X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=encoder%2Fratecontrol.c;h=7054c35ad5dc10b9788e543b79a9f5cf90534e7d;hb=040663db98c09eb819364d77059450166c294950;hp=e10de4c2dfcb51148f15254faaa5828ad21199c2;hpb=08e19ed8f28e5bb1fdd951eb2bab04c0248f9af1;p=x264 diff --git a/encoder/ratecontrol.c b/encoder/ratecontrol.c index e10de4c2..7054c35a 100644 --- a/encoder/ratecontrol.c +++ b/encoder/ratecontrol.c @@ -1,11 +1,12 @@ /***************************************************-*- coding: iso-8859-1 -*- * ratecontrol.c: h264 encoder library (Rate Control) ***************************************************************************** - * Copyright (C) 2005 x264 project - * $Id: ratecontrol.c,v 1.1 2004/06/03 19:27:08 fenrir Exp $ + * Copyright (C) 2005-2008 x264 project * * Authors: Loren Merritt * Michael Niedermayer + * Gabriel Bouvigne + * Fiona Glaser * Måns Rullgård * * This program is free software; you can redistribute it and/or modify @@ -20,32 +21,17 @@ * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA. + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. *****************************************************************************/ #define _ISOC99_SOURCE #undef NDEBUG // always check asserts, the speed effect is far too small to disable them -#include -#include -#include #include -#include -#include #include "common/common.h" #include "common/cpu.h" #include "ratecontrol.h" - -#if defined(SYS_FREEBSD) || defined(SYS_BEOS) || defined(SYS_NETBSD) -#define exp2f(x) powf( 2, (x) ) -#endif -#if defined(_MSC_VER) || defined(SYS_SunOS) -#define exp2f(x) pow( 2, (x) ) -#define sqrtf sqrt -#endif -#ifdef WIN32 // POSIX says that rename() removes the destination, but win32 doesn't. -#define rename(src,dst) (unlink(dst), rename(src,dst)) -#endif +#include "me.h" typedef struct { @@ -53,16 +39,19 @@ typedef struct int kept_as_ref; float qscale; int mv_bits; - int i_tex_bits; - int p_tex_bits; + int tex_bits; int misc_bits; - uint64_t expected_bits; + uint64_t expected_bits; /*total expected bits up to the current frame (current one excluded)*/ + double expected_vbv; float new_qscale; int new_qp; int i_count; int p_count; int s_count; float blurred_complexity; + char direct_mode; + int refcount[16]; + int refs; } ratecontrol_entry_t; typedef struct @@ -70,6 +59,7 @@ typedef struct double coeff; double count; double decay; + double offset; } predictor_t; struct x264_ratecontrol_t @@ -77,39 +67,53 @@ struct x264_ratecontrol_t /* constants */ int b_abr; int b_2pass; + int b_vbv; + int b_vbv_min_rate; double fps; double bitrate; double rate_tolerance; + double qcompress; int nmb; /* number of macroblocks in a frame */ int qp_constant[5]; /* current frame */ ratecontrol_entry_t *rce; int qp; /* qp for current frame */ - float qpa; /* average of macroblocks' qp (same as qp if no adaptive quant) */ - int slice_type; + int qpm; /* qp for current macroblock */ + float f_qpm; /* qp for current macroblock: precise float for AQ */ + float qpa_rc; /* average of macroblocks' qp before aq */ + float qpa_aq; /* average of macroblocks' qp after aq */ + float qp_novbv; /* QP for the current frame if 1-pass VBV was disabled. */ int qp_force; /* VBV stuff */ double buffer_size; - double buffer_fill; + double buffer_fill_final; /* real buffer as of the last finished frame */ + double buffer_fill; /* planned buffer, if all in-progress frames hit their bit budget */ double buffer_rate; /* # of bits added to buffer_fill after each frame */ - predictor_t pred[5]; /* predict frame size from satd */ + predictor_t *pred; /* predict frame size from satd */ + int single_frame_vbv; /* ABR stuff */ int last_satd; double last_rceq; double cplxr_sum; /* sum of bits*qscale/rceq */ - double expected_bits_sum; /* sum of qscale2bits after rceq, ratefactor, and overflow */ + double expected_bits_sum; /* sum of qscale2bits after rceq, ratefactor, and overflow, only includes finished frames */ double wanted_bits_window; /* target bitrate * window */ double cbr_decay; double short_term_cplxsum; double short_term_cplxcount; double rate_factor_constant; + double ip_offset; + double pb_offset; /* 2pass stuff */ FILE *p_stat_file_out; char *psz_stat_file_tmpname; + FILE *p_mbtree_stat_file_out; + char *psz_mbtree_stat_file_tmpname; + char *psz_mbtree_stat_file_name; + FILE *p_mbtree_stat_file_in; int num_entries; /* number of ratecontrol_entry_ts */ ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */ @@ -122,21 +126,30 @@ struct x264_ratecontrol_t double lmin[5]; /* min qscale by frame type */ double lmax[5]; double lstep; /* max change (multiply) in qscale per frame */ - double i_cplx_sum[5]; /* estimated total texture bits in intra MBs at qscale=1 */ - double p_cplx_sum[5]; - double mv_bits_sum[5]; - int frame_count[5]; /* number of frames of each type */ + uint16_t *qp_buffer; /* Global buffer for converting MB-tree quantizer data. */ + + /* MBRC stuff */ + double frame_size_estimated; + double frame_size_planned; + predictor_t (*row_pred)[2]; + predictor_t row_preds[5][2]; + predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */ + int bframes; /* # consecutive B-frames before this P-frame */ + int bframe_bits; /* total cost of those frames */ int i_zones; x264_zone_t *zones; + x264_zone_t *prev_zone; }; static int parse_zones( x264_t *h ); static int init_pass2(x264_t *); -static float rate_estimate_qscale( x264_t *h, int pict_type ); +static float rate_estimate_qscale( x264_t *h ); static void update_vbv( x264_t *h, int bits ); -int x264_rc_analyse_slice( x264_t *h ); +static void update_vbv_plan( x264_t *h, int overhead ); +static double predict_size( predictor_t *p, double q, double var ); +static void update_predictor( predictor_t *p, double q, double var, double bits ); /* Terminology: * qp = h.264's quantizer @@ -159,114 +172,403 @@ static inline double qscale2bits(ratecontrol_entry_t *rce, double qscale) { if(qscale<0.1) qscale = 0.1; - return (rce->i_tex_bits + rce->p_tex_bits + .1) * pow( rce->qscale / qscale, 1.1 ) - + rce->mv_bits * pow( X264_MAX(rce->qscale, 12) / X264_MAX(qscale, 12), 0.5 ); + return (rce->tex_bits + .1) * pow( rce->qscale / qscale, 1.1 ) + + rce->mv_bits * pow( X264_MAX(rce->qscale, 1) / X264_MAX(qscale, 1), 0.5 ) + + rce->misc_bits; +} + +// Find the total AC energy of the block in all planes. +static NOINLINE uint32_t ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame ) +{ + /* This function contains annoying hacks because GCC has a habit of reordering emms + * and putting it after floating point ops. As a result, we put the emms at the end of the + * function and make sure that its always called before the float math. Noinline makes + * sure no reordering goes on. */ + uint32_t var = 0, i; + for( i = 0; i < 3; i++ ) + { + int w = i ? 8 : 16; + int stride = frame->i_stride[i]; + int offset = h->mb.b_interlaced + ? w * (mb_x + (mb_y&~1) * stride) + (mb_y&1) * stride + : w * (mb_x + mb_y * stride); + int pix = i ? PIXEL_8x8 : PIXEL_16x16; + stride <<= h->mb.b_interlaced; + var += h->pixf.var[pix]( frame->plane[i]+offset, stride ); + } + x264_emms(); + return var; +} + +void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame ) +{ + /* constants chosen to result in approximately the same overall bitrate as without AQ. + * FIXME: while they're written in 5 significant digits, they're only tuned to 2. */ + int mb_x, mb_y; + float strength; + float avg_adj = 0.f; + /* Need to init it anyways for MB tree. */ + if( h->param.rc.f_aq_strength == 0 ) + { + int mb_xy; + memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) ); + memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) ); + if( h->frames.b_have_lowres ) + for( mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ ) + frame->i_inv_qscale_factor[mb_xy] = 256; + return; + } + + if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE ) + { + for( mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ ) + for( mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ ) + { + uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame ); + float qp_adj = x264_log2( energy + 2 ); + qp_adj *= qp_adj; + frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj; + avg_adj += qp_adj; + } + avg_adj /= h->mb.i_mb_count; + strength = h->param.rc.f_aq_strength * avg_adj * (1.f / 6000.f); + } + else + strength = h->param.rc.f_aq_strength * 1.0397f; + + for( mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ ) + for( mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ ) + { + float qp_adj; + if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE ) + { + qp_adj = frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride]; + qp_adj = strength * (qp_adj - avg_adj); + } + else + { + uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame ); + qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - 14.427f); + } + frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = + frame->f_qp_offset_aq[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj; + if( h->frames.b_have_lowres ) + frame->i_inv_qscale_factor[mb_x + mb_y*h->mb.i_mb_stride] = x264_exp2fix8(qp_adj); + } +} + + +/***************************************************************************** +* x264_adaptive_quant: + * adjust macroblock QP based on variance (AC energy) of the MB. + * high variance = higher QP + * low variance = lower QP + * This generally increases SSIM and lowers PSNR. +*****************************************************************************/ +void x264_adaptive_quant( x264_t *h ) +{ + x264_emms(); + h->mb.i_qp = x264_clip3( h->rc->f_qpm + h->fenc->f_qp_offset[h->mb.i_mb_xy] + .5, h->param.rc.i_qp_min, h->param.rc.i_qp_max ); +} + +int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame ) +{ + x264_ratecontrol_t *rc = h->rc; + uint8_t i_type_actual = rc->entry[frame->i_frame].pict_type; + int i; + + if( i_type_actual != SLICE_TYPE_B ) + { + uint8_t i_type; + + if( !fread( &i_type, 1, 1, rc->p_mbtree_stat_file_in ) ) + goto fail; + + if( i_type != i_type_actual ) + { + x264_log(h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type,i_type_actual); + return -1; + } + + if( fread( rc->qp_buffer, sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_in ) != h->mb.i_mb_count ) + goto fail; + + for( i = 0; i < h->mb.i_mb_count; i++ ) + { + frame->f_qp_offset[i] = ((float)(int16_t)endian_fix16( rc->qp_buffer[i] )) * (1/256.0); + if( h->frames.b_have_lowres ) + frame->i_inv_qscale_factor[i] = x264_exp2fix8(frame->f_qp_offset[i]); + } + } + else + x264_adaptive_quant_frame( h, frame ); + return 0; +fail: + x264_log(h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n"); + return -1; +} + +int x264_reference_build_list_optimal( x264_t *h ) +{ + ratecontrol_entry_t *rce = h->rc->rce; + x264_frame_t *frames[16]; + int ref, i; + + if( rce->refs != h->i_ref0 ) + return -1; + + memcpy( frames, h->fref0, sizeof(frames) ); + + /* For now don't reorder ref 0; it seems to lower quality + in most cases due to skips. */ + for( ref = 1; ref < h->i_ref0; ref++ ) + { + int max = -1; + int bestref = 1; + for( i = 1; i < h->i_ref0; i++ ) + /* Favor lower POC as a tiebreaker. */ + COPY2_IF_GT( max, rce->refcount[i], bestref, i ); + rce->refcount[bestref] = -1; + h->fref0[ref] = frames[bestref]; + } + + return 0; } +static char *x264_strcat_filename( char *input, char *suffix ) +{ + char *output = x264_malloc( strlen( input ) + strlen( suffix ) + 1 ); + if( !output ) + return NULL; + strcpy( output, input ); + strcat( output, suffix ); + return output; +} int x264_ratecontrol_new( x264_t *h ) { x264_ratecontrol_t *rc; - int i; + int i, j; - x264_cpu_restore( h->param.cpu ); + x264_emms(); - h->rc = rc = x264_malloc( sizeof( x264_ratecontrol_t ) ); - memset(rc, 0, sizeof(*rc)); + CHECKED_MALLOCZERO( h->rc, h->param.i_threads * sizeof(x264_ratecontrol_t) ); + rc = h->rc; + + rc->b_abr = h->param.rc.i_rc_method != X264_RC_CQP && !h->param.rc.b_stat_read; + rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read; - rc->b_abr = ( h->param.rc.b_cbr || h->param.rc.i_rf_constant ) && !h->param.rc.b_stat_read; - rc->b_2pass = h->param.rc.b_cbr && h->param.rc.b_stat_read; - h->mb.b_variable_qp = 0; - /* FIXME: use integers */ if(h->param.i_fps_num > 0 && h->param.i_fps_den > 0) rc->fps = (float) h->param.i_fps_num / h->param.i_fps_den; else rc->fps = 25.0; - rc->bitrate = h->param.rc.i_bitrate * 1000; + if( h->param.rc.b_mb_tree ) + { + h->param.rc.f_pb_factor = 1; + rc->qcompress = 1; + } + else + rc->qcompress = h->param.rc.f_qcompress; + + rc->bitrate = h->param.rc.i_bitrate * 1000.; rc->rate_tolerance = h->param.rc.f_rate_tolerance; rc->nmb = h->mb.i_mb_count; rc->last_non_b_pict_type = -1; rc->cbr_decay = 1.0; - if( rc->b_2pass && h->param.rc.i_rf_constant ) + if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.b_stat_read ) + { x264_log(h, X264_LOG_ERROR, "constant rate-factor is incompatible with 2pass.\n"); + return -1; + } + if( h->param.rc.i_vbv_buffer_size ) + { + if( h->param.rc.i_rc_method == X264_RC_CQP ) + { + x264_log(h, X264_LOG_WARNING, "VBV is incompatible with constant QP, ignored.\n"); + h->param.rc.i_vbv_max_bitrate = 0; + h->param.rc.i_vbv_buffer_size = 0; + } + else if( h->param.rc.i_vbv_max_bitrate == 0 ) + { + x264_log( h, X264_LOG_DEBUG, "VBV maxrate unspecified, assuming CBR\n" ); + h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate; + } + } if( h->param.rc.i_vbv_max_bitrate < h->param.rc.i_bitrate && h->param.rc.i_vbv_max_bitrate > 0) - x264_log(h, X264_LOG_ERROR, "max bitrate less than average bitrate, ignored.\n"); + x264_log(h, X264_LOG_WARNING, "max bitrate less than average bitrate, ignored.\n"); else if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 ) { - if( h->param.rc.i_vbv_buffer_size < 10 * h->param.rc.i_vbv_max_bitrate / rc->fps ) { - h->param.rc.i_vbv_buffer_size = 10 * h->param.rc.i_vbv_max_bitrate / rc->fps; - x264_log( h, X264_LOG_ERROR, "VBV buffer size too small, using %d kbit\n", + if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) ) + { + h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps; + x264_log( h, X264_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n", h->param.rc.i_vbv_buffer_size ); } - rc->buffer_rate = h->param.rc.i_vbv_max_bitrate * 1000 / rc->fps; - rc->buffer_size = h->param.rc.i_vbv_buffer_size * 1000; - rc->buffer_fill = rc->buffer_size * h->param.rc.f_vbv_buffer_init; + if( h->param.rc.f_vbv_buffer_init > 1. ) + h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 ); + rc->buffer_rate = h->param.rc.i_vbv_max_bitrate * 1000. / rc->fps; + rc->buffer_size = h->param.rc.i_vbv_buffer_size * 1000.; + rc->single_frame_vbv = rc->buffer_rate * 1.1 > rc->buffer_size; + h->param.rc.f_vbv_buffer_init = X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size ); + rc->buffer_fill_final = rc->buffer_size * h->param.rc.f_vbv_buffer_init; rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size * 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate); + rc->b_vbv = 1; + rc->b_vbv_min_rate = !rc->b_2pass + && h->param.rc.i_rc_method == X264_RC_ABR + && h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate; } - else if( h->param.rc.i_vbv_max_bitrate || h->param.rc.i_vbv_buffer_size ) - x264_log(h, X264_LOG_ERROR, "VBV maxrate or buffer size specified, but not both.\n"); - if(rc->rate_tolerance < 0.01) { - x264_log(h, X264_LOG_ERROR, "bitrate tolerance too small, using .01\n"); + else if( h->param.rc.i_vbv_max_bitrate ) + { + x264_log(h, X264_LOG_WARNING, "VBV maxrate specified, but no bufsize.\n"); + h->param.rc.i_vbv_max_bitrate = 0; + } + if(rc->rate_tolerance < 0.01) + { + x264_log(h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n"); rc->rate_tolerance = 0.01; } + h->mb.b_variable_qp = rc->b_vbv || h->param.rc.i_aq_mode; + if( rc->b_abr ) { - /* FIXME shouldn't need to arbitrarily specify a QP, - * but this is more robust than BPP measures */ -#define ABR_INIT_QP ( h->param.rc.i_rf_constant > 0 ? h->param.rc.i_rf_constant : 24 ) + /* FIXME ABR_INIT_QP is actually used only in CRF */ +#define ABR_INIT_QP ( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 ) rc->accum_p_norm = .01; rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm; - rc->cplxr_sum = .01; - rc->wanted_bits_window = .01; + /* estimated ratio that produces a reasonable QP for the first I-frame */ + rc->cplxr_sum = .01 * pow( 7.0e5, rc->qcompress ) * pow( h->mb.i_mb_count, 0.5 ); + rc->wanted_bits_window = 1.0 * rc->bitrate / rc->fps; + rc->last_non_b_pict_type = SLICE_TYPE_I; } - if( h->param.rc.i_rf_constant ) + if( h->param.rc.i_rc_method == X264_RC_CRF ) { - /* arbitrary rescaling to make CRF somewhat similar to QP */ + /* Arbitrary rescaling to make CRF somewhat similar to QP. + * Try to compensate for MB-tree's effects as well. */ double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80); - rc->rate_factor_constant = pow( base_cplx, 1 - h->param.rc.f_qcompress ) - / qp2qscale( h->param.rc.i_rf_constant ); + double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0; + rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress ) + / qp2qscale( h->param.rc.f_rf_constant + mbtree_offset ); } + rc->ip_offset = 6.0 * log(h->param.rc.f_ip_factor) / log(2.0); + rc->pb_offset = 6.0 * log(h->param.rc.f_pb_factor) / log(2.0); rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant; - rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, 51 ); - rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, 51 ); + rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, 51 ); + rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, 51 ); - rc->lstep = exp2f(h->param.rc.i_qp_step / 6.0); + rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 ); rc->last_qscale = qp2qscale(26); + CHECKED_MALLOC( rc->pred, 5*sizeof(predictor_t) ); + CHECKED_MALLOC( rc->pred_b_from_p, sizeof(predictor_t) ); for( i = 0; i < 5; i++ ) { - rc->last_qscale_for[i] = qp2qscale(26); + rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP ); rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min ); rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max ); rc->pred[i].coeff= 2.0; rc->pred[i].count= 1.0; rc->pred[i].decay= 0.5; + rc->pred[i].offset= 0.0; + for( j = 0; j < 2; j++ ) + { + rc->row_preds[i][j].coeff= .25; + rc->row_preds[i][j].count= 1.0; + rc->row_preds[i][j].decay= 0.5; + rc->row_preds[i][j].offset= 0.0; + } } + *rc->pred_b_from_p = rc->pred[0]; if( parse_zones( h ) < 0 ) + { + x264_log( h, X264_LOG_ERROR, "failed to parse zones\n" ); return -1; + } /* Load stat file and init 2pass algo */ if( h->param.rc.b_stat_read ) { - char *p, *stats_in; + char *p, *stats_in, *stats_buf; /* read 1st pass stats */ assert( h->param.rc.psz_stat_in ); - stats_in = x264_slurp_file( h->param.rc.psz_stat_in ); - if( !stats_in ) + stats_buf = stats_in = x264_slurp_file( h->param.rc.psz_stat_in ); + if( !stats_buf ) { x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n"); return -1; } + if( h->param.rc.b_mb_tree ) + { + char *mbtree_stats_in = x264_strcat_filename( h->param.rc.psz_stat_in, ".mbtree" ); + if( !mbtree_stats_in ) + return -1; + rc->p_mbtree_stat_file_in = fopen( mbtree_stats_in, "rb" ); + x264_free( mbtree_stats_in ); + if( !rc->p_mbtree_stat_file_in ) + { + x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n"); + return -1; + } + } + + /* check whether 1st pass options were compatible with current options */ + if( !strncmp( stats_buf, "#options:", 9 ) ) + { + int i; + char *opts = stats_buf; + stats_in = strchr( stats_buf, '\n' ); + if( !stats_in ) + return -1; + *stats_in = '\0'; + stats_in++; + + if( ( p = strstr( opts, "bframes=" ) ) && sscanf( p, "bframes=%d", &i ) + && h->param.i_bframe != i ) + { + x264_log( h, X264_LOG_ERROR, "different number of B-frames than 1st pass (%d vs %d)\n", + h->param.i_bframe, i ); + return -1; + } + + /* since B-adapt doesn't (yet) take into account B-pyramid, + * the converse is not a problem */ + if( strstr( opts, "b_pyramid=1" ) && !h->param.b_bframe_pyramid ) + x264_log( h, X264_LOG_WARNING, "1st pass used B-pyramid, 2nd doesn't\n" ); + + if( ( p = strstr( opts, "keyint=" ) ) && sscanf( p, "keyint=%d", &i ) + && h->param.i_keyint_max != i ) + x264_log( h, X264_LOG_WARNING, "different keyint than 1st pass (%d vs %d)\n", + h->param.i_keyint_max, i ); + + if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR ) + x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccurate\n" ); + + if( !strstr( opts, "direct=3" ) && h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO ) + { + x264_log( h, X264_LOG_WARNING, "direct=auto not used on the first pass\n" ); + h->mb.b_direct_auto_write = 1; + } + + if( ( p = strstr( opts, "b_adapt=" ) ) && sscanf( p, "b_adapt=%d", &i ) && i >= X264_B_ADAPT_NONE && i <= X264_B_ADAPT_TRELLIS ) + h->param.i_bframe_adaptive = i; + else if( h->param.i_bframe ) + { + x264_log( h, X264_LOG_ERROR, "b_adapt method specified in stats file not valid\n" ); + return -1; + } + + if( h->param.rc.b_mb_tree && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) ) + h->param.rc.i_lookahead = i; + } /* find number of pics */ p = stats_in; @@ -284,21 +586,18 @@ int x264_ratecontrol_new( x264_t *h ) x264_log( h, X264_LOG_WARNING, "2nd pass has fewer frames than 1st pass (%d vs %d)\n", h->param.i_frame_total, rc->num_entries ); } - if( h->param.i_frame_total > rc->num_entries + h->param.i_bframe ) + if( h->param.i_frame_total > rc->num_entries ) { x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d vs %d)\n", h->param.i_frame_total, rc->num_entries ); return -1; } - /* FIXME: ugly padding because VfW drops delayed B-frames */ - rc->num_entries += h->param.i_bframe; - - rc->entry = (ratecontrol_entry_t*) x264_malloc(rc->num_entries * sizeof(ratecontrol_entry_t)); - memset(rc->entry, 0, rc->num_entries * sizeof(ratecontrol_entry_t)); + CHECKED_MALLOCZERO( rc->entry, rc->num_entries * sizeof(ratecontrol_entry_t) ); /* init all to skipped p frames */ - for(i=0; inum_entries; i++){ + for(i=0; inum_entries; i++) + { ratecontrol_entry_t *rce = &rc->entry[i]; rce->pict_type = SLICE_TYPE_P; rce->qscale = rce->new_qscale = qp2qscale(20); @@ -308,17 +607,20 @@ int x264_ratecontrol_new( x264_t *h ) /* read stats */ p = stats_in; - for(i=0; i < rc->num_entries - h->param.i_bframe; i++){ + for(i=0; i < rc->num_entries; i++) + { ratecontrol_entry_t *rce; int frame_number; char pict_type; int e; char *next; float qp; + int ref; next= strchr(p, ';'); - if(next){ - (*next)=0; //sscanf is unbelievably slow on looong strings + if(next) + { + (*next)=0; //sscanf is unbelievably slow on long strings next++; } e = sscanf(p, " in:%d ", &frame_number); @@ -329,12 +631,29 @@ int x264_ratecontrol_new( x264_t *h ) return -1; } rce = &rc->entry[frame_number]; + rce->direct_mode = 0; + + e += sscanf(p, " in:%*d out:%*d type:%c q:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c", + &pict_type, &qp, &rce->tex_bits, + &rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count, + &rce->s_count, &rce->direct_mode); + + p = strstr( p, "ref:" ); + if( !p ) + goto parse_error; + p += 4; + for( ref = 0; ref < 16; ref++ ) + { + if( sscanf( p, " %d", &rce->refcount[ref] ) != 1 ) + break; + p = strchr( p+1, ' ' ); + if( !p ) + goto parse_error; + } + rce->refs = ref; - e += sscanf(p, " in:%*d out:%*d type:%c q:%f itex:%d ptex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d", - &pict_type, &qp, &rce->i_tex_bits, &rce->p_tex_bits, - &rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count, &rce->s_count); - - switch(pict_type){ + switch(pict_type) + { case 'I': rce->kept_as_ref = 1; case 'i': rce->pict_type = SLICE_TYPE_I; break; case 'P': rce->pict_type = SLICE_TYPE_P; break; @@ -342,7 +661,9 @@ int x264_ratecontrol_new( x264_t *h ) case 'b': rce->pict_type = SLICE_TYPE_B; break; default: e = -1; break; } - if(e != 10){ + if(e < 10) + { +parse_error: x264_log(h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e); return -1; } @@ -350,9 +671,9 @@ int x264_ratecontrol_new( x264_t *h ) p = next; } - x264_free(stats_in); + x264_free(stats_buf); - if(h->param.rc.b_cbr) + if(h->param.rc.i_rc_method == X264_RC_ABR) { if(init_pass2(h) < 0) return -1; } /* else we're using constant quant, so no need to run the bitrate allocation */ @@ -363,9 +684,10 @@ int x264_ratecontrol_new( x264_t *h ) * and move it to the real name only when it's complete */ if( h->param.rc.b_stat_write ) { - rc->psz_stat_file_tmpname = x264_malloc( strlen(h->param.rc.psz_stat_out) + 6 ); - strcpy( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ); - strcat( rc->psz_stat_file_tmpname, ".temp" ); + char *p; + rc->psz_stat_file_tmpname = x264_strcat_filename( h->param.rc.psz_stat_out, ".temp" ); + if( !rc->psz_stat_file_tmpname ) + return -1; rc->p_stat_file_out = fopen( rc->psz_stat_file_tmpname, "wb" ); if( rc->p_stat_file_out == NULL ) @@ -373,9 +695,87 @@ int x264_ratecontrol_new( x264_t *h ) x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n"); return -1; } + + p = x264_param2string( &h->param, 1 ); + if( p ) + fprintf( rc->p_stat_file_out, "#options: %s\n", p ); + x264_free( p ); + if( h->param.rc.b_mb_tree && !h->param.rc.b_stat_read ) + { + rc->psz_mbtree_stat_file_tmpname = x264_strcat_filename( h->param.rc.psz_stat_out, ".mbtree.temp" ); + rc->psz_mbtree_stat_file_name = x264_strcat_filename( h->param.rc.psz_stat_out, ".mbtree" ); + if( !rc->psz_mbtree_stat_file_tmpname || !rc->psz_mbtree_stat_file_name ) + return -1; + + rc->p_mbtree_stat_file_out = fopen( rc->psz_mbtree_stat_file_tmpname, "wb" ); + if( rc->p_mbtree_stat_file_out == NULL ) + { + x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n"); + return -1; + } + } + } + + if( h->param.rc.b_mb_tree && (h->param.rc.b_stat_read || h->param.rc.b_stat_write) ) + CHECKED_MALLOC( rc->qp_buffer, h->mb.i_mb_count * sizeof(uint16_t) ); + + for( i=0; iparam.i_threads; i++ ) + { + h->thread[i]->rc = rc+i; + if( i ) + { + rc[i] = rc[0]; + memcpy( &h->thread[i]->param, &h->param, sizeof(x264_param_t) ); + h->thread[i]->mb.b_variable_qp = h->mb.b_variable_qp; + } } return 0; +fail: + return -1; +} + +static int parse_zone( x264_t *h, x264_zone_t *z, char *p ) +{ + int len = 0; + char *tok, UNUSED *saveptr; + z->param = NULL; + z->f_bitrate_factor = 1; + if( 3 <= sscanf(p, "%u,%u,q=%u%n", &z->i_start, &z->i_end, &z->i_qp, &len) ) + z->b_force_qp = 1; + else if( 3 <= sscanf(p, "%u,%u,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) ) + z->b_force_qp = 0; + else if( 2 <= sscanf(p, "%u,%u%n", &z->i_start, &z->i_end, &len) ) + z->b_force_qp = 0; + else + { + x264_log( h, X264_LOG_ERROR, "invalid zone: \"%s\"\n", p ); + return -1; + } + p += len; + if( !*p ) + return 0; + CHECKED_MALLOC( z->param, sizeof(x264_param_t) ); + memcpy( z->param, &h->param, sizeof(x264_param_t) ); + z->param->param_free = x264_free; + while( (tok = strtok_r( p, ",", &saveptr )) ) + { + char *val = strchr( tok, '=' ); + if( val ) + { + *val = '\0'; + val++; + } + if( x264_param_parse( z->param, tok, val ) ) + { + x264_log( h, X264_LOG_ERROR, "invalid zone param: %s = %s\n", tok, val ); + return -1; + } + p = NULL; + } + return 0; +fail: + return -1; } static int parse_zones( x264_t *h ) @@ -384,28 +784,22 @@ static int parse_zones( x264_t *h ) int i; if( h->param.rc.psz_zones && !h->param.rc.i_zones ) { - char *p; + char *psz_zones, *p, *tok, UNUSED *saveptr; + CHECKED_MALLOC( psz_zones, strlen( h->param.rc.psz_zones )+1 ); + strcpy( psz_zones, h->param.rc.psz_zones ); h->param.rc.i_zones = 1; - for( p = h->param.rc.psz_zones; *p; p++ ) + for( p = psz_zones; *p; p++ ) h->param.rc.i_zones += (*p == '/'); - h->param.rc.zones = x264_malloc( h->param.rc.i_zones * sizeof(x264_zone_t) ); - p = h->param.rc.psz_zones; - for( i = 0; i < h->param.rc.i_zones; i++) + CHECKED_MALLOC( h->param.rc.zones, h->param.rc.i_zones * sizeof(x264_zone_t) ); + p = psz_zones; + for( i = 0; i < h->param.rc.i_zones; i++ ) { - x264_zone_t *z = &h->param.rc.zones[i]; - if( 3 == sscanf(p, "%u,%u,q=%u", &z->i_start, &z->i_end, &z->i_qp) ) - z->b_force_qp = 1; - else if( 3 == sscanf(p, "%u,%u,b=%f", &z->i_start, &z->i_end, &z->f_bitrate_factor) ) - z->b_force_qp = 0; - else - { - char *slash = strchr(p, '/'); - if(slash) *slash = '\0'; - x264_log( h, X264_LOG_ERROR, "invalid zone: \"%s\"\n", p ); + tok = strtok_r( p, "/", &saveptr ); + if( !tok || parse_zone( h, &h->param.rc.zones[i], tok ) ) return -1; - } - p = strchr(p, '/') + 1; + p = NULL; } + x264_free( psz_zones ); } if( h->param.rc.i_zones > 0 ) @@ -427,22 +821,63 @@ static int parse_zones( x264_t *h ) } } - rc->i_zones = h->param.rc.i_zones; - rc->zones = x264_malloc( rc->i_zones * sizeof(x264_zone_t) ); - memcpy( rc->zones, h->param.rc.zones, rc->i_zones * sizeof(x264_zone_t) ); + rc->i_zones = h->param.rc.i_zones + 1; + CHECKED_MALLOC( rc->zones, rc->i_zones * sizeof(x264_zone_t) ); + memcpy( rc->zones+1, h->param.rc.zones, (rc->i_zones-1) * sizeof(x264_zone_t) ); + + // default zone to fall back to if none of the others match + rc->zones[0].i_start = 0; + rc->zones[0].i_end = INT_MAX; + rc->zones[0].b_force_qp = 0; + rc->zones[0].f_bitrate_factor = 1; + CHECKED_MALLOC( rc->zones[0].param, sizeof(x264_param_t) ); + memcpy( rc->zones[0].param, &h->param, sizeof(x264_param_t) ); + for( i = 1; i < rc->i_zones; i++ ) + { + if( !rc->zones[i].param ) + rc->zones[i].param = rc->zones[0].param; + } } return 0; +fail: + return -1; +} + +static x264_zone_t *get_zone( x264_t *h, int frame_num ) +{ + int i; + for( i = h->rc->i_zones-1; i >= 0; i-- ) + { + x264_zone_t *z = &h->rc->zones[i]; + if( frame_num >= z->i_start && frame_num <= z->i_end ) + return z; + } + return NULL; +} + +void x264_ratecontrol_summary( x264_t *h ) +{ + x264_ratecontrol_t *rc = h->rc; + if( rc->b_abr && h->param.rc.i_rc_method == X264_RC_ABR && rc->cbr_decay > .9999 ) + { + double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80); + double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0; + x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n", + qscale2qp( pow( base_cplx, 1 - rc->qcompress ) + * rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset ); + } } void x264_ratecontrol_delete( x264_t *h ) { x264_ratecontrol_t *rc = h->rc; + int i; if( rc->p_stat_file_out ) { fclose( rc->p_stat_file_out ); - if( h->i_frame >= rc->num_entries - h->param.i_bframe ) + if( h->i_frame >= rc->num_entries ) if( rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 ) { x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n", @@ -450,60 +885,293 @@ void x264_ratecontrol_delete( x264_t *h ) } x264_free( rc->psz_stat_file_tmpname ); } + if( rc->p_mbtree_stat_file_out ) + { + fclose( rc->p_mbtree_stat_file_out ); + if( h->i_frame >= rc->num_entries ) + if( rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 ) + { + x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n", + rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ); + } + x264_free( rc->psz_mbtree_stat_file_tmpname ); + x264_free( rc->psz_mbtree_stat_file_name ); + } + if( rc->p_mbtree_stat_file_in ) + fclose( rc->p_mbtree_stat_file_in ); + x264_free( rc->pred ); + x264_free( rc->pred_b_from_p ); x264_free( rc->entry ); - x264_free( rc->zones ); + x264_free( rc->qp_buffer ); + if( rc->zones ) + { + x264_free( rc->zones[0].param ); + for( i=1; ii_zones; i++ ) + if( rc->zones[i].param != rc->zones[0].param && rc->zones[i].param->param_free ) + rc->zones[i].param->param_free( rc->zones[i].param ); + x264_free( rc->zones ); + } x264_free( rc ); } +void x264_ratecontrol_set_estimated_size( x264_t *h, int bits ) +{ + x264_pthread_mutex_lock( &h->fenc->mutex ); + h->rc->frame_size_estimated = bits; + x264_pthread_mutex_unlock( &h->fenc->mutex ); +} + +int x264_ratecontrol_get_estimated_size( x264_t const *h) +{ + int size; + x264_pthread_mutex_lock( &h->fenc->mutex ); + size = h->rc->frame_size_estimated; + x264_pthread_mutex_unlock( &h->fenc->mutex ); + return size; +} + +static void accum_p_qp_update( x264_t *h, float qp ) +{ + x264_ratecontrol_t *rc = h->rc; + rc->accum_p_qp *= .95; + rc->accum_p_norm *= .95; + rc->accum_p_norm += 1; + if( h->sh.i_type == SLICE_TYPE_I ) + rc->accum_p_qp += qp + rc->ip_offset; + else + rc->accum_p_qp += qp; +} + /* Before encoding a frame, choose a QP for it */ -void x264_ratecontrol_start( x264_t *h, int i_slice_type, int i_force_qp ) +void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead ) { x264_ratecontrol_t *rc = h->rc; + ratecontrol_entry_t *rce = NULL; + x264_zone_t *zone = get_zone( h, h->fenc->i_frame ); + float q; - x264_cpu_restore( h->param.cpu ); + x264_emms(); + + if( zone && (!rc->prev_zone || zone->param != rc->prev_zone->param) ) + x264_encoder_reconfig( h, zone->param ); + rc->prev_zone = zone; rc->qp_force = i_force_qp; - rc->slice_type = i_slice_type; + + if( h->param.rc.b_stat_read ) + { + int frame = h->fenc->i_frame; + assert( frame >= 0 && frame < rc->num_entries ); + rce = h->rc->rce = &h->rc->entry[frame]; + + if( h->sh.i_type == SLICE_TYPE_B + && h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO ) + { + h->sh.b_direct_spatial_mv_pred = ( rce->direct_mode == 's' ); + h->mb.b_direct_auto_read = ( rce->direct_mode == 's' || rce->direct_mode == 't' ); + } + } + + if( rc->b_vbv ) + { + memset( h->fdec->i_row_bits, 0, h->sps->i_mb_height * sizeof(int) ); + rc->row_pred = &rc->row_preds[h->sh.i_type]; + update_vbv_plan( h, overhead ); + } + + if( h->sh.i_type != SLICE_TYPE_B ) + rc->bframes = h->fenc->i_bframes; if( i_force_qp ) { - rc->qpa = rc->qp = i_force_qp - 1; + q = i_force_qp - 1; } else if( rc->b_abr ) { - rc->qpa = rc->qp = - x264_clip3( (int)(qscale2qp( rate_estimate_qscale( h, i_slice_type ) ) + .5), 0, 51 ); + q = qscale2qp( rate_estimate_qscale( h ) ); } else if( rc->b_2pass ) { - int frame = h->fenc->i_frame; - ratecontrol_entry_t *rce; - assert( frame >= 0 && frame < rc->num_entries ); - rce = h->rc->rce = &h->rc->entry[frame]; - - rce->new_qscale = rate_estimate_qscale( h, i_slice_type ); - rc->qpa = rc->qp = rce->new_qp = - x264_clip3( (int)(qscale2qp(rce->new_qscale) + 0.5), 0, 51 ); + rce->new_qscale = rate_estimate_qscale( h ); + q = qscale2qp( rce->new_qscale ); } else /* CQP */ { - int q; - if( i_slice_type == SLICE_TYPE_B && h->fdec->b_kept_as_ref ) + if( h->sh.i_type == SLICE_TYPE_B && h->fdec->b_kept_as_ref ) q = ( rc->qp_constant[ SLICE_TYPE_B ] + rc->qp_constant[ SLICE_TYPE_P ] ) / 2; else - q = rc->qp_constant[ i_slice_type ]; - rc->qpa = rc->qp = q; + q = rc->qp_constant[ h->sh.i_type ]; + + if( zone ) + { + if( zone->b_force_qp ) + q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P]; + else + q -= 6*log(zone->f_bitrate_factor)/log(2); + } + } + + q = x264_clip3f( q, h->param.rc.i_qp_min, h->param.rc.i_qp_max ); + + rc->qpa_rc = + rc->qpa_aq = 0; + h->fdec->f_qp_avg_rc = + h->fdec->f_qp_avg_aq = + rc->qpm = + rc->qp = x264_clip3( (int)(q + 0.5), 0, 51 ); + rc->f_qpm = q; + if( rce ) + rce->new_qp = rc->qp; + + accum_p_qp_update( h, rc->qp ); + + if( h->sh.i_type != SLICE_TYPE_B ) + rc->last_non_b_pict_type = h->sh.i_type; +} + +static double predict_row_size( x264_t *h, int y, int qp ) +{ + /* average between two predictors: + * absolute SATD, and scaled bit cost of the colocated row in the previous frame */ + x264_ratecontrol_t *rc = h->rc; + double pred_s = predict_size( rc->row_pred[0], qp2qscale(qp), h->fdec->i_row_satd[y] ); + double pred_t = 0; + if( h->sh.i_type == SLICE_TYPE_I || qp >= h->fref0[0]->i_row_qp[y] ) + { + if( h->sh.i_type == SLICE_TYPE_P + && h->fref0[0]->i_type == h->fdec->i_type + && h->fref0[0]->i_row_satd[y] > 0 + && (abs(h->fref0[0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2)) + { + pred_t = h->fref0[0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref0[0]->i_row_satd[y] + * qp2qscale(h->fref0[0]->i_row_qp[y]) / qp2qscale(qp); + } + if( pred_t == 0 ) + pred_t = pred_s; + return (pred_s + pred_t) / 2; + } + /* Our QP is lower than the reference! */ + else + { + double newq = qp2qscale(qp); + double oldq = qp2qscale(h->fref0[0]->i_row_qp[y]); + double pred_intra = predict_size( rc->row_pred[1], (1 - newq / oldq) * newq, h->fdec->i_row_satds[0][0][y] ); + /* Sum: better to overestimate than underestimate by using only one of the two predictors. */ + return pred_intra + pred_s; } } +static double row_bits_so_far( x264_t *h, int y ) +{ + int i; + double bits = 0; + for( i = 0; i <= y; i++ ) + bits += h->fdec->i_row_bits[i]; + return bits; +} + +static double predict_row_size_sum( x264_t *h, int y, int qp ) +{ + int i; + double bits = row_bits_so_far(h, y); + for( i = y+1; i < h->sps->i_mb_height; i++ ) + bits += predict_row_size( h, i, qp ); + return bits; +} + + void x264_ratecontrol_mb( x264_t *h, int bits ) { - /* currently no adaptive quant */ + x264_ratecontrol_t *rc = h->rc; + const int y = h->mb.i_mb_y; + + x264_emms(); + + h->fdec->i_row_bits[y] += bits; + rc->qpa_rc += rc->f_qpm; + rc->qpa_aq += h->mb.i_qp; + + if( h->mb.i_mb_x != h->sps->i_mb_width - 1 || !rc->b_vbv ) + return; + + h->fdec->i_row_qp[y] = rc->qpm; + + update_predictor( rc->row_pred[0], qp2qscale(rc->qpm), h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] ); + if( h->sh.i_type == SLICE_TYPE_P && rc->qpm < h->fref0[0]->i_row_qp[y] ) + { + double newq = qp2qscale(rc->qpm); + double oldq = qp2qscale(h->fref0[0]->i_row_qp[y]); + update_predictor( rc->row_pred[1], (1 - newq / oldq) * newq, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] ); + } + + /* tweak quality based on difference from predicted size */ + if( y < h->sps->i_mb_height-1 ) + { + int prev_row_qp = h->fdec->i_row_qp[y]; + int i_qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, h->param.rc.i_qp_max ); + int i_qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min ); + + /* B-frames shouldn't use lower QP than their reference frames. */ + if( h->sh.i_type == SLICE_TYPE_B ) + { + i_qp_min = X264_MAX( i_qp_min, X264_MAX( h->fref0[0]->i_row_qp[y+1], h->fref1[0]->i_row_qp[y+1] ) ); + rc->qpm = X264_MAX( rc->qpm, i_qp_min ); + } + + int b0 = predict_row_size_sum( h, y, rc->qpm ); + int b1 = b0; + float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned; + + /* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */ + float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance; + + /* Don't modify the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */ + /* area at the top of the frame was measured inaccurately. */ + if( row_bits_so_far(h,y) < 0.05 * rc->frame_size_planned ) + return; + + if( h->sh.i_type != SLICE_TYPE_I ) + rc_tol /= 2; + + if( !rc->b_vbv_min_rate ) + i_qp_min = X264_MAX( i_qp_min, h->sh.i_qp ); + + while( rc->qpm < i_qp_max + && ((b1 > rc->frame_size_planned + rc_tol) || + (rc->buffer_fill - b1 < buffer_left_planned * 0.5) || + (b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv)) ) + { + rc->qpm ++; + b1 = predict_row_size_sum( h, y, rc->qpm ); + } + + while( rc->qpm > i_qp_min + && (rc->qpm > h->fdec->i_row_qp[0] || rc->single_frame_vbv) + && ((b1 < rc->frame_size_planned * 0.8 && rc->qpm <= prev_row_qp) + || b1 < (rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 1.1) ) + { + rc->qpm --; + b1 = predict_row_size_sum( h, y, rc->qpm ); + } + + /* avoid VBV underflow */ + while( (rc->qpm < h->param.rc.i_qp_max) + && (rc->buffer_fill - b1 < rc->buffer_rate * 0.05 ) ) + { + rc->qpm ++; + b1 = predict_row_size_sum( h, y, rc->qpm ); + } + + x264_ratecontrol_set_estimated_size(h, b1); + } + + /* loses the fractional part of the frame-wise qp */ + rc->f_qpm = rc->qpm; } int x264_ratecontrol_qp( x264_t *h ) { - return h->rc->qp; + return h->rc->qpm; } /* In 2pass, force the same frame types as in the 1st pass */ @@ -517,26 +1185,31 @@ int x264_ratecontrol_slice_type( x264_t *h, int frame_num ) /* We could try to initialize everything required for ABR and * adaptive B-frames, but that would be complicated. * So just calculate the average QP used so far. */ + int i; - h->param.rc.i_qp_constant = (h->stat.i_slice_count[SLICE_TYPE_P] == 0) ? 24 - : 1 + h->stat.i_slice_qp[SLICE_TYPE_P] / h->stat.i_slice_count[SLICE_TYPE_P]; + h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24 + : 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P]; rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, 51 ); rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, 51 ); rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, 51 ); x264_log(h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries); x264_log(h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant); - if( h->param.b_bframe_adaptive ) + if( h->param.i_bframe_adaptive ) x264_log(h, X264_LOG_ERROR, "disabling adaptive B-frames\n"); - rc->b_abr = 0; - rc->b_2pass = 0; - h->param.rc.b_cbr = 0; - h->param.rc.b_stat_read = 0; - h->param.b_bframe_adaptive = 0; - if( h->param.i_bframe > 1 ) - h->param.i_bframe = 1; - return X264_TYPE_P; + for( i = 0; i < h->param.i_threads; i++ ) + { + h->thread[i]->rc->b_abr = 0; + h->thread[i]->rc->b_2pass = 0; + h->thread[i]->param.rc.i_rc_method = X264_RC_CQP; + h->thread[i]->param.rc.b_stat_read = 0; + h->thread[i]->param.i_bframe_adaptive = 0; + h->thread[i]->param.i_scenecut_threshold = 0; + if( h->thread[i]->param.i_bframe > 1 ) + h->thread[i]->param.i_bframe = 1; + } + return X264_TYPE_AUTO; } switch( rc->entry[frame_num].pict_type ) { @@ -558,13 +1231,13 @@ int x264_ratecontrol_slice_type( x264_t *h, int frame_num ) } /* After encoding one frame, save stats and update ratecontrol state */ -void x264_ratecontrol_end( x264_t *h, int bits ) +int x264_ratecontrol_end( x264_t *h, int bits ) { x264_ratecontrol_t *rc = h->rc; const int *mbs = h->stat.frame.i_mb_count; int i; - x264_cpu_restore( h->param.cpu ); + x264_emms(); h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP]; h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4]; @@ -572,43 +1245,73 @@ void x264_ratecontrol_end( x264_t *h, int bits ) for( i = B_DIRECT; i < B_8x8; i++ ) h->stat.frame.i_mb_count_p += mbs[i]; + h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count; + h->fdec->f_qp_avg_aq = rc->qpa_aq /= h->mb.i_mb_count; + if( h->param.rc.b_stat_write ) { - char c_type = rc->slice_type==SLICE_TYPE_I ? (h->fenc->i_poc==0 ? 'I' : 'i') - : rc->slice_type==SLICE_TYPE_P ? 'P' + char c_type = h->sh.i_type==SLICE_TYPE_I ? (h->fenc->i_poc==0 ? 'I' : 'i') + : h->sh.i_type==SLICE_TYPE_P ? 'P' : h->fenc->b_kept_as_ref ? 'B' : 'b'; - fprintf( rc->p_stat_file_out, - "in:%d out:%d type:%c q:%.2f itex:%d ptex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d;\n", - h->fenc->i_frame, h->i_frame-1, - c_type, rc->qpa, - h->stat.frame.i_itex_bits, h->stat.frame.i_ptex_bits, - h->stat.frame.i_hdr_bits, h->stat.frame.i_misc_bits, + int dir_frame = h->stat.frame.i_direct_score[1] - h->stat.frame.i_direct_score[0]; + int dir_avg = h->stat.i_direct_score[1] - h->stat.i_direct_score[0]; + char c_direct = h->mb.b_direct_auto_write ? + ( dir_frame>0 ? 's' : dir_frame<0 ? 't' : + dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' ) + : '-'; + if( fprintf( rc->p_stat_file_out, + "in:%d out:%d type:%c q:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:", + h->fenc->i_frame, h->i_frame, + c_type, rc->qpa_rc, + h->stat.frame.i_tex_bits, + h->stat.frame.i_mv_bits, + h->stat.frame.i_misc_bits, h->stat.frame.i_mb_count_i, h->stat.frame.i_mb_count_p, - h->stat.frame.i_mb_count_skip); + h->stat.frame.i_mb_count_skip, + c_direct) < 0 ) + goto fail; + + for( i = 0; i < h->i_ref0; i++ ) + { + int refcount = h->param.b_interlaced ? h->stat.frame.i_mb_count_ref[0][i*2] + + h->stat.frame.i_mb_count_ref[0][i*2+1] : + h->stat.frame.i_mb_count_ref[0][i]; + if( fprintf( rc->p_stat_file_out, "%d ", refcount ) < 0 ) + goto fail; + } + + if( fprintf( rc->p_stat_file_out, ";\n" ) < 0 ) + goto fail; + + /* Don't re-write the data in multi-pass mode. */ + if( h->param.rc.b_mb_tree && h->fenc->b_kept_as_ref && !h->param.rc.b_stat_read ) + { + uint8_t i_type = h->sh.i_type; + int i; + /* Values are stored as big-endian FIX8.8 */ + for( i = 0; i < h->mb.i_mb_count; i++ ) + rc->qp_buffer[i] = endian_fix16( h->fenc->f_qp_offset[i]*256.0 ); + if( fwrite( &i_type, 1, 1, rc->p_mbtree_stat_file_out ) < 1 ) + goto fail; + if( fwrite( rc->qp_buffer, sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < h->mb.i_mb_count ) + goto fail; + } } if( rc->b_abr ) { - if( rc->slice_type != SLICE_TYPE_B ) - rc->cplxr_sum += bits * qp2qscale(rc->qpa) / rc->last_rceq; + if( h->sh.i_type != SLICE_TYPE_B ) + rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / rc->last_rceq; else { /* Depends on the fact that B-frame's QP is an offset from the following P-frame's. * Not perfectly accurate with B-refs, but good enough. */ - rc->cplxr_sum += bits * qp2qscale(rc->qpa) / (rc->last_rceq * fabs(h->param.rc.f_pb_factor)); + rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / (rc->last_rceq * fabs(h->param.rc.f_pb_factor)); } rc->cplxr_sum *= rc->cbr_decay; rc->wanted_bits_window += rc->bitrate / rc->fps; rc->wanted_bits_window *= rc->cbr_decay; - - rc->accum_p_qp *= .95; - rc->accum_p_norm *= .95; - rc->accum_p_norm += 1; - if( rc->slice_type == SLICE_TYPE_I ) - rc->accum_p_qp += rc->qpa * fabs(h->param.rc.f_ip_factor); - else - rc->accum_p_qp += rc->qpa; } if( rc->b_2pass ) @@ -616,104 +1319,58 @@ void x264_ratecontrol_end( x264_t *h, int bits ) rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale(rc->rce->new_qp) ); } - update_vbv( h, bits ); + if( h->mb.b_variable_qp ) + { + if( h->sh.i_type == SLICE_TYPE_B ) + { + rc->bframe_bits += bits; + if( h->fenc->b_last_minigop_bframe ) + { + update_predictor( rc->pred_b_from_p, qp2qscale(rc->qpa_rc), + h->fref1[h->i_ref1-1]->i_satd, rc->bframe_bits / rc->bframes ); + rc->bframe_bits = 0; + } + } + } - if( rc->slice_type != SLICE_TYPE_B ) - rc->last_non_b_pict_type = rc->slice_type; + update_vbv( h, bits ); + return 0; +fail: + x264_log(h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n"); + return -1; } /**************************************************************************** * 2 pass functions ***************************************************************************/ -double x264_eval( char *s, double *const_value, const char **const_name, - double (**func1)(void *, double), const char **func1_name, - double (**func2)(void *, double, double), char **func2_name, - void *opaque ); - /** * modify the bitrate curve from pass1 for one frame */ static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num) { x264_ratecontrol_t *rcc= h->rc; - const int pict_type = rce->pict_type; double q; - int i; + x264_zone_t *zone = get_zone( h, frame_num ); - double const_values[]={ - rce->i_tex_bits * rce->qscale, - rce->p_tex_bits * rce->qscale, - (rce->i_tex_bits + rce->p_tex_bits) * rce->qscale, - rce->mv_bits * rce->qscale, - (double)rce->i_count / rcc->nmb, - (double)rce->p_count / rcc->nmb, - (double)rce->s_count / rcc->nmb, - rce->pict_type == SLICE_TYPE_I, - rce->pict_type == SLICE_TYPE_P, - rce->pict_type == SLICE_TYPE_B, - h->param.rc.f_qcompress, - rcc->i_cplx_sum[SLICE_TYPE_I] / rcc->frame_count[SLICE_TYPE_I], - rcc->i_cplx_sum[SLICE_TYPE_P] / rcc->frame_count[SLICE_TYPE_P], - rcc->p_cplx_sum[SLICE_TYPE_P] / rcc->frame_count[SLICE_TYPE_P], - rcc->p_cplx_sum[SLICE_TYPE_B] / rcc->frame_count[SLICE_TYPE_B], - (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / rcc->frame_count[pict_type], - rce->blurred_complexity, - 0 - }; - static const char *const_names[]={ - "iTex", - "pTex", - "tex", - "mv", - "iCount", - "pCount", - "sCount", - "isI", - "isP", - "isB", - "qComp", - "avgIITex", - "avgPITex", - "avgPPTex", - "avgBPTex", - "avgTex", - "blurCplx", - NULL - }; - static double (*func1[])(void *, double)={ -// (void *)bits2qscale, - (void *)qscale2bits, - NULL - }; - static const char *func1_names[]={ -// "bits2qp", - "qp2bits", - NULL - }; - - q = x264_eval((char*)h->param.rc.psz_rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce); + q = pow( rce->blurred_complexity, 1 - rcc->qcompress ); // avoid NaN's in the rc_eq - if(q != q || rce->i_tex_bits + rce->p_tex_bits + rce->mv_bits == 0) + if(!isfinite(q) || rce->tex_bits + rce->mv_bits == 0) q = rcc->last_qscale; - else { + else + { rcc->last_rceq = q; q /= rate_factor; rcc->last_qscale = q; } - for( i = rcc->i_zones-1; i >= 0; i-- ) + if( zone ) { - x264_zone_t *z = &rcc->zones[i]; - if( frame_num >= z->i_start && frame_num <= z->i_end ) - { - if( z->b_force_qp ) - q = qp2qscale(z->i_qp); - else - q /= z->f_bitrate_factor; - break; - } + if( zone->b_force_qp ) + q = qp2qscale(zone->i_qp); + else + q /= zone->f_bitrate_factor; } return q; @@ -751,7 +1408,7 @@ static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q) } else if( pict_type == SLICE_TYPE_P && rcc->last_non_b_pict_type == SLICE_TYPE_P - && rce->i_tex_bits + rce->p_tex_bits == 0 ) + && rce->tex_bits == 0 ) { q = last_p_q; } @@ -788,30 +1445,72 @@ static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q) static double predict_size( predictor_t *p, double q, double var ) { - return p->coeff*var / (q*p->count); + return (p->coeff*var + p->offset) / (q*p->count); } static void update_predictor( predictor_t *p, double q, double var, double bits ) { - p->count *= p->decay; - p->coeff *= p->decay; - p->count ++; - p->coeff += bits*q / var; + const double range = 1.5; + if( var < 10 ) + return; + double old_coeff = p->coeff / p->count; + double new_coeff = bits*q / var; + double new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range ); + double new_offset = bits*q - new_coeff_clipped * var; + if( new_offset >= 0 ) + new_coeff = new_coeff_clipped; + else + new_offset = 0; + p->count *= p->decay; + p->coeff *= p->decay; + p->offset *= p->decay; + p->count ++; + p->coeff += new_coeff; + p->offset += new_offset; } +// update VBV after encoding a frame static void update_vbv( x264_t *h, int bits ) { x264_ratecontrol_t *rcc = h->rc; - if( !rcc->buffer_size ) + x264_ratecontrol_t *rct = h->thread[0]->rc; + + if( rcc->last_satd >= h->mb.i_mb_count ) + update_predictor( &rct->pred[h->sh.i_type], qp2qscale(rcc->qpa_rc), rcc->last_satd, bits ); + + if( !rcc->b_vbv ) return; - rcc->buffer_fill += rcc->buffer_rate - bits; - if( rcc->buffer_fill < 0 && !rcc->b_2pass ) - x264_log( h, X264_LOG_WARNING, "VBV underflow (%.0f bits)\n", rcc->buffer_fill ); - rcc->buffer_fill = x264_clip3( rcc->buffer_fill, 0, rcc->buffer_size ); + rct->buffer_fill_final -= bits; + if( rct->buffer_fill_final < 0 ) + x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, rct->buffer_fill_final ); + rct->buffer_fill_final = X264_MAX( rct->buffer_fill_final, 0 ); + rct->buffer_fill_final += rct->buffer_rate; + rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, rct->buffer_size ); +} - if(rcc->last_satd > 100) - update_predictor( &rcc->pred[rcc->slice_type], qp2qscale(rcc->qpa), rcc->last_satd, bits ); +// provisionally update VBV according to the planned size of all frames currently in progress +static void update_vbv_plan( x264_t *h, int overhead ) +{ + x264_ratecontrol_t *rcc = h->rc; + rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final - overhead; + if( h->param.i_threads > 1 ) + { + int j = h->rc - h->thread[0]->rc; + int i; + for( i=1; iparam.i_threads; i++ ) + { + x264_t *t = h->thread[ (j+i)%h->param.i_threads ]; + double bits = t->rc->frame_size_planned; + if( !t->b_thread_active ) + continue; + bits = X264_MAX(bits, x264_ratecontrol_get_estimated_size(t)); + rcc->buffer_fill -= bits; + rcc->buffer_fill = X264_MAX( rcc->buffer_fill, 0 ); + rcc->buffer_fill += rcc->buffer_rate; + rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size ); + } + } } // apply VBV constraints and clip qscale to between lmin and lmax @@ -823,29 +1522,109 @@ static double clip_qscale( x264_t *h, int pict_type, double q ) double q0 = q; /* B-frames are not directly subject to VBV, - * since they are controlled by the P-frames' QPs. - * FIXME: in 2pass we could modify previous frames' QP too, - * instead of waiting for the buffer to fill */ - if( rcc->buffer_size && - ( pict_type == SLICE_TYPE_P || - ( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) ) - { - if( rcc->buffer_fill/rcc->buffer_size < 0.5 ) - q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 ); - } - /* Now a hard threshold to make sure the frame fits in VBV. - * This one is mostly for I-frames. */ - if( rcc->buffer_size && rcc->last_satd > 0 ) - { - double bits = predict_size( &rcc->pred[rcc->slice_type], q, rcc->last_satd ); - double qf = 1.0; - if( bits > rcc->buffer_fill/2 ) - qf = x264_clip3f( rcc->buffer_fill/(2*bits), 0.2, 1.0 ); - q /= qf; - bits *= qf; - if( bits < rcc->buffer_rate/2 ) - q *= bits*2/rcc->buffer_rate; - q = X264_MAX( q0, q ); + * since they are controlled by the P-frames' QPs. */ + + if( rcc->b_vbv && rcc->last_satd > 0 ) + { + /* Lookahead VBV: raise the quantizer as necessary such that no frames in + * the lookahead overflow and such that the buffer is in a reasonable state + * by the end of the lookahead. */ + if( h->param.rc.i_lookahead ) + { + int j, iterations, terminate = 0; + + /* Avoid an infinite loop. */ + for( iterations = 0; iterations < 1000 && terminate != 3; iterations++ ) + { + double frame_q[3]; + double cur_bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); + double buffer_fill_cur = rcc->buffer_fill - cur_bits + rcc->buffer_rate; + double target_fill; + frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q; + frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor; + frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor; + + /* Loop over the planned future frames. */ + for( j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ ) + { + int i_type = h->fenc->i_planned_type[j]; + int i_satd = h->fenc->i_planned_satd[j]; + if( i_type == X264_TYPE_AUTO ) + break; + i_type = IS_X264_TYPE_I( i_type ) ? SLICE_TYPE_I : IS_X264_TYPE_B( i_type ) ? SLICE_TYPE_B : SLICE_TYPE_P; + cur_bits = predict_size( &rcc->pred[i_type], frame_q[i_type], i_satd ); + buffer_fill_cur = buffer_fill_cur - cur_bits + rcc->buffer_rate; + } + /* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */ + target_fill = X264_MIN( rcc->buffer_fill + j * rcc->buffer_rate * 0.5, rcc->buffer_size * 0.5 ); + if( buffer_fill_cur < target_fill ) + { + q *= 1.01; + terminate |= 1; + continue; + } + /* Try to get the buffer no more than 80% filled, but don't set an impossible goal. */ + target_fill = x264_clip3f( rcc->buffer_fill - j * rcc->buffer_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size ); + if( rcc->b_vbv_min_rate && buffer_fill_cur > target_fill ) + { + q /= 1.01; + terminate |= 2; + continue; + } + break; + } + } + /* Fallback to old purely-reactive algorithm: no lookahead. */ + else + { + if( ( pict_type == SLICE_TYPE_P || + ( pict_type == SLICE_TYPE_I && rcc->last_non_b_pict_type == SLICE_TYPE_I ) ) && + rcc->buffer_fill/rcc->buffer_size < 0.5 ) + { + q /= x264_clip3f( 2.0*rcc->buffer_fill/rcc->buffer_size, 0.5, 1.0 ); + } + + /* Now a hard threshold to make sure the frame fits in VBV. + * This one is mostly for I-frames. */ + double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); + double qf = 1.0; + /* For small VBVs, allow the frame to use up the entire VBV. */ + double max_fill_factor = h->param.rc.i_vbv_buffer_size >= 5*h->param.rc.i_vbv_max_bitrate / rcc->fps ? 2 : 1; + /* For single-frame VBVs, request that the frame use up the entire VBV. */ + double min_fill_factor = rcc->single_frame_vbv ? 1 : 2; + + if( bits > rcc->buffer_fill/max_fill_factor ) + qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 ); + q /= qf; + bits *= qf; + if( bits < rcc->buffer_rate/min_fill_factor ) + q *= bits*min_fill_factor/rcc->buffer_rate; + q = X264_MAX( q0, q ); + } + + /* Check B-frame complexity, and use up any bits that would + * overflow before the next P-frame. */ + if( h->sh.i_type == SLICE_TYPE_P && !rcc->single_frame_vbv ) + { + int nb = rcc->bframes; + double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); + double pbbits = bits; + double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd ); + double space; + if( bbits > rcc->buffer_rate ) + nb = 0; + pbbits += nb * bbits; + + space = rcc->buffer_fill + (1+nb)*rcc->buffer_rate - rcc->buffer_size; + if( pbbits < space ) + { + q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) ); + } + q = X264_MAX( q0-5, q ); + } + + if( !rcc->b_vbv_min_rate ) + q = X264_MAX( q0, q ); } if(lmin==lmax) @@ -864,16 +1643,17 @@ static double clip_qscale( x264_t *h, int pict_type, double q ) } // update qscale for 1 frame based on actual bits used so far -static float rate_estimate_qscale(x264_t *h, int pict_type) +static float rate_estimate_qscale( x264_t *h ) { float q; x264_ratecontrol_t *rcc = h->rc; ratecontrol_entry_t rce; + int pict_type = h->sh.i_type; double lmin = rcc->lmin[pict_type]; double lmax = rcc->lmax[pict_type]; - int64_t total_bits = 8*(h->stat.i_slice_size[SLICE_TYPE_I] - + h->stat.i_slice_size[SLICE_TYPE_P] - + h->stat.i_slice_size[SLICE_TYPE_B]); + int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I] + + h->stat.i_frame_size[SLICE_TYPE_P] + + h->stat.i_frame_size[SLICE_TYPE_B]); if( rcc->b_2pass ) { @@ -887,23 +1667,86 @@ static float rate_estimate_qscale(x264_t *h, int pict_type) if( pict_type == SLICE_TYPE_B ) { - rcc->last_satd = 0; + /* B-frames don't have independent ratecontrol, but rather get the + * average QP of the two adjacent P-frames + an offset */ + + int i0 = IS_X264_TYPE_I(h->fref0[0]->i_type); + int i1 = IS_X264_TYPE_I(h->fref1[0]->i_type); + int dt0 = abs(h->fenc->i_poc - h->fref0[0]->i_poc); + int dt1 = abs(h->fenc->i_poc - h->fref1[0]->i_poc); + float q0 = h->fref0[0]->f_qp_avg_rc; + float q1 = h->fref1[0]->f_qp_avg_rc; + + if( h->fref0[0]->i_type == X264_TYPE_BREF ) + q0 -= rcc->pb_offset/2; + if( h->fref1[0]->i_type == X264_TYPE_BREF ) + q1 -= rcc->pb_offset/2; + + if(i0 && i1) + q = (q0 + q1) / 2 + rcc->ip_offset; + else if(i0) + q = q1; + else if(i1) + q = q0; + else + q = (q0*dt1 + q1*dt0) / (dt0 + dt1); + if(h->fenc->b_kept_as_ref) - q = rcc->last_qscale * sqrtf(h->param.rc.f_pb_factor); + q += rcc->pb_offset/2; else - q = rcc->last_qscale * h->param.rc.f_pb_factor; - return x264_clip3f(q, lmin, lmax); + q += rcc->pb_offset; + + if( rcc->b_2pass && rcc->b_vbv ) + rcc->frame_size_planned = qscale2bits( &rce, q ); + else + rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref1[h->i_ref1-1]->i_satd ); + x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned); + + /* For row SATDs */ + if( rcc->b_vbv ) + rcc->last_satd = x264_rc_analyse_slice( h ); + return qp2qscale(q); } else { double abr_buffer = 2 * rcc->rate_tolerance * rcc->bitrate; + if( rcc->b_2pass ) { //FIXME adjust abr_buffer based on distance to the end of the video - int64_t diff = total_bits - (int64_t)rce.expected_bits; + int64_t diff; + int64_t predicted_bits = total_bits; + + if( rcc->b_vbv ) + { + if( h->param.i_threads > 1 ) + { + int j = h->rc - h->thread[0]->rc; + int i; + for( i=1; iparam.i_threads; i++ ) + { + x264_t *t = h->thread[ (j+i)%h->param.i_threads ]; + double bits = t->rc->frame_size_planned; + if( !t->b_thread_active ) + continue; + bits = X264_MAX(bits, x264_ratecontrol_get_estimated_size(t)); + predicted_bits += (int64_t)bits; + } + } + } + else + { + if( h->fenc->i_frame < h->param.i_threads ) + predicted_bits += (int64_t)h->fenc->i_frame * rcc->bitrate / rcc->fps; + else + predicted_bits += (int64_t)(h->param.i_threads - 1) * rcc->bitrate / rcc->fps; + } + + diff = predicted_bits - (int64_t)rce.expected_bits; q = rce.new_qscale; q /= x264_clip3f((double)(abr_buffer - diff) / abr_buffer, .5, 2); - if( h->fenc->i_frame > 30 ) + if( ((h->fenc->i_frame + 1 - h->param.i_threads) >= rcc->fps) && + (rcc->expected_bits_sum > 0)) { /* Adjust quant based on the difference between * achieved and expected bitrate so far */ @@ -911,6 +1754,27 @@ static float rate_estimate_qscale(x264_t *h, int pict_type) double w = x264_clip3f( time*100, 0.0, 1.0 ); q *= pow( (double)total_bits / rcc->expected_bits_sum, w ); } + if( rcc->b_vbv ) + { + /* Do not overflow vbv */ + double expected_size = qscale2bits(&rce, q); + double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size; + double expected_fullness = rce.expected_vbv / rcc->buffer_size; + double qmax = q*(2 - expected_fullness); + double size_constraint = 1 + expected_fullness; + qmax = X264_MAX(qmax, rce.new_qscale); + if (expected_fullness < .05) + qmax = lmax; + qmax = X264_MIN(qmax, lmax); + while( ((expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax)) || + ((expected_vbv < 0) && (q < lmax))) + { + q *= 1.05; + expected_size = qscale2bits(&rce, q); + expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size; + } + rcc->last_satd = x264_rc_analyse_slice( h ); + } q = x264_clip3f( q, lmin, lmax ); } else /* 1pass ABR */ @@ -925,7 +1789,7 @@ static float rate_estimate_qscale(x264_t *h, int pict_type) * tradeoff between quality and bitrate precision. But at large * tolerances, the bit distribution approaches that of 2pass. */ - double wanted_bits, overflow, lmin, lmax; + double wanted_bits, overflow=1, lmin, lmax; rcc->last_satd = x264_rc_analyse_slice( h ); rcc->short_term_cplxsum *= 0.5; @@ -933,9 +1797,8 @@ static float rate_estimate_qscale(x264_t *h, int pict_type) rcc->short_term_cplxsum += rcc->last_satd; rcc->short_term_cplxcount ++; - rce.p_tex_bits = rcc->last_satd; + rce.tex_bits = rcc->last_satd; rce.blurred_complexity = rcc->short_term_cplxsum / rcc->short_term_cplxcount; - rce.i_tex_bits = 0; rce.mv_bits = 0; rce.p_count = rcc->nmb; rce.i_count = 0; @@ -943,19 +1806,24 @@ static float rate_estimate_qscale(x264_t *h, int pict_type) rce.qscale = 1; rce.pict_type = pict_type; - if( h->param.rc.i_rf_constant ) + if( h->param.rc.i_rc_method == X264_RC_CRF ) { q = get_qscale( h, &rce, rcc->rate_factor_constant, h->fenc->i_frame ); - overflow = 1; } else { + int i_frame_done = h->fenc->i_frame + 1 - h->param.i_threads; + q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame ); - wanted_bits = h->fenc->i_frame * rcc->bitrate / rcc->fps; - abr_buffer *= X264_MAX( 1, sqrt(h->fenc->i_frame/25) ); - overflow = x264_clip3f( 1.0 + (total_bits - wanted_bits) / abr_buffer, .5, 2 ); - q *= overflow; + // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end? + wanted_bits = i_frame_done * rcc->bitrate / rcc->fps; + if( wanted_bits > 0 ) + { + abr_buffer *= X264_MAX( 1, sqrt(i_frame_done/25) ); + overflow = x264_clip3f( 1.0 + (total_bits - wanted_bits) / abr_buffer, .5, 2 ); + q *= overflow; + } } if( pict_type == SLICE_TYPE_I && h->param.i_keyint_max > 1 @@ -964,44 +1832,217 @@ static float rate_estimate_qscale(x264_t *h, int pict_type) { q = qp2qscale( rcc->accum_p_qp / rcc->accum_p_norm ); q /= fabs( h->param.rc.f_ip_factor ); - q = clip_qscale( h, pict_type, q ); } - else + else if( h->i_frame > 0 ) { - if( h->stat.i_slice_count[h->param.i_keyint_max > 1 ? SLICE_TYPE_P : SLICE_TYPE_I] < 5 ) - { - float w = h->stat.i_slice_count[SLICE_TYPE_P] / 5.; - float q2 = qp2qscale(ABR_INIT_QP); - q = q*w + q2*(1-w); - } - /* Asymmetric clipping, because symmetric would prevent * overflow control in areas of rapidly oscillating complexity */ lmin = rcc->last_qscale_for[pict_type] / rcc->lstep; lmax = rcc->last_qscale_for[pict_type] * rcc->lstep; - if( overflow > 1.1 ) + if( overflow > 1.1 && h->i_frame > 3 ) lmax *= rcc->lstep; else if( overflow < 0.9 ) lmin /= rcc->lstep; q = x264_clip3f(q, lmin, lmax); - q = clip_qscale(h, pict_type, q); - //FIXME use get_diff_limited_q() ? } + else if( h->param.rc.i_rc_method == X264_RC_CRF ) + { + q = qp2qscale( ABR_INIT_QP ) / fabs( h->param.rc.f_ip_factor ); + } + rcc->qp_novbv = qscale2qp(q); + + //FIXME use get_diff_limited_q() ? + q = clip_qscale( h, pict_type, q ); } rcc->last_qscale_for[pict_type] = rcc->last_qscale = q; + if( !(rcc->b_2pass && !rcc->b_vbv) && h->fenc->i_frame == 0 ) + rcc->last_qscale_for[SLICE_TYPE_P] = q; + + if( rcc->b_2pass && rcc->b_vbv ) + rcc->frame_size_planned = qscale2bits(&rce, q); + else + rcc->frame_size_planned = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); + x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned); return q; } } +void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next ) +{ + if( cur != prev ) + { +#define COPY(var) memcpy(&cur->rc->var, &prev->rc->var, sizeof(cur->rc->var)) + /* these vars are updated in x264_ratecontrol_start() + * so copy them from the context that most recently started (prev) + * to the context that's about to start (cur). + */ + COPY(accum_p_qp); + COPY(accum_p_norm); + COPY(last_satd); + COPY(last_rceq); + COPY(last_qscale_for); + COPY(last_non_b_pict_type); + COPY(short_term_cplxsum); + COPY(short_term_cplxcount); + COPY(bframes); + COPY(prev_zone); +#undef COPY + } + if( cur != next ) + { +#define COPY(var) next->rc->var = cur->rc->var + /* these vars are updated in x264_ratecontrol_end() + * so copy them from the context that most recently ended (cur) + * to the context that's about to end (next) + */ + COPY(cplxr_sum); + COPY(expected_bits_sum); + COPY(wanted_bits_window); + COPY(bframe_bits); +#undef COPY + } + //FIXME row_preds[] (not strictly necessary, but would improve prediction) + /* the rest of the variables are either constant or thread-local */ +} + +static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over ) +{ + /* find an interval ending on an overflow or underflow (depending on whether + * we're adding or removing bits), and starting on the earliest frame that + * can influence the buffer fill of that end frame. */ + x264_ratecontrol_t *rcc = h->rc; + const double buffer_min = (over ? .1 : .1) * rcc->buffer_size; + const double buffer_max = .9 * rcc->buffer_size; + double fill = fills[*t0-1]; + double parity = over ? 1. : -1.; + int i, start=-1, end=-1; + for(i = *t0; i < rcc->num_entries; i++) + { + fill += (rcc->buffer_rate - qscale2bits(&rcc->entry[i], rcc->entry[i].new_qscale)) * parity; + fill = x264_clip3f(fill, 0, rcc->buffer_size); + fills[i] = fill; + if(fill <= buffer_min || i == 0) + { + if(end >= 0) + break; + start = i; + } + else if(fill >= buffer_max && start >= 0) + end = i; + } + *t0 = start; + *t1 = end; + return start>=0 && end>=0; +} + +static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max) +{ + x264_ratecontrol_t *rcc = h->rc; + double qscale_orig, qscale_new; + int i; + int adjusted = 0; + if(t0 > 0) + t0++; + for(i = t0; i <= t1; i++) + { + qscale_orig = rcc->entry[i].new_qscale; + qscale_orig = x264_clip3f(qscale_orig, qscale_min, qscale_max); + qscale_new = qscale_orig * adjustment; + qscale_new = x264_clip3f(qscale_new, qscale_min, qscale_max); + rcc->entry[i].new_qscale = qscale_new; + adjusted = adjusted || (qscale_new != qscale_orig); + } + return adjusted; +} + +static double count_expected_bits( x264_t *h ) +{ + x264_ratecontrol_t *rcc = h->rc; + double expected_bits = 0; + int i; + for(i = 0; i < rcc->num_entries; i++) + { + ratecontrol_entry_t *rce = &rcc->entry[i]; + rce->expected_bits = expected_bits; + expected_bits += qscale2bits(rce, rce->new_qscale); + } + return expected_bits; +} + +static int vbv_pass2( x264_t *h ) +{ + /* for each interval of buffer_full .. underflow, uniformly increase the qp of all + * frames in the interval until either buffer is full at some intermediate frame or the + * last frame in the interval no longer underflows. Recompute intervals and repeat. + * Then do the converse to put bits back into overflow areas until target size is met */ + + x264_ratecontrol_t *rcc = h->rc; + double *fills; + double all_available_bits = h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps; + double expected_bits = 0; + double adjustment; + double prev_bits = 0; + int i, t0, t1; + double qscale_min = qp2qscale(h->param.rc.i_qp_min); + double qscale_max = qp2qscale(h->param.rc.i_qp_max); + int iterations = 0; + int adj_min, adj_max; + CHECKED_MALLOC( fills, (rcc->num_entries+1)*sizeof(double) ); + + fills++; + + /* adjust overall stream size */ + do + { + iterations++; + prev_bits = expected_bits; + + if(expected_bits != 0) + { /* not first iteration */ + adjustment = X264_MAX(X264_MIN(expected_bits / all_available_bits, 0.999), 0.9); + fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init; + t0 = 0; + /* fix overflows */ + adj_min = 1; + while(adj_min && find_underflow(h, fills, &t0, &t1, 1)) + { + adj_min = fix_underflow(h, t0, t1, adjustment, qscale_min, qscale_max); + t0 = t1; + } + } + + fills[-1] = rcc->buffer_size * (1. - h->param.rc.f_vbv_buffer_init); + t0 = 0; + /* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */ + adj_max = 1; + while(adj_max && find_underflow(h, fills, &t0, &t1, 0)) + adj_max = fix_underflow(h, t0, t1, 1.001, qscale_min, qscale_max); + + expected_bits = count_expected_bits(h); + } while((expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) ); + + if (!adj_max) + x264_log( h, X264_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n"); + + /* store expected vbv filling values for tracking when encoding */ + for(i = 0; i < rcc->num_entries; i++) + rcc->entry[i].expected_vbv = rcc->buffer_size - fills[i]; + + x264_free(fills-1); + return 0; +fail: + return -1; +} + static int init_pass2( x264_t *h ) { x264_ratecontrol_t *rcc = h->rc; uint64_t all_const_bits = 0; - uint64_t all_available_bits = (uint64_t)(h->param.rc.i_bitrate * 1000 * (double)rcc->num_entries / rcc->fps); + uint64_t all_available_bits = (uint64_t)(h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps); double rate_factor, step, step_mult; double qblur = h->param.rc.f_qblur; double cplxblur = h->param.rc.f_complexity_blur; @@ -1011,19 +2052,16 @@ static int init_pass2( x264_t *h ) int i; /* find total/average complexity & const_bits */ - for(i=0; inum_entries; i++){ + for(i=0; inum_entries; i++) + { ratecontrol_entry_t *rce = &rcc->entry[i]; all_const_bits += rce->misc_bits; - rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale; - rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale; - rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits * rce->qscale; - rcc->frame_count[rce->pict_type] ++; } if( all_available_bits < all_const_bits) { x264_log(h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n", - (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000))); + (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.))); return -1; } @@ -1031,27 +2069,33 @@ static int init_pass2( x264_t *h ) * We don't blur the QPs directly, because then one very simple frame * could drag down the QP of a nearby complex frame and give it more * bits than intended. */ - for(i=0; inum_entries; i++){ + for(i=0; inum_entries; i++) + { ratecontrol_entry_t *rce = &rcc->entry[i]; double weight_sum = 0; double cplx_sum = 0; double weight = 1.0; + double gaussian_weight; int j; /* weighted average of cplx of future frames */ - for(j=1; jnum_entries-i; j++){ + for(j=1; jnum_entries-i; j++) + { ratecontrol_entry_t *rcj = &rcc->entry[i+j]; weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 ); if(weight < .0001) break; - weight_sum += weight; - cplx_sum += weight * qscale2bits(rcj, 1); + gaussian_weight = weight * exp(-j*j/200.0); + weight_sum += gaussian_weight; + cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits); } /* weighted average of cplx of past frames */ weight = 1.0; - for(j=0; j<=cplxblur*2 && j<=i; j++){ + for(j=0; j<=cplxblur*2 && j<=i; j++) + { ratecontrol_entry_t *rcj = &rcc->entry[i-j]; - weight_sum += weight; - cplx_sum += weight * qscale2bits(rcj, 1); + gaussian_weight = weight * exp(-j*j/200.0); + weight_sum += gaussian_weight; + cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits); weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 ); if(weight < .0001) break; @@ -1059,9 +2103,9 @@ static int init_pass2( x264_t *h ) rce->blurred_complexity = cplx_sum / weight_sum; } - qscale = x264_malloc(sizeof(double)*rcc->num_entries); - if(filter_size > 1) - blurred_qscale = x264_malloc(sizeof(double)*rcc->num_entries); + CHECKED_MALLOC( qscale, sizeof(double)*rcc->num_entries ); + if( filter_size > 1 ) + CHECKED_MALLOC( blurred_qscale, sizeof(double)*rcc->num_entries ); else blurred_qscale = qscale; @@ -1078,40 +2122,47 @@ static int init_pass2( x264_t *h ) step_mult = all_available_bits / expected_bits; rate_factor = 0; - for(step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5){ + for(step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5) + { expected_bits = 0; rate_factor += step; rcc->last_non_b_pict_type = -1; rcc->last_accum_p_norm = 1; rcc->accum_p_norm = 0; - rcc->buffer_fill = rcc->buffer_size * h->param.rc.f_vbv_buffer_init; /* find qscale */ - for(i=0; inum_entries; i++){ + for(i=0; inum_entries; i++) + { qscale[i] = get_qscale(h, &rcc->entry[i], rate_factor, i); } /* fixed I/B qscale relative to P */ - for(i=rcc->num_entries-1; i>=0; i--){ + for(i=rcc->num_entries-1; i>=0; i--) + { qscale[i] = get_diff_limited_q(h, &rcc->entry[i], qscale[i]); assert(qscale[i] >= 0); } /* smooth curve */ - if(filter_size > 1){ + if(filter_size > 1) + { assert(filter_size%2==1); - for(i=0; inum_entries; i++){ + for(i=0; inum_entries; i++) + { ratecontrol_entry_t *rce = &rcc->entry[i]; int j; double q=0.0, sum=0.0; - for(j=0; j= rcc->num_entries) continue; - if(rce->pict_type != rcc->entry[index].pict_type) continue; + if(index < 0 || index >= rcc->num_entries) + continue; + if(rce->pict_type != rcc->entry[index].pict_type) + continue; q += qscale[index] * coeff; sum += coeff; } @@ -1120,19 +2171,14 @@ static int init_pass2( x264_t *h ) } /* find expected bits */ - for(i=0; inum_entries; i++){ + for(i=0; inum_entries; i++) + { ratecontrol_entry_t *rce = &rcc->entry[i]; - double bits; rce->new_qscale = clip_qscale(h, rce->pict_type, blurred_qscale[i]); assert(rce->new_qscale >= 0); - bits = qscale2bits(rce, rce->new_qscale) + rce->misc_bits; - - rce->expected_bits = expected_bits; - expected_bits += bits; - update_vbv(h, bits); + expected_bits += qscale2bits(rce, rce->new_qscale); } -//printf("expected:%llu available:%llu factor:%lf avgQ:%lf\n", (uint64_t)expected_bits, all_available_bits, rate_factor); if(expected_bits > all_available_bits) rate_factor -= step; } @@ -1140,6 +2186,11 @@ static int init_pass2( x264_t *h ) if(filter_size > 1) x264_free(blurred_qscale); + if(rcc->b_vbv) + if( vbv_pass2( h ) ) + return -1; + expected_bits = count_expected_bits(h); + if(fabs(expected_bits/all_available_bits - 1.0) > 0.01) { double avgq = 0; @@ -1147,30 +2198,31 @@ static int init_pass2( x264_t *h ) avgq += rcc->entry[i].new_qscale; avgq = qscale2qp(avgq / rcc->num_entries); - x264_log(h, X264_LOG_ERROR, "Error: 2pass curve failed to converge\n"); - x264_log(h, X264_LOG_ERROR, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n", + if ((expected_bits > all_available_bits) || (!rcc->b_vbv)) + x264_log(h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n"); + x264_log(h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n", (float)h->param.rc.i_bitrate, expected_bits * rcc->fps / (rcc->num_entries * 1000.), avgq); if(expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2) { if(h->param.rc.i_qp_min > 0) - x264_log(h, X264_LOG_ERROR, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min); + x264_log(h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min); else - x264_log(h, X264_LOG_ERROR, "try reducing target bitrate\n"); + x264_log(h, X264_LOG_WARNING, "try reducing target bitrate\n"); } else if(expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2) { if(h->param.rc.i_qp_max < 51) - x264_log(h, X264_LOG_ERROR, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max); + x264_log(h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max); else - x264_log(h, X264_LOG_ERROR, "try increasing target bitrate\n"); + x264_log(h, X264_LOG_WARNING, "try increasing target bitrate\n"); } - else - x264_log(h, X264_LOG_ERROR, "internal error\n"); + else if(!(rcc->b_2pass && rcc->b_vbv)) + x264_log(h, X264_LOG_WARNING, "internal error\n"); } return 0; +fail: + return -1; } - -