X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=encoder%2Fratecontrol.c;h=723350c5f6af77b2a3dbab5c83e34927e85e4e4f;hb=2102de2584e03fce4abac49eb37d5d7a0803380f;hp=06911421b3f63922679f921b3357885536cc2ea7;hpb=8dc839a6300c116faf040b2dae47b06c2920b4f8;p=x264 diff --git a/encoder/ratecontrol.c b/encoder/ratecontrol.c index 06911421..723350c5 100644 --- a/encoder/ratecontrol.c +++ b/encoder/ratecontrol.c @@ -1,7 +1,7 @@ -/***************************************************-*- coding: iso-8859-1 -*- - * ratecontrol.c: h264 encoder library (Rate Control) +/***************************************************************************** + * ratecontrol.c: ratecontrol ***************************************************************************** - * Copyright (C) 2005-2008 x264 project + * Copyright (C) 2005-2016 x264 project * * Authors: Loren Merritt * Michael Niedermayer @@ -22,44 +22,51 @@ * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. + * + * This program is also available under a commercial proprietary license. + * For more information, contact us at licensing@x264.com. *****************************************************************************/ -#define _ISOC99_SOURCE #undef NDEBUG // always check asserts, the speed effect is far too small to disable them -#include #include "common/common.h" -#include "common/cpu.h" #include "ratecontrol.h" #include "me.h" typedef struct { int pict_type; + int frame_type; int kept_as_ref; - float qscale; + double qscale; int mv_bits; int tex_bits; int misc_bits; - uint64_t expected_bits; /*total expected bits up to the current frame (current one excluded)*/ + double expected_bits; /* total expected bits up to the current frame (current one excluded) */ double expected_vbv; - float new_qscale; - int new_qp; + double new_qscale; + float new_qp; int i_count; int p_count; int s_count; float blurred_complexity; char direct_mode; + int16_t weight[3][2]; + int16_t i_weight_denom[2]; int refcount[16]; int refs; + int64_t i_duration; + int64_t i_cpb_duration; + int out_num; } ratecontrol_entry_t; typedef struct { - double coeff; - double count; - double decay; - double offset; + float coeff_min; + float coeff; + float count; + float decay; + float offset; } predictor_t; struct x264_ratecontrol_t @@ -74,31 +81,34 @@ struct x264_ratecontrol_t double rate_tolerance; double qcompress; int nmb; /* number of macroblocks in a frame */ - int qp_constant[5]; + int qp_constant[3]; /* current frame */ ratecontrol_entry_t *rce; - int qp; /* qp for current frame */ - int qpm; /* qp for current macroblock */ - float f_qpm; /* qp for current macroblock: precise float for AQ */ + float qpm; /* qp for current macroblock: precise float for AQ */ float qpa_rc; /* average of macroblocks' qp before aq */ - float qpa_aq; /* average of macroblocks' qp after aq */ + float qpa_rc_prev; + int qpa_aq; /* average of macroblocks' qp after aq */ + int qpa_aq_prev; float qp_novbv; /* QP for the current frame if 1-pass VBV was disabled. */ - int qp_force; /* VBV stuff */ double buffer_size; - double buffer_fill_final; /* real buffer as of the last finished frame */ + int64_t buffer_fill_final; + int64_t buffer_fill_final_min; double buffer_fill; /* planned buffer, if all in-progress frames hit their bit budget */ double buffer_rate; /* # of bits added to buffer_fill after each frame */ + double vbv_max_rate; /* # of bits added to buffer_fill per second */ predictor_t *pred; /* predict frame size from satd */ int single_frame_vbv; + float rate_factor_max_increment; /* Don't allow RF above (CRF + this value). */ /* ABR stuff */ int last_satd; double last_rceq; double cplxr_sum; /* sum of bits*qscale/rceq */ double expected_bits_sum; /* sum of qscale2bits after rceq, ratefactor, and overflow, only includes finished frames */ + int64_t filler_bits_sum; /* sum in bits of finished frames' filler data */ double wanted_bits_window; /* target bitrate * window */ double cbr_decay; double short_term_cplxsum; @@ -117,22 +127,40 @@ struct x264_ratecontrol_t int num_entries; /* number of ratecontrol_entry_ts */ ratecontrol_entry_t *entry; /* FIXME: copy needed data and free this once init is done */ + ratecontrol_entry_t **entry_out; double last_qscale; - double last_qscale_for[5]; /* last qscale for a specific pict type, used for max_diff & ipb factor stuff */ + double last_qscale_for[3]; /* last qscale for a specific pict type, used for max_diff & ipb factor stuff */ int last_non_b_pict_type; double accum_p_qp; /* for determining I-frame quant */ double accum_p_norm; double last_accum_p_norm; - double lmin[5]; /* min qscale by frame type */ - double lmax[5]; + double lmin[3]; /* min qscale by frame type */ + double lmax[3]; double lstep; /* max change (multiply) in qscale per frame */ - uint16_t *qp_buffer; /* Global buffer for converting MB-tree quantizer data. */ + struct + { + uint16_t *qp_buffer[2]; /* Global buffers for converting MB-tree quantizer data. */ + int qpbuf_pos; /* In order to handle pyramid reordering, QP buffer acts as a stack. + * This value is the current position (0 or 1). */ + int src_mb_count; + + /* For rescaling */ + int rescale_enabled; + float *scale_buffer[2]; /* Intermediate buffers */ + int filtersize[2]; /* filter size (H/V) */ + float *coeffs[2]; + int *pos[2]; + int srcdim[2]; /* Source dimensions (W/H) */ + } mbtree; /* MBRC stuff */ - double frame_size_estimated; + float frame_size_estimated; /* Access to this variable must be atomic: double is + * not atomic on all arches we care about */ + double frame_size_maximum; /* Maximum frame size due to MinCR */ double frame_size_planned; - predictor_t (*row_pred)[2]; - predictor_t row_preds[5][2]; + double slice_size_planned; + predictor_t *row_pred; + predictor_t row_preds[3][2]; predictor_t *pred_b_from_p; /* predict B-frame size from P-frame satd */ int bframes; /* # consecutive B-frames before this P-frame */ int bframe_bits; /* total cost of those frames */ @@ -140,173 +168,416 @@ struct x264_ratecontrol_t int i_zones; x264_zone_t *zones; x264_zone_t *prev_zone; + + /* hrd stuff */ + int initial_cpb_removal_delay; + int initial_cpb_removal_delay_offset; + double nrt_first_access_unit; /* nominal removal time */ + double previous_cpb_final_arrival_time; + uint64_t hrd_multiply_denom; }; static int parse_zones( x264_t *h ); static int init_pass2(x264_t *); static float rate_estimate_qscale( x264_t *h ); -static void update_vbv( x264_t *h, int bits ); +static int update_vbv( x264_t *h, int bits ); static void update_vbv_plan( x264_t *h, int overhead ); -static double predict_size( predictor_t *p, double q, double var ); -static void update_predictor( predictor_t *p, double q, double var, double bits ); +static float predict_size( predictor_t *p, float q, float var ); +static void update_predictor( predictor_t *p, float q, float var, float bits ); + +#define CMP_OPT_FIRST_PASS( opt, param_val )\ +{\ + if( ( p = strstr( opts, opt "=" ) ) && sscanf( p, opt "=%d" , &i ) && param_val != i )\ + {\ + x264_log( h, X264_LOG_ERROR, "different " opt " setting than first pass (%d vs %d)\n", param_val, i );\ + return -1;\ + }\ +} /* Terminology: * qp = h.264's quantizer * qscale = linearized quantizer = Lagrange multiplier */ -static inline double qp2qscale(double qp) +static inline float qp2qscale( float qp ) { - return 0.85 * pow(2.0, ( qp - 12.0 ) / 6.0); + return 0.85f * powf( 2.0f, ( qp - (12.0f + QP_BD_OFFSET) ) / 6.0f ); } -static inline double qscale2qp(double qscale) +static inline float qscale2qp( float qscale ) { - return 12.0 + 6.0 * log(qscale/0.85) / log(2.0); + return (12.0f + QP_BD_OFFSET) + 6.0f * log2f( qscale/0.85f ); } /* Texture bitrate is not quite inversely proportional to qscale, * probably due the the changing number of SKIP blocks. * MV bits level off at about qp<=12, because the lambda used * for motion estimation is constant there. */ -static inline double qscale2bits(ratecontrol_entry_t *rce, double qscale) +static inline double qscale2bits( ratecontrol_entry_t *rce, double qscale ) { - if(qscale<0.1) + if( qscale<0.1 ) qscale = 0.1; return (rce->tex_bits + .1) * pow( rce->qscale / qscale, 1.1 ) + rce->mv_bits * pow( X264_MAX(rce->qscale, 1) / X264_MAX(qscale, 1), 0.5 ) + rce->misc_bits; } +static ALWAYS_INLINE uint32_t ac_energy_var( uint64_t sum_ssd, int shift, x264_frame_t *frame, int i, int b_store ) +{ + uint32_t sum = sum_ssd; + uint32_t ssd = sum_ssd >> 32; + if( b_store ) + { + frame->i_pixel_sum[i] += sum; + frame->i_pixel_ssd[i] += ssd; + } + return ssd - ((uint64_t)sum * sum >> shift); +} + +static ALWAYS_INLINE uint32_t ac_energy_plane( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame, int i, int b_chroma, int b_field, int b_store ) +{ + int height = b_chroma ? 16>>CHROMA_V_SHIFT : 16; + int stride = frame->i_stride[i]; + int offset = b_field + ? 16 * mb_x + height * (mb_y&~1) * stride + (mb_y&1) * stride + : 16 * mb_x + height * mb_y * stride; + stride <<= b_field; + if( b_chroma ) + { + ALIGNED_ARRAY_16( pixel, pix,[FENC_STRIDE*16] ); + int chromapix = h->luma2chroma_pixel[PIXEL_16x16]; + int shift = 7 - CHROMA_V_SHIFT; + + h->mc.load_deinterleave_chroma_fenc( pix, frame->plane[1] + offset, stride, height ); + return ac_energy_var( h->pixf.var[chromapix]( pix, FENC_STRIDE ), shift, frame, 1, b_store ) + + ac_energy_var( h->pixf.var[chromapix]( pix+FENC_STRIDE/2, FENC_STRIDE ), shift, frame, 2, b_store ); + } + else + return ac_energy_var( h->pixf.var[PIXEL_16x16]( frame->plane[i] + offset, stride ), 8, frame, i, b_store ); +} + // Find the total AC energy of the block in all planes. -static NOINLINE uint32_t ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame ) +static NOINLINE uint32_t x264_ac_energy_mb( x264_t *h, int mb_x, int mb_y, x264_frame_t *frame ) { /* This function contains annoying hacks because GCC has a habit of reordering emms * and putting it after floating point ops. As a result, we put the emms at the end of the * function and make sure that its always called before the float math. Noinline makes * sure no reordering goes on. */ - uint32_t var = 0, i; - for( i = 0; i < 3; i++ ) - { - int w = i ? 8 : 16; - int stride = frame->i_stride[i]; - int offset = h->mb.b_interlaced - ? w * (mb_x + (mb_y&~1) * stride) + (mb_y&1) * stride - : w * (mb_x + mb_y * stride); - int pix = i ? PIXEL_8x8 : PIXEL_16x16; - stride <<= h->mb.b_interlaced; - var += h->pixf.var[pix]( frame->plane[i]+offset, stride ); + uint32_t var; + x264_prefetch_fenc( h, frame, mb_x, mb_y ); + if( h->mb.b_adaptive_mbaff ) + { + /* We don't know the super-MB mode we're going to pick yet, so + * simply try both and pick the lower of the two. */ + uint32_t var_interlaced, var_progressive; + var_interlaced = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 1, 1 ); + var_progressive = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, 0, 0 ); + if( CHROMA444 ) + { + var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 1, 1 ); + var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, 0, 0 ); + var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 1, 1 ); + var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, 0, 0 ); + } + else + { + var_interlaced += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 1, 1 ); + var_progressive += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, 0, 0 ); + } + var = X264_MIN( var_interlaced, var_progressive ); + } + else + { + var = ac_energy_plane( h, mb_x, mb_y, frame, 0, 0, PARAM_INTERLACED, 1 ); + if( CHROMA444 ) + { + var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 0, PARAM_INTERLACED, 1 ); + var += ac_energy_plane( h, mb_x, mb_y, frame, 2, 0, PARAM_INTERLACED, 1 ); + } + else + var += ac_energy_plane( h, mb_x, mb_y, frame, 1, 1, PARAM_INTERLACED, 1 ); } x264_emms(); return var; } -void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame ) +void x264_adaptive_quant_frame( x264_t *h, x264_frame_t *frame, float *quant_offsets ) { - /* constants chosen to result in approximately the same overall bitrate as without AQ. - * FIXME: while they're written in 5 significant digits, they're only tuned to 2. */ - int mb_x, mb_y; - float strength; - float avg_adj = 0.f; - /* Need to init it anyways for MB tree. */ - if( h->param.rc.f_aq_strength == 0 ) - { - int mb_xy; - memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) ); - memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) ); - if( h->frames.b_have_lowres ) - for( mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ ) - frame->i_inv_qscale_factor[mb_xy] = 256; - return; + /* Initialize frame stats */ + for( int i = 0; i < 3; i++ ) + { + frame->i_pixel_sum[i] = 0; + frame->i_pixel_ssd[i] = 0; } - if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE ) + /* Degenerate cases */ + if( h->param.rc.i_aq_mode == X264_AQ_NONE || h->param.rc.f_aq_strength == 0 ) { - for( mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ ) - for( mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ ) + /* Need to init it anyways for MB tree */ + if( h->param.rc.i_aq_mode && h->param.rc.f_aq_strength == 0 ) + { + if( quant_offsets ) + { + for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ ) + frame->f_qp_offset[mb_xy] = frame->f_qp_offset_aq[mb_xy] = quant_offsets[mb_xy]; + if( h->frames.b_have_lowres ) + for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ ) + frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8( frame->f_qp_offset[mb_xy] ); + } + else { - uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame ); - float qp_adj = x264_log2( energy + 2 ); - qp_adj *= qp_adj; - frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj; - avg_adj += qp_adj; + memset( frame->f_qp_offset, 0, h->mb.i_mb_count * sizeof(float) ); + memset( frame->f_qp_offset_aq, 0, h->mb.i_mb_count * sizeof(float) ); + if( h->frames.b_have_lowres ) + for( int mb_xy = 0; mb_xy < h->mb.i_mb_count; mb_xy++ ) + frame->i_inv_qscale_factor[mb_xy] = 256; } - avg_adj /= h->mb.i_mb_count; - strength = h->param.rc.f_aq_strength * avg_adj * (1.f / 6000.f); + } + /* Need variance data for weighted prediction */ + if( h->param.analyse.i_weighted_pred ) + { + for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ ) + for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ ) + x264_ac_energy_mb( h, mb_x, mb_y, frame ); + } + else + return; } + /* Actual adaptive quantization */ else - strength = h->param.rc.f_aq_strength * 1.0397f; + { + /* constants chosen to result in approximately the same overall bitrate as without AQ. + * FIXME: while they're written in 5 significant digits, they're only tuned to 2. */ + float strength; + float avg_adj = 0.f; + float bias_strength = 0.f; - for( mb_y = 0; mb_y < h->sps->i_mb_height; mb_y++ ) - for( mb_x = 0; mb_x < h->sps->i_mb_width; mb_x++ ) + if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE || h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED ) { - float qp_adj; - if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE ) + float bit_depth_correction = 1.f / (1 << (2*(BIT_DEPTH-8))); + float avg_adj_pow2 = 0.f; + for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ ) + for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ ) + { + uint32_t energy = x264_ac_energy_mb( h, mb_x, mb_y, frame ); + float qp_adj = powf( energy * bit_depth_correction + 1, 0.125f ); + frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj; + avg_adj += qp_adj; + avg_adj_pow2 += qp_adj * qp_adj; + } + avg_adj /= h->mb.i_mb_count; + avg_adj_pow2 /= h->mb.i_mb_count; + strength = h->param.rc.f_aq_strength * avg_adj; + avg_adj = avg_adj - 0.5f * (avg_adj_pow2 - 14.f) / avg_adj; + bias_strength = h->param.rc.f_aq_strength; + } + else + strength = h->param.rc.f_aq_strength * 1.0397f; + + for( int mb_y = 0; mb_y < h->mb.i_mb_height; mb_y++ ) + for( int mb_x = 0; mb_x < h->mb.i_mb_width; mb_x++ ) { - qp_adj = frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride]; - qp_adj = strength * (qp_adj - avg_adj); + float qp_adj; + int mb_xy = mb_x + mb_y*h->mb.i_mb_stride; + if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE_BIASED ) + { + qp_adj = frame->f_qp_offset[mb_xy]; + qp_adj = strength * (qp_adj - avg_adj) + bias_strength * (1.f - 14.f / (qp_adj * qp_adj)); + } + else if( h->param.rc.i_aq_mode == X264_AQ_AUTOVARIANCE ) + { + qp_adj = frame->f_qp_offset[mb_xy]; + qp_adj = strength * (qp_adj - avg_adj); + } + else + { + uint32_t energy = x264_ac_energy_mb( h, mb_x, mb_y, frame ); + qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - (14.427f + 2*(BIT_DEPTH-8))); + } + if( quant_offsets ) + qp_adj += quant_offsets[mb_xy]; + frame->f_qp_offset[mb_xy] = + frame->f_qp_offset_aq[mb_xy] = qp_adj; + if( h->frames.b_have_lowres ) + frame->i_inv_qscale_factor[mb_xy] = x264_exp2fix8(qp_adj); } - else + } + + /* Remove mean from SSD calculation */ + for( int i = 0; i < 3; i++ ) + { + uint64_t ssd = frame->i_pixel_ssd[i]; + uint64_t sum = frame->i_pixel_sum[i]; + int width = 16*h->mb.i_mb_width >> (i && CHROMA_H_SHIFT); + int height = 16*h->mb.i_mb_height >> (i && CHROMA_V_SHIFT); + frame->i_pixel_ssd[i] = ssd - (sum * sum + width * height / 2) / (width * height); + } +} + +static int x264_macroblock_tree_rescale_init( x264_t *h, x264_ratecontrol_t *rc ) +{ + /* Use fractional QP array dimensions to compensate for edge padding */ + float srcdim[2] = {rc->mbtree.srcdim[0] / 16.f, rc->mbtree.srcdim[1] / 16.f}; + float dstdim[2] = { h->param.i_width / 16.f, h->param.i_height / 16.f}; + int srcdimi[2] = {ceil(srcdim[0]), ceil(srcdim[1])}; + int dstdimi[2] = {ceil(dstdim[0]), ceil(dstdim[1])}; + if( PARAM_INTERLACED ) + { + srcdimi[1] = (srcdimi[1]+1)&~1; + dstdimi[1] = (dstdimi[1]+1)&~1; + } + + rc->mbtree.src_mb_count = srcdimi[0] * srcdimi[1]; + + CHECKED_MALLOC( rc->mbtree.qp_buffer[0], rc->mbtree.src_mb_count * sizeof(uint16_t) ); + if( h->param.i_bframe_pyramid && h->param.rc.b_stat_read ) + CHECKED_MALLOC( rc->mbtree.qp_buffer[1], rc->mbtree.src_mb_count * sizeof(uint16_t) ); + rc->mbtree.qpbuf_pos = -1; + + /* No rescaling to do */ + if( srcdimi[0] == dstdimi[0] && srcdimi[1] == dstdimi[1] ) + return 0; + + rc->mbtree.rescale_enabled = 1; + + /* Allocate intermediate scaling buffers */ + CHECKED_MALLOC( rc->mbtree.scale_buffer[0], srcdimi[0] * srcdimi[1] * sizeof(float) ); + CHECKED_MALLOC( rc->mbtree.scale_buffer[1], dstdimi[0] * srcdimi[1] * sizeof(float) ); + + /* Allocate and calculate resize filter parameters and coefficients */ + for( int i = 0; i < 2; i++ ) + { + if( srcdim[i] > dstdim[i] ) // downscale + rc->mbtree.filtersize[i] = 1 + (2 * srcdimi[i] + dstdimi[i] - 1) / dstdimi[i]; + else // upscale + rc->mbtree.filtersize[i] = 3; + + CHECKED_MALLOC( rc->mbtree.coeffs[i], rc->mbtree.filtersize[i] * dstdimi[i] * sizeof(float) ); + CHECKED_MALLOC( rc->mbtree.pos[i], dstdimi[i] * sizeof(int) ); + + /* Initialize filter coefficients */ + float inc = srcdim[i] / dstdim[i]; + float dmul = inc > 1.f ? dstdim[i] / srcdim[i] : 1.f; + float dstinsrc = 0.5f * inc - 0.5f; + int filtersize = rc->mbtree.filtersize[i]; + for( int j = 0; j < dstdimi[i]; j++ ) + { + int pos = dstinsrc - (filtersize - 2.f) * 0.5f; + float sum = 0.0; + rc->mbtree.pos[i][j] = pos; + for( int k = 0; k < filtersize; k++ ) { - uint32_t energy = ac_energy_mb( h, mb_x, mb_y, frame ); - qp_adj = strength * (x264_log2( X264_MAX(energy, 1) ) - 14.427f); + float d = fabs( pos + k - dstinsrc ) * dmul; + float coeff = X264_MAX( 1.f - d, 0 ); + rc->mbtree.coeffs[i][j * filtersize + k] = coeff; + sum += coeff; } - frame->f_qp_offset[mb_x + mb_y*h->mb.i_mb_stride] = - frame->f_qp_offset_aq[mb_x + mb_y*h->mb.i_mb_stride] = qp_adj; - if( h->frames.b_have_lowres ) - frame->i_inv_qscale_factor[mb_x + mb_y*h->mb.i_mb_stride] = x264_exp2fix8(qp_adj); + sum = 1.0f / sum; + for( int k = 0; k < filtersize; k++ ) + rc->mbtree.coeffs[i][j * filtersize + k] *= sum; + dstinsrc += inc; } + } + + /* Write back actual qp array dimensions */ + rc->mbtree.srcdim[0] = srcdimi[0]; + rc->mbtree.srcdim[1] = srcdimi[1]; + return 0; +fail: + return -1; } +static void x264_macroblock_tree_rescale_destroy( x264_ratecontrol_t *rc ) +{ + for( int i = 0; i < 2; i++ ) + { + x264_free( rc->mbtree.qp_buffer[i] ); + x264_free( rc->mbtree.scale_buffer[i] ); + x264_free( rc->mbtree.coeffs[i] ); + x264_free( rc->mbtree.pos[i] ); + } +} -/***************************************************************************** -* x264_adaptive_quant: - * adjust macroblock QP based on variance (AC energy) of the MB. - * high variance = higher QP - * low variance = lower QP - * This generally increases SSIM and lowers PSNR. -*****************************************************************************/ -void x264_adaptive_quant( x264_t *h ) +static ALWAYS_INLINE float tapfilter( float *src, int pos, int max, int stride, float *coeff, int filtersize ) { - x264_emms(); - /* MB-tree currently doesn't adjust quantizers in B-frames. */ - float qp_offset = h->sh.i_type == SLICE_TYPE_B ? h->fenc->f_qp_offset_aq[h->mb.i_mb_xy] : h->fenc->f_qp_offset[h->mb.i_mb_xy]; - h->mb.i_qp = x264_clip3( h->rc->f_qpm + qp_offset + .5, h->param.rc.i_qp_min, h->param.rc.i_qp_max ); + float sum = 0.f; + for( int i = 0; i < filtersize; i++, pos++ ) + sum += src[x264_clip3( pos, 0, max-1 )*stride] * coeff[i]; + return sum; } -int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame ) +static void x264_macroblock_tree_rescale( x264_t *h, x264_ratecontrol_t *rc, float *dst ) +{ + float *input, *output; + int filtersize, stride, height; + + /* H scale first */ + input = rc->mbtree.scale_buffer[0]; + output = rc->mbtree.scale_buffer[1]; + filtersize = rc->mbtree.filtersize[0]; + stride = rc->mbtree.srcdim[0]; + height = rc->mbtree.srcdim[1]; + for( int y = 0; y < height; y++, input += stride, output += h->mb.i_mb_width ) + { + float *coeff = rc->mbtree.coeffs[0]; + for( int x = 0; x < h->mb.i_mb_width; x++, coeff+=filtersize ) + output[x] = tapfilter( input, rc->mbtree.pos[0][x], stride, 1, coeff, filtersize ); + } + + /* V scale next */ + input = rc->mbtree.scale_buffer[1]; + output = dst; + filtersize = rc->mbtree.filtersize[1]; + stride = h->mb.i_mb_width; + height = rc->mbtree.srcdim[1]; + for( int x = 0; x < h->mb.i_mb_width; x++, input++, output++ ) + { + float *coeff = rc->mbtree.coeffs[1]; + for( int y = 0; y < h->mb.i_mb_height; y++, coeff+=filtersize ) + output[y*stride] = tapfilter( input, rc->mbtree.pos[1][y], height, stride, coeff, filtersize ); + } +} + +int x264_macroblock_tree_read( x264_t *h, x264_frame_t *frame, float *quant_offsets ) { x264_ratecontrol_t *rc = h->rc; uint8_t i_type_actual = rc->entry[frame->i_frame].pict_type; - int i; - if( i_type_actual != SLICE_TYPE_B ) + if( rc->entry[frame->i_frame].kept_as_ref ) { uint8_t i_type; - - if( !fread( &i_type, 1, 1, rc->p_mbtree_stat_file_in ) ) - goto fail; - - if( i_type != i_type_actual ) + if( rc->mbtree.qpbuf_pos < 0 ) { - x264_log(h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type,i_type_actual); - return -1; - } + do + { + rc->mbtree.qpbuf_pos++; - if( fread( rc->qp_buffer, sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_in ) != h->mb.i_mb_count ) - goto fail; + if( !fread( &i_type, 1, 1, rc->p_mbtree_stat_file_in ) ) + goto fail; + if( fread( rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], sizeof(uint16_t), rc->mbtree.src_mb_count, rc->p_mbtree_stat_file_in ) != rc->mbtree.src_mb_count ) + goto fail; - for( i = 0; i < h->mb.i_mb_count; i++ ) - { - frame->f_qp_offset[i] = ((float)(int16_t)endian_fix16( rc->qp_buffer[i] )) * (1/256.0); - if( h->frames.b_have_lowres ) - frame->i_inv_qscale_factor[i] = x264_exp2fix8(frame->f_qp_offset[i]); + if( i_type != i_type_actual && rc->mbtree.qpbuf_pos == 1 ) + { + x264_log( h, X264_LOG_ERROR, "MB-tree frametype %d doesn't match actual frametype %d.\n", i_type, i_type_actual ); + return -1; + } + } while( i_type != i_type_actual ); } + + float *dst = rc->mbtree.rescale_enabled ? rc->mbtree.scale_buffer[0] : frame->f_qp_offset; + h->mc.mbtree_fix8_unpack( dst, rc->mbtree.qp_buffer[rc->mbtree.qpbuf_pos], rc->mbtree.src_mb_count ); + if( rc->mbtree.rescale_enabled ) + x264_macroblock_tree_rescale( h, rc, frame->f_qp_offset ); + if( h->frames.b_have_lowres ) + for( int i = 0; i < h->mb.i_mb_count; i++ ) + frame->i_inv_qscale_factor[i] = x264_exp2fix8( frame->f_qp_offset[i] ); + rc->mbtree.qpbuf_pos--; } else - x264_adaptive_quant_frame( h, frame ); + x264_stack_align( x264_adaptive_quant_frame, h, frame, quant_offsets ); return 0; fail: - x264_log(h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n"); + x264_log( h, X264_LOG_ERROR, "Incomplete MB-tree stats file.\n" ); return -1; } @@ -314,24 +585,34 @@ int x264_reference_build_list_optimal( x264_t *h ) { ratecontrol_entry_t *rce = h->rc->rce; x264_frame_t *frames[16]; - int ref, i; + x264_weight_t weights[16][3]; + int refcount[16]; - if( rce->refs != h->i_ref0 ) + if( rce->refs != h->i_ref[0] ) return -1; - memcpy( frames, h->fref0, sizeof(frames) ); + memcpy( frames, h->fref[0], sizeof(frames) ); + memcpy( refcount, rce->refcount, sizeof(refcount) ); + memcpy( weights, h->fenc->weight, sizeof(weights) ); + memset( &h->fenc->weight[1][0], 0, sizeof(x264_weight_t[15][3]) ); /* For now don't reorder ref 0; it seems to lower quality in most cases due to skips. */ - for( ref = 1; ref < h->i_ref0; ref++ ) + for( int ref = 1; ref < h->i_ref[0]; ref++ ) { int max = -1; int bestref = 1; - for( i = 1; i < h->i_ref0; i++ ) + + for( int i = 1; i < h->i_ref[0]; i++ ) /* Favor lower POC as a tiebreaker. */ - COPY2_IF_GT( max, rce->refcount[i], bestref, i ); - rce->refcount[bestref] = -1; - h->fref0[ref] = frames[bestref]; + COPY2_IF_GT( max, refcount[i], bestref, i ); + + /* FIXME: If there are duplicates from frames other than ref0 then it is possible + * that the optimal ordering doesnt place every duplicate. */ + + refcount[bestref] = -1; + h->fref[0][ref] = frames[bestref]; + memcpy( h->fenc->weight[ref], weights[bestref], sizeof(weights[bestref]) ); } return 0; @@ -347,10 +628,120 @@ static char *x264_strcat_filename( char *input, char *suffix ) return output; } +void x264_ratecontrol_init_reconfigurable( x264_t *h, int b_init ) +{ + x264_ratecontrol_t *rc = h->rc; + if( !b_init && rc->b_2pass ) + return; + + if( h->param.rc.i_rc_method == X264_RC_CRF ) + { + /* Arbitrary rescaling to make CRF somewhat similar to QP. + * Try to compensate for MB-tree's effects as well. */ + double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80); + double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0; + rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress ) + / qp2qscale( h->param.rc.f_rf_constant + mbtree_offset + QP_BD_OFFSET ); + } + + if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 ) + { + /* We don't support changing the ABR bitrate right now, + so if the stream starts as CBR, keep it CBR. */ + if( rc->b_vbv_min_rate ) + h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate; + + if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) ) + { + h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps; + x264_log( h, X264_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n", + h->param.rc.i_vbv_buffer_size ); + } + + int kilobit_size = h->param.i_avcintra_class ? 1024 : 1000; + int vbv_buffer_size = h->param.rc.i_vbv_buffer_size * kilobit_size; + int vbv_max_bitrate = h->param.rc.i_vbv_max_bitrate * kilobit_size; + + /* Init HRD */ + if( h->param.i_nal_hrd && b_init ) + { + h->sps->vui.hrd.i_cpb_cnt = 1; + h->sps->vui.hrd.b_cbr_hrd = h->param.i_nal_hrd == X264_NAL_HRD_CBR; + h->sps->vui.hrd.i_time_offset_length = 0; + + #define BR_SHIFT 6 + #define CPB_SHIFT 4 + + // normalize HRD size and rate to the value / scale notation + h->sps->vui.hrd.i_bit_rate_scale = x264_clip3( x264_ctz( vbv_max_bitrate ) - BR_SHIFT, 0, 15 ); + h->sps->vui.hrd.i_bit_rate_value = vbv_max_bitrate >> ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT ); + h->sps->vui.hrd.i_bit_rate_unscaled = h->sps->vui.hrd.i_bit_rate_value << ( h->sps->vui.hrd.i_bit_rate_scale + BR_SHIFT ); + h->sps->vui.hrd.i_cpb_size_scale = x264_clip3( x264_ctz( vbv_buffer_size ) - CPB_SHIFT, 0, 15 ); + h->sps->vui.hrd.i_cpb_size_value = vbv_buffer_size >> ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT ); + h->sps->vui.hrd.i_cpb_size_unscaled = h->sps->vui.hrd.i_cpb_size_value << ( h->sps->vui.hrd.i_cpb_size_scale + CPB_SHIFT ); + + #undef CPB_SHIFT + #undef BR_SHIFT + + // arbitrary + #define MAX_DURATION 0.5 + + int max_cpb_output_delay = X264_MIN( h->param.i_keyint_max * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick, INT_MAX ); + int max_dpb_output_delay = h->sps->vui.i_max_dec_frame_buffering * MAX_DURATION * h->sps->vui.i_time_scale / h->sps->vui.i_num_units_in_tick; + int max_delay = (int)(90000.0 * (double)h->sps->vui.hrd.i_cpb_size_unscaled / h->sps->vui.hrd.i_bit_rate_unscaled + 0.5); + + h->sps->vui.hrd.i_initial_cpb_removal_delay_length = 2 + x264_clip3( 32 - x264_clz( max_delay ), 4, 22 ); + h->sps->vui.hrd.i_cpb_removal_delay_length = x264_clip3( 32 - x264_clz( max_cpb_output_delay ), 4, 31 ); + h->sps->vui.hrd.i_dpb_output_delay_length = x264_clip3( 32 - x264_clz( max_dpb_output_delay ), 4, 31 ); + + #undef MAX_DURATION + + vbv_buffer_size = h->sps->vui.hrd.i_cpb_size_unscaled; + vbv_max_bitrate = h->sps->vui.hrd.i_bit_rate_unscaled; + } + else if( h->param.i_nal_hrd && !b_init ) + { + x264_log( h, X264_LOG_WARNING, "VBV parameters cannot be changed when NAL HRD is in use\n" ); + return; + } + h->sps->vui.hrd.i_bit_rate_unscaled = vbv_max_bitrate; + h->sps->vui.hrd.i_cpb_size_unscaled = vbv_buffer_size; + + if( rc->b_vbv_min_rate ) + rc->bitrate = (double)h->param.rc.i_bitrate * kilobit_size; + rc->buffer_rate = vbv_max_bitrate / rc->fps; + rc->vbv_max_rate = vbv_max_bitrate; + rc->buffer_size = vbv_buffer_size; + rc->single_frame_vbv = rc->buffer_rate * 1.1 > rc->buffer_size; + rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size + * 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate); + if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.f_rf_constant_max ) + { + rc->rate_factor_max_increment = h->param.rc.f_rf_constant_max - h->param.rc.f_rf_constant; + if( rc->rate_factor_max_increment <= 0 ) + { + x264_log( h, X264_LOG_WARNING, "CRF max must be greater than CRF\n" ); + rc->rate_factor_max_increment = 0; + } + } + if( b_init ) + { + if( h->param.rc.f_vbv_buffer_init > 1. ) + h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 ); + h->param.rc.f_vbv_buffer_init = x264_clip3f( X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size ), 0, 1); + rc->buffer_fill_final = + rc->buffer_fill_final_min = rc->buffer_size * h->param.rc.f_vbv_buffer_init * h->sps->vui.i_time_scale; + rc->b_vbv = 1; + rc->b_vbv_min_rate = !rc->b_2pass + && h->param.rc.i_rc_method == X264_RC_ABR + && h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate; + } + } +} + int x264_ratecontrol_new( x264_t *h ) { x264_ratecontrol_t *rc; - int i, j; x264_emms(); @@ -361,7 +752,7 @@ int x264_ratecontrol_new( x264_t *h ) rc->b_2pass = h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.b_stat_read; /* FIXME: use integers */ - if(h->param.i_fps_num > 0 && h->param.i_fps_den > 0) + if( h->param.i_fps_num > 0 && h->param.i_fps_den > 0 ) rc->fps = (float) h->param.i_fps_num / h->param.i_fps_den; else rc->fps = 25.0; @@ -374,7 +765,7 @@ int x264_ratecontrol_new( x264_t *h ) else rc->qcompress = h->param.rc.f_qcompress; - rc->bitrate = h->param.rc.i_bitrate * 1000.; + rc->bitrate = h->param.rc.i_bitrate * (h->param.i_avcintra_class ? 1024. : 1000.); rc->rate_tolerance = h->param.rc.f_rate_tolerance; rc->nmb = h->mb.i_mb_count; rc->last_non_b_pict_type = -1; @@ -382,57 +773,32 @@ int x264_ratecontrol_new( x264_t *h ) if( h->param.rc.i_rc_method == X264_RC_CRF && h->param.rc.b_stat_read ) { - x264_log(h, X264_LOG_ERROR, "constant rate-factor is incompatible with 2pass.\n"); + x264_log( h, X264_LOG_ERROR, "constant rate-factor is incompatible with 2pass.\n" ); return -1; } - if( h->param.rc.i_vbv_buffer_size ) - { - if( h->param.rc.i_rc_method == X264_RC_CQP ) - { - x264_log(h, X264_LOG_WARNING, "VBV is incompatible with constant QP, ignored.\n"); - h->param.rc.i_vbv_max_bitrate = 0; - h->param.rc.i_vbv_buffer_size = 0; - } - else if( h->param.rc.i_vbv_max_bitrate == 0 ) - { - x264_log( h, X264_LOG_DEBUG, "VBV maxrate unspecified, assuming CBR\n" ); - h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate; - } - } - if( h->param.rc.i_vbv_max_bitrate < h->param.rc.i_bitrate && - h->param.rc.i_vbv_max_bitrate > 0) - x264_log(h, X264_LOG_WARNING, "max bitrate less than average bitrate, ignored.\n"); - else if( h->param.rc.i_vbv_max_bitrate > 0 && - h->param.rc.i_vbv_buffer_size > 0 ) + + x264_ratecontrol_init_reconfigurable( h, 1 ); + + if( h->param.i_nal_hrd ) { - if( h->param.rc.i_vbv_buffer_size < (int)(h->param.rc.i_vbv_max_bitrate / rc->fps) ) + uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale; + uint64_t num = 90000; + x264_reduce_fraction64( &num, &denom ); + rc->hrd_multiply_denom = 90000 / num; + + double bits_required = log2( 90000 / rc->hrd_multiply_denom ) + + log2( h->sps->vui.i_time_scale ) + + log2( h->sps->vui.hrd.i_cpb_size_unscaled ); + if( bits_required >= 63 ) { - h->param.rc.i_vbv_buffer_size = h->param.rc.i_vbv_max_bitrate / rc->fps; - x264_log( h, X264_LOG_WARNING, "VBV buffer size cannot be smaller than one frame, using %d kbit\n", - h->param.rc.i_vbv_buffer_size ); + x264_log( h, X264_LOG_ERROR, "HRD with very large timescale and bufsize not supported\n" ); + return -1; } - if( h->param.rc.f_vbv_buffer_init > 1. ) - h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init / h->param.rc.i_vbv_buffer_size, 0, 1 ); - rc->buffer_rate = h->param.rc.i_vbv_max_bitrate * 1000. / rc->fps; - rc->buffer_size = h->param.rc.i_vbv_buffer_size * 1000.; - rc->single_frame_vbv = rc->buffer_rate * 1.1 > rc->buffer_size; - h->param.rc.f_vbv_buffer_init = X264_MAX( h->param.rc.f_vbv_buffer_init, rc->buffer_rate / rc->buffer_size ); - rc->buffer_fill_final = rc->buffer_size * h->param.rc.f_vbv_buffer_init; - rc->cbr_decay = 1.0 - rc->buffer_rate / rc->buffer_size - * 0.5 * X264_MAX(0, 1.5 - rc->buffer_rate * rc->fps / rc->bitrate); - rc->b_vbv = 1; - rc->b_vbv_min_rate = !rc->b_2pass - && h->param.rc.i_rc_method == X264_RC_ABR - && h->param.rc.i_vbv_max_bitrate <= h->param.rc.i_bitrate; - } - else if( h->param.rc.i_vbv_max_bitrate ) - { - x264_log(h, X264_LOG_WARNING, "VBV maxrate specified, but no bufsize.\n"); - h->param.rc.i_vbv_max_bitrate = 0; } - if(rc->rate_tolerance < 0.01) + + if( rc->rate_tolerance < 0.01 ) { - x264_log(h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n"); + x264_log( h, X264_LOG_WARNING, "bitrate tolerance too small, using .01\n" ); rc->rate_tolerance = 0.01; } @@ -441,7 +807,7 @@ int x264_ratecontrol_new( x264_t *h ) if( rc->b_abr ) { /* FIXME ABR_INIT_QP is actually used only in CRF */ -#define ABR_INIT_QP ( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 ) +#define ABR_INIT_QP (( h->param.rc.i_rc_method == X264_RC_CRF ? h->param.rc.f_rf_constant : 24 ) + QP_BD_OFFSET) rc->accum_p_norm = .01; rc->accum_p_qp = ABR_INIT_QP * rc->accum_p_norm; /* estimated ratio that produces a reasonable QP for the first I-frame */ @@ -450,44 +816,46 @@ int x264_ratecontrol_new( x264_t *h ) rc->last_non_b_pict_type = SLICE_TYPE_I; } - if( h->param.rc.i_rc_method == X264_RC_CRF ) - { - /* Arbitrary rescaling to make CRF somewhat similar to QP. - * Try to compensate for MB-tree's effects as well. */ - double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80); - double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0; - rc->rate_factor_constant = pow( base_cplx, 1 - rc->qcompress ) - / qp2qscale( h->param.rc.f_rf_constant + mbtree_offset ); - } - - rc->ip_offset = 6.0 * log(h->param.rc.f_ip_factor) / log(2.0); - rc->pb_offset = 6.0 * log(h->param.rc.f_pb_factor) / log(2.0); + rc->ip_offset = 6.0 * log2f( h->param.rc.f_ip_factor ); + rc->pb_offset = 6.0 * log2f( h->param.rc.f_pb_factor ); rc->qp_constant[SLICE_TYPE_P] = h->param.rc.i_qp_constant; - rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, 51 ); - rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, 51 ); + rc->qp_constant[SLICE_TYPE_I] = x264_clip3( h->param.rc.i_qp_constant - rc->ip_offset + 0.5, 0, QP_MAX ); + rc->qp_constant[SLICE_TYPE_B] = x264_clip3( h->param.rc.i_qp_constant + rc->pb_offset + 0.5, 0, QP_MAX ); + h->mb.ip_offset = rc->ip_offset + 0.5; rc->lstep = pow( 2, h->param.rc.i_qp_step / 6.0 ); - rc->last_qscale = qp2qscale(26); - CHECKED_MALLOC( rc->pred, 5*sizeof(predictor_t) ); + rc->last_qscale = qp2qscale( 26 + QP_BD_OFFSET ); + int num_preds = h->param.b_sliced_threads * h->param.i_threads + 1; + CHECKED_MALLOC( rc->pred, 5 * sizeof(predictor_t) * num_preds ); CHECKED_MALLOC( rc->pred_b_from_p, sizeof(predictor_t) ); - for( i = 0; i < 5; i++ ) + static const float pred_coeff_table[3] = { 1.0, 1.0, 1.5 }; + for( int i = 0; i < 3; i++ ) { rc->last_qscale_for[i] = qp2qscale( ABR_INIT_QP ); rc->lmin[i] = qp2qscale( h->param.rc.i_qp_min ); rc->lmax[i] = qp2qscale( h->param.rc.i_qp_max ); - rc->pred[i].coeff= 2.0; - rc->pred[i].count= 1.0; - rc->pred[i].decay= 0.5; - rc->pred[i].offset= 0.0; - for( j = 0; j < 2; j++ ) + for( int j = 0; j < num_preds; j++ ) { - rc->row_preds[i][j].coeff= .25; - rc->row_preds[i][j].count= 1.0; - rc->row_preds[i][j].decay= 0.5; - rc->row_preds[i][j].offset= 0.0; + rc->pred[i+j*5].coeff_min = pred_coeff_table[i] / 2; + rc->pred[i+j*5].coeff = pred_coeff_table[i]; + rc->pred[i+j*5].count = 1.0; + rc->pred[i+j*5].decay = 0.5; + rc->pred[i+j*5].offset = 0.0; + } + for( int j = 0; j < 2; j++ ) + { + rc->row_preds[i][j].coeff_min = .25 / 4; + rc->row_preds[i][j].coeff = .25; + rc->row_preds[i][j].count = 1.0; + rc->row_preds[i][j].decay = 0.5; + rc->row_preds[i][j].offset = 0.0; } } - *rc->pred_b_from_p = rc->pred[0]; + rc->pred_b_from_p->coeff_min = 0.5 / 2; + rc->pred_b_from_p->coeff = 0.5; + rc->pred_b_from_p->count = 1.0; + rc->pred_b_from_p->decay = 0.5; + rc->pred_b_from_p->offset = 0.0; if( parse_zones( h ) < 0 ) { @@ -505,7 +873,7 @@ int x264_ratecontrol_new( x264_t *h ) stats_buf = stats_in = x264_slurp_file( h->param.rc.psz_stat_in ); if( !stats_buf ) { - x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n"); + x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" ); return -1; } if( h->param.rc.b_mb_tree ) @@ -513,48 +881,92 @@ int x264_ratecontrol_new( x264_t *h ) char *mbtree_stats_in = x264_strcat_filename( h->param.rc.psz_stat_in, ".mbtree" ); if( !mbtree_stats_in ) return -1; - rc->p_mbtree_stat_file_in = fopen( mbtree_stats_in, "rb" ); + rc->p_mbtree_stat_file_in = x264_fopen( mbtree_stats_in, "rb" ); x264_free( mbtree_stats_in ); if( !rc->p_mbtree_stat_file_in ) { - x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n"); + x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" ); return -1; } } /* check whether 1st pass options were compatible with current options */ - if( !strncmp( stats_buf, "#options:", 9 ) ) + if( strncmp( stats_buf, "#options:", 9 ) ) + { + x264_log( h, X264_LOG_ERROR, "options list in stats file not valid\n" ); + return -1; + } + + float res_factor, res_factor_bits; { - int i; + int i, j; + uint32_t k, l; char *opts = stats_buf; stats_in = strchr( stats_buf, '\n' ); if( !stats_in ) return -1; *stats_in = '\0'; stats_in++; + if( sscanf( opts, "#options: %dx%d", &i, &j ) != 2 ) + { + x264_log( h, X264_LOG_ERROR, "resolution specified in stats file not valid\n" ); + return -1; + } + else if( h->param.rc.b_mb_tree ) + { + rc->mbtree.srcdim[0] = i; + rc->mbtree.srcdim[1] = j; + } + res_factor = (float)h->param.i_width * h->param.i_height / (i*j); + /* Change in bits relative to resolution isn't quite linear on typical sources, + * so we'll at least try to roughly approximate this effect. */ + res_factor_bits = powf( res_factor, 0.7 ); - if( ( p = strstr( opts, "bframes=" ) ) && sscanf( p, "bframes=%d", &i ) - && h->param.i_bframe != i ) + if( !( p = strstr( opts, "timebase=" ) ) || sscanf( p, "timebase=%u/%u", &k, &l ) != 2 ) + { + x264_log( h, X264_LOG_ERROR, "timebase specified in stats file not valid\n" ); + return -1; + } + if( k != h->param.i_timebase_num || l != h->param.i_timebase_den ) { - x264_log( h, X264_LOG_ERROR, "different number of B-frames than 1st pass (%d vs %d)\n", - h->param.i_bframe, i ); + x264_log( h, X264_LOG_ERROR, "timebase mismatch with 1st pass (%u/%u vs %u/%u)\n", + h->param.i_timebase_num, h->param.i_timebase_den, k, l ); return -1; } - /* since B-adapt doesn't (yet) take into account B-pyramid, - * the converse is not a problem */ - if( h->param.i_bframe ) + CMP_OPT_FIRST_PASS( "bitdepth", BIT_DEPTH ); + CMP_OPT_FIRST_PASS( "weightp", X264_MAX( 0, h->param.analyse.i_weighted_pred ) ); + CMP_OPT_FIRST_PASS( "bframes", h->param.i_bframe ); + CMP_OPT_FIRST_PASS( "b_pyramid", h->param.i_bframe_pyramid ); + CMP_OPT_FIRST_PASS( "intra_refresh", h->param.b_intra_refresh ); + CMP_OPT_FIRST_PASS( "open_gop", h->param.b_open_gop ); + CMP_OPT_FIRST_PASS( "bluray_compat", h->param.b_bluray_compat ); + + if( (p = strstr( opts, "interlaced=" )) ) { - char buf[12]; - sprintf( buf, "b_pyramid=%d", h->param.i_bframe_pyramid ); - if( !strstr( opts, buf ) ) - x264_log( h, X264_LOG_WARNING, "different B-pyramid setting than 1st pass\n" ); + char *current = h->param.b_interlaced ? h->param.b_tff ? "tff" : "bff" : h->param.b_fake_interlaced ? "fake" : "0"; + char buf[5]; + sscanf( p, "interlaced=%4s", buf ); + if( strcmp( current, buf ) ) + { + x264_log( h, X264_LOG_ERROR, "different interlaced setting than first pass (%s vs %s)\n", current, buf ); + return -1; + } } - if( ( p = strstr( opts, "keyint=" ) ) && sscanf( p, "keyint=%d", &i ) - && h->param.i_keyint_max != i ) - x264_log( h, X264_LOG_WARNING, "different keyint than 1st pass (%d vs %d)\n", - h->param.i_keyint_max, i ); + if( (p = strstr( opts, "keyint=" )) ) + { + p += 7; + char buf[13] = "infinite "; + if( h->param.i_keyint_max != X264_KEYINT_MAX_INFINITE ) + sprintf( buf, "%d ", h->param.i_keyint_max ); + if( strncmp( p, buf, strlen(buf) ) ) + { + x264_log( h, X264_LOG_ERROR, "different keyint setting than first pass (%.*s vs %.