0, 4, 4*8, 0, 2, 2*8, 0 }; int16_t *cache_mv = h->mb.cache.mv[i_list][x264_scan8[i4]]; - int16_t *cache_mv2 = cache_mv + pixel_mv_offs[m->i_pixel]; const uint16_t *p_cost_mvx, *p_cost_mvy; const int bw = x264_pixel_size[m->i_pixel].w; const int bh = x264_pixel_size[m->i_pixel].h; const int i_pixel = m->i_pixel; - const int mvy_offset = h->mb.b_interlaced & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0; + int chroma_v_shift = CHROMA_V_SHIFT; + int mvy_offset = chroma_v_shift & MB_INTERLACED & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0; uint64_t bcost = COST_MAX64; int bmx = m->mv[0]; int bmy = m->mv[1]; - int omx, omy, pmx, pmy, i, j; - unsigned bsatd; - int satd; + int omx, omy, pmx, pmy; + int satd, bsatd; int dir = -2; int i8 = i4>>2; + uint16_t amvd; - uint8_t *pix = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[i4]]; - uint8_t *pixu = &h->mb.pic.p_fdec[1][(i8>>1)*4*FDEC_STRIDE+(i8&1)*4]; - uint8_t *pixv = &h->mb.pic.p_fdec[2][(i8>>1)*4*FDEC_STRIDE+(i8&1)*4]; + pixel *pix = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[i4]]; + pixel *pixu, *pixv; + if( CHROMA444 ) + { + pixu = &h->mb.pic.p_fdec[1][block_idx_xy_fdec[i4]]; + pixv = &h->mb.pic.p_fdec[2][block_idx_xy_fdec[i4]]; + } + else + { + pixu = &h->mb.pic.p_fdec[1][(i8>>1)*(8*FDEC_STRIDE>>chroma_v_shift)+(i8&1)*4]; + pixv = &h->mb.pic.p_fdec[2][(i8>>1)*(8*FDEC_STRIDE>>chroma_v_shift)+(i8&1)*4]; + } h->mb.b_skip_mc = 1; @@ -1124,7 +1303,7 @@ void x264_me_refine_qpel_rd( x264_t *h, x264_me_t *m, int i_lambda2, int i4, int dir = -2; omx = bmx; omy = bmy; - for( j=0; j<6; j++ ) + for( int j = 0; j < 6; j++ ) { COST_MV_SATD( omx + hex2[j+1][0], omy + hex2[j+1][1], satd, 1 ); COST_MV_RD ( omx + hex2[j+1][0], omy + hex2[j+1][1], satd, 1, j ); @@ -1133,7 +1312,7 @@ void x264_me_refine_qpel_rd( x264_t *h, x264_me_t *m, int i_lambda2, int i4, int if( dir != -2 ) { /* half hexagon, not overlapping the previous iteration */ - for( i = 1; i < 10; i++ ) + for( int i = 1; i < 10; i++ ) { const int odir = mod6m1[dir+1]; if( bmy < h->mb.mv_min_spel[1] + 3 || @@ -1142,7 +1321,7 @@ void x264_me_refine_qpel_rd( x264_t *h, x264_me_t *m, int i_lambda2, int i4, int dir = -2; omx = bmx; omy = bmy; - for( j=0; j<3; j++ ) + for( int j = 0; j < 3; j++ ) { COST_MV_SATD( omx + hex2[odir+j][0], omy + hex2[odir+j][1], satd, 1 ); COST_MV_RD ( omx + hex2[odir+j][0], omy + hex2[odir+j][1], satd, 1, odir-1+j ); @@ -1155,7 +1334,7 @@ void x264_me_refine_qpel_rd( x264_t *h, x264_me_t *m, int i_lambda2, int i4, int /* square refine, same pattern as ME HEX. */ omx = bmx; omy = bmy; - for( i=0; i<8; i++ ) + for( int i = 0; i < 8; i++ ) { COST_MV_SATD( omx + square1[i+1][0], omy + square1[i+1][1], satd, 1 ); COST_MV_RD ( omx + square1[i+1][0], omy + square1[i+1][1], satd, 0, 0 ); @@ -1165,6 +1344,7 @@ void x264_me_refine_qpel_rd( x264_t *h, x264_me_t *m, int i_lambda2, int i4, int m->mv[0] = bmx; m->mv[1] = bmy; x264_macroblock_cache_mv ( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, pack16to32_mask(bmx, bmy) ); - x264_macroblock_cache_mvd( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, pack16to32_mask(bmx - m->mvp[0], bmy - m->mvp[1]) ); + amvd = pack8to16( X264_MIN(abs(bmx - m->mvp[0]),66), X264_MIN(abs(bmy - m->mvp[1]),66) ); + x264_macroblock_cache_mvd( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, amvd ); h->mb.b_skip_mc = 0; }