*s)\n", + strlen(buf)-1, buf, strcspn(p, " "), p ); + return -1; + } + } if( strstr( opts, "qp=0" ) && h->param.rc.i_rc_method == X264_RC_ABR ) x264_log( h, X264_LOG_WARNING, "1st pass was lossless, bitrate prediction will be inaccurate\n" ); @@ -573,20 +985,21 @@ int x264_ratecontrol_new( x264_t *h ) return -1; } - if( h->param.rc.b_mb_tree && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) ) + if( (h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size) && ( p = strstr( opts, "rc_lookahead=" ) ) && sscanf( p, "rc_lookahead=%d", &i ) ) h->param.rc.i_lookahead = i; } /* find number of pics */ p = stats_in; - for(i=-1; p; i++) - p = strchr(p+1, ';'); - if(i==0) + int num_entries; + for( num_entries = -1; p; num_entries++ ) + p = strchr( p + 1, ';' ); + if( !num_entries ) { - x264_log(h, X264_LOG_ERROR, "empty stats file\n"); + x264_log( h, X264_LOG_ERROR, "empty stats file\n" ); return -1; } - rc->num_entries = i; + rc->num_entries = num_entries; if( h->param.i_frame_total < rc->num_entries && h->param.i_frame_total > 0 ) { @@ -601,49 +1014,62 @@ int x264_ratecontrol_new( x264_t *h ) } CHECKED_MALLOCZERO( rc->entry, rc->num_entries * sizeof(ratecontrol_entry_t) ); + CHECKED_MALLOC( rc->entry_out, rc->num_entries * sizeof(ratecontrol_entry_t*) ); /* init all to skipped p frames */ - for(i=0; inum_entries; i++) + for( int i = 0; i < rc->num_entries; i++ ) { ratecontrol_entry_t *rce = &rc->entry[i]; rce->pict_type = SLICE_TYPE_P; - rce->qscale = rce->new_qscale = qp2qscale(20); + rce->qscale = rce->new_qscale = qp2qscale( 20 + QP_BD_OFFSET ); rce->misc_bits = rc->nmb + 10; rce->new_qp = 0; + rc->entry_out[i] = rce; } /* read stats */ p = stats_in; - for(i=0; i < rc->num_entries; i++) + double total_qp_aq = 0; + for( int i = 0; i < rc->num_entries; i++ ) { ratecontrol_entry_t *rce; - int frame_number; - char pict_type; + int frame_number = 0; + int frame_out_number = 0; + char pict_type = 0; int e; char *next; - float qp; + float qp_rc, qp_aq; int ref; next= strchr(p, ';'); - if(next) + if( next ) + *next++ = 0; //sscanf is unbelievably slow on long strings + e = sscanf( p, " in:%d out:%d ", &frame_number, &frame_out_number ); + + if( frame_number < 0 || frame_number >= rc->num_entries ) { - (*next)=0; //sscanf is unbelievably slow on long strings - next++; + x264_log( h, X264_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frame_number, i ); + return -1; } - e = sscanf(p, " in:%d ", &frame_number); - - if(frame_number < 0 || frame_number >= rc->num_entries) + if( frame_out_number < 0 || frame_out_number >= rc->num_entries ) { - x264_log(h, X264_LOG_ERROR, "bad frame number (%d) at stats line %d\n", frame_number, i); + x264_log( h, X264_LOG_ERROR, "bad frame output number (%d) at stats line %d\n", frame_out_number, i ); return -1; } rce = &rc->entry[frame_number]; + rc->entry_out[frame_out_number] = rce; rce->direct_mode = 0; - e += sscanf(p, " in:%*d out:%*d type:%c q:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c", - &pict_type, &qp, &rce->tex_bits, + e += sscanf( p, " in:%*d out:%*d type:%c dur:%"SCNd64" cpbdur:%"SCNd64" q:%f aq:%f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c", + &pict_type, &rce->i_duration, &rce->i_cpb_duration, &qp_rc, &qp_aq, &rce->tex_bits, &rce->mv_bits, &rce->misc_bits, &rce->i_count, &rce->p_count, - &rce->s_count, &rce->direct_mode); + &rce->s_count, &rce->direct_mode ); + rce->tex_bits *= res_factor_bits; + rce->mv_bits *= res_factor_bits; + rce->misc_bits *= res_factor_bits; + rce->i_count *= res_factor; + rce->p_count *= res_factor; + rce->s_count *= res_factor; p = strstr( p, "ref:" ); if( !p ) @@ -659,30 +1085,66 @@ int x264_ratecontrol_new( x264_t *h ) } rce->refs = ref; - switch(pict_type) + /* find weights */ + rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1; + char *w = strchr( p, 'w' ); + if( w ) { - case 'I': rce->kept_as_ref = 1; - case 'i': rce->pict_type = SLICE_TYPE_I; break; - case 'P': rce->pict_type = SLICE_TYPE_P; break; - case 'B': rce->kept_as_ref = 1; - case 'b': rce->pict_type = SLICE_TYPE_B; break; + int count = sscanf( w, "w:%hd,%hd,%hd,%hd,%hd,%hd,%hd,%hd", + &rce->i_weight_denom[0], &rce->weight[0][0], &rce->weight[0][1], + &rce->i_weight_denom[1], &rce->weight[1][0], &rce->weight[1][1], + &rce->weight[2][0], &rce->weight[2][1] ); + if( count == 3 ) + rce->i_weight_denom[1] = -1; + else if ( count != 8 ) + rce->i_weight_denom[0] = rce->i_weight_denom[1] = -1; + } + + if( pict_type != 'b' ) + rce->kept_as_ref = 1; + switch( pict_type ) + { + case 'I': + rce->frame_type = X264_TYPE_IDR; + rce->pict_type = SLICE_TYPE_I; + break; + case 'i': + rce->frame_type = X264_TYPE_I; + rce->pict_type = SLICE_TYPE_I; + break; + case 'P': + rce->frame_type = X264_TYPE_P; + rce->pict_type = SLICE_TYPE_P; + break; + case 'B': + rce->frame_type = X264_TYPE_BREF; + rce->pict_type = SLICE_TYPE_B; + break; + case 'b': + rce->frame_type = X264_TYPE_B; + rce->pict_type = SLICE_TYPE_B; + break; default: e = -1; break; } - if(e < 10) + if( e < 14 ) { parse_error: - x264_log(h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e); + x264_log( h, X264_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e ); return -1; } - rce->qscale = qp2qscale(qp); + rce->qscale = qp2qscale( qp_rc ); + total_qp_aq += qp_aq; p = next; } + if( !h->param.b_stitchable ) + h->pps->i_pic_init_qp = SPEC_QP( (int)(total_qp_aq / rc->num_entries + 0.5) ); - x264_free(stats_buf); + x264_free( stats_buf ); - if(h->param.rc.i_rc_method == X264_RC_ABR) + if( h->param.rc.i_rc_method == X264_RC_ABR ) { - if(init_pass2(h) < 0) return -1; + if( init_pass2( h ) < 0 ) + return -1; } /* else we're using constant quant, so no need to run the bitrate allocation */ } @@ -696,10 +1158,10 @@ parse_error: if( !rc->psz_stat_file_tmpname ) return -1; - rc->p_stat_file_out = fopen( rc->psz_stat_file_tmpname, "wb" ); + rc->p_stat_file_out = x264_fopen( rc->psz_stat_file_tmpname, "wb" ); if( rc->p_stat_file_out == NULL ) { - x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n"); + x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open stats file\n" ); return -1; } @@ -714,19 +1176,27 @@ parse_error: if( !rc->psz_mbtree_stat_file_tmpname || !rc->psz_mbtree_stat_file_name ) return -1; - rc->p_mbtree_stat_file_out = fopen( rc->psz_mbtree_stat_file_tmpname, "wb" ); + rc->p_mbtree_stat_file_out = x264_fopen( rc->psz_mbtree_stat_file_tmpname, "wb" ); if( rc->p_mbtree_stat_file_out == NULL ) { - x264_log(h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n"); + x264_log( h, X264_LOG_ERROR, "ratecontrol_init: can't open mbtree stats file\n" ); return -1; } } } if( h->param.rc.b_mb_tree && (h->param.rc.b_stat_read || h->param.rc.b_stat_write) ) - CHECKED_MALLOC( rc->qp_buffer, h->mb.i_mb_count * sizeof(uint16_t) ); + { + if( !h->param.rc.b_stat_read ) + { + rc->mbtree.srcdim[0] = h->param.i_width; + rc->mbtree.srcdim[1] = h->param.i_height; + } + if( x264_macroblock_tree_rescale_init( h, rc ) < 0 ) + return -1; + } - for( i=0; iparam.i_threads; i++ ) + for( int i = 0; iparam.i_threads; i++ ) { h->thread[i]->rc = rc+i; if( i ) @@ -734,6 +1204,7 @@ parse_error: rc[i] = rc[0]; h->thread[i]->param = h->param; h->thread[i]->mb.b_variable_qp = h->mb.b_variable_qp; + h->thread[i]->mb.ip_offset = h->mb.ip_offset; } } @@ -745,14 +1216,14 @@ fail: static int parse_zone( x264_t *h, x264_zone_t *z, char *p ) { int len = 0; - char *tok, UNUSED *saveptr; + char *tok, UNUSED *saveptr=NULL; z->param = NULL; z->f_bitrate_factor = 1; - if( 3 <= sscanf(p, "%u,%u,q=%u%n", &z->i_start, &z->i_end, &z->i_qp, &len) ) + if( 3 <= sscanf(p, "%d,%d,q=%d%n", &z->i_start, &z->i_end, &z->i_qp, &len) ) z->b_force_qp = 1; - else if( 3 <= sscanf(p, "%u,%u,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) ) + else if( 3 <= sscanf(p, "%d,%d,b=%f%n", &z->i_start, &z->i_end, &z->f_bitrate_factor, &len) ) z->b_force_qp = 0; - else if( 2 <= sscanf(p, "%u,%u%n", &z->i_start, &z->i_end, &len) ) + else if( 2 <= sscanf(p, "%d,%d%n", &z->i_start, &z->i_end, &len) ) z->b_force_qp = 0; else { @@ -788,10 +1259,9 @@ fail: static int parse_zones( x264_t *h ) { x264_ratecontrol_t *rc = h->rc; - int i; if( h->param.rc.psz_zones && !h->param.rc.i_zones ) { - char *psz_zones, *p, *tok, UNUSED *saveptr; + char *psz_zones, *p; CHECKED_MALLOC( psz_zones, strlen( h->param.rc.psz_zones )+1 ); strcpy( psz_zones, h->param.rc.psz_zones ); h->param.rc.i_zones = 1; @@ -799,19 +1269,23 @@ static int parse_zones( x264_t *h ) h->param.rc.i_zones += (*p == '/'); CHECKED_MALLOC( h->param.rc.zones, h->param.rc.i_zones * sizeof(x264_zone_t) ); p = psz_zones; - for( i = 0; i < h->param.rc.i_zones; i++ ) + for( int i = 0; i < h->param.rc.i_zones; i++ ) { - tok = strtok_r( p, "/", &saveptr ); - if( !tok || parse_zone( h, &h->param.rc.zones[i], tok ) ) + int i_tok = strcspn( p, "/" ); + p[i_tok] = 0; + if( parse_zone( h, &h->param.rc.zones[i], p ) ) + { + x264_free( psz_zones ); return -1; - p = NULL; + } + p += i_tok + 1; } x264_free( psz_zones ); } if( h->param.rc.i_zones > 0 ) { - for( i = 0; i < h->param.rc.i_zones; i++ ) + for( int i = 0; i < h->param.rc.i_zones; i++ ) { x264_zone_t z = h->param.rc.zones[i]; if( z.i_start < 0 || z.i_start > z.i_end ) @@ -839,7 +1313,7 @@ static int parse_zones( x264_t *h ) rc->zones[0].f_bitrate_factor = 1; CHECKED_MALLOC( rc->zones[0].param, sizeof(x264_param_t) ); memcpy( rc->zones[0].param, &h->param, sizeof(x264_param_t) ); - for( i = 1; i < rc->i_zones; i++ ) + for( int i = 1; i < rc->i_zones; i++ ) { if( !rc->zones[i].param ) rc->zones[i].param = rc->zones[0].param; @@ -853,8 +1327,7 @@ fail: static x264_zone_t *get_zone( x264_t *h, int frame_num ) { - int i; - for( i = h->rc->i_zones-1; i >= 0; i-- ) + for( int i = h->rc->i_zones - 1; i >= 0; i-- ) { x264_zone_t *z = &h->rc->zones[i]; if( frame_num >= z->i_start && frame_num <= z->i_end ) @@ -872,20 +1345,21 @@ void x264_ratecontrol_summary( x264_t *h ) double mbtree_offset = h->param.rc.b_mb_tree ? (1.0-h->param.rc.f_qcompress)*13.5 : 0; x264_log( h, X264_LOG_INFO, "final ratefactor: %.2f\n", qscale2qp( pow( base_cplx, 1 - rc->qcompress ) - * rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset ); + * rc->cplxr_sum / rc->wanted_bits_window ) - mbtree_offset - QP_BD_OFFSET ); } } void x264_ratecontrol_delete( x264_t *h ) { x264_ratecontrol_t *rc = h->rc; - int i; + int b_regular_file; if( rc->p_stat_file_out ) { + b_regular_file = x264_is_regular_file( rc->p_stat_file_out ); fclose( rc->p_stat_file_out ); - if( h->i_frame >= rc->num_entries ) - if( rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 ) + if( h->i_frame >= rc->num_entries && b_regular_file ) + if( x264_rename( rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ) != 0 ) { x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n", rc->psz_stat_file_tmpname, h->param.rc.psz_stat_out ); @@ -894,9 +1368,10 @@ void x264_ratecontrol_delete( x264_t *h ) } if( rc->p_mbtree_stat_file_out ) { + b_regular_file = x264_is_regular_file( rc->p_mbtree_stat_file_out ); fclose( rc->p_mbtree_stat_file_out ); - if( h->i_frame >= rc->num_entries ) - if( rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 ) + if( h->i_frame >= rc->num_entries && b_regular_file ) + if( x264_rename( rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ) != 0 ) { x264_log( h, X264_LOG_ERROR, "failed to rename \"%s\" to \"%s\"\n", rc->psz_mbtree_stat_file_tmpname, rc->psz_mbtree_stat_file_name ); @@ -909,11 +1384,12 @@ void x264_ratecontrol_delete( x264_t *h ) x264_free( rc->pred ); x264_free( rc->pred_b_from_p ); x264_free( rc->entry ); - x264_free( rc->qp_buffer ); + x264_free( rc->entry_out ); + x264_macroblock_tree_rescale_destroy( rc ); if( rc->zones ) { x264_free( rc->zones[0].param ); - for( i=1; ii_zones; i++ ) + for( int i = 1; i < rc->i_zones; i++ ) if( rc->zones[i].param != rc->zones[0].param && rc->zones[i].param->param_free ) rc->zones[i].param->param_free( rc->zones[i].param ); x264_free( rc->zones ); @@ -921,22 +1397,6 @@ void x264_ratecontrol_delete( x264_t *h ) x264_free( rc ); } -void x264_ratecontrol_set_estimated_size( x264_t *h, int bits ) -{ - x264_pthread_mutex_lock( &h->fenc->mutex ); - h->rc->frame_size_estimated = bits; - x264_pthread_mutex_unlock( &h->fenc->mutex ); -} - -int x264_ratecontrol_get_estimated_size( x264_t const *h) -{ - int size; - x264_pthread_mutex_lock( &h->fenc->mutex ); - size = h->rc->frame_size_estimated; - x264_pthread_mutex_unlock( &h->fenc->mutex ); - return size; -} - static void accum_p_qp_update( x264_t *h, float qp ) { x264_ratecontrol_t *rc = h->rc; @@ -960,11 +1420,9 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead ) x264_emms(); if( zone && (!rc->prev_zone || zone->param != rc->prev_zone->param) ) - x264_encoder_reconfig( h, zone->param ); + x264_encoder_reconfig_apply( h, zone->param ); rc->prev_zone = zone; - rc->qp_force = i_force_qp; - if( h->param.rc.b_stat_read ) { int frame = h->fenc->i_frame; @@ -981,19 +1439,47 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead ) if( rc->b_vbv ) { - memset( h->fdec->i_row_bits, 0, h->sps->i_mb_height * sizeof(int) ); - rc->row_pred = &rc->row_preds[h->sh.i_type]; + memset( h->fdec->i_row_bits, 0, h->mb.i_mb_height * sizeof(int) ); + memset( h->fdec->f_row_qp, 0, h->mb.i_mb_height * sizeof(float) ); + memset( h->fdec->f_row_qscale, 0, h->mb.i_mb_height * sizeof(float) ); + rc->row_pred = rc->row_preds[h->sh.i_type]; + rc->buffer_rate = h->fenc->i_cpb_duration * rc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale; update_vbv_plan( h, overhead ); + + const x264_level_t *l = x264_levels; + while( l->level_idc != 0 && l->level_idc != h->param.i_level_idc ) + l++; + + int mincr = l->mincr; + + if( h->param.b_bluray_compat ) + mincr = 4; + + /* Profiles above High don't require minCR, so just set the maximum to a large value. */ + if( h->sps->i_profile_idc > PROFILE_HIGH ) + rc->frame_size_maximum = 1e9; + else + { + /* The spec has a bizarre special case for the first frame. */ + if( h->i_frame == 0 ) + { + //384 * ( Max( PicSizeInMbs, fR * MaxMBPS ) + MaxMBPS * ( tr( 0 ) - tr,n( 0 ) ) ) / MinCR + double fr = 1. / 172; + int pic_size_in_mbs = h->mb.i_mb_width * h->mb.i_mb_height; + rc->frame_size_maximum = 384 * BIT_DEPTH * X264_MAX( pic_size_in_mbs, fr*l->mbps ) / mincr; + } + else + { + //384 * MaxMBPS * ( tr( n ) - tr( n - 1 ) ) / MinCR + rc->frame_size_maximum = 384 * BIT_DEPTH * ((double)h->fenc->i_cpb_duration * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale) * l->mbps / mincr; + } + } } if( h->sh.i_type != SLICE_TYPE_B ) rc->bframes = h->fenc->i_bframes; - if( i_force_qp ) - { - q = i_force_qp - 1; - } - else if( rc->b_abr ) + if( rc->b_abr ) { q = qscale2qp( rate_estimate_qscale( h ) ); } @@ -1014,171 +1500,252 @@ void x264_ratecontrol_start( x264_t *h, int i_force_qp, int overhead ) if( zone->b_force_qp ) q += zone->i_qp - rc->qp_constant[SLICE_TYPE_P]; else - q -= 6*log(zone->f_bitrate_factor)/log(2); + q -= 6*log2f( zone->f_bitrate_factor ); } } + if( i_force_qp != X264_QP_AUTO ) + q = i_force_qp - 1; q = x264_clip3f( q, h->param.rc.i_qp_min, h->param.rc.i_qp_max ); - rc->qpa_rc = - rc->qpa_aq = 0; + rc->qpa_rc = rc->qpa_rc_prev = + rc->qpa_aq = rc->qpa_aq_prev = 0; h->fdec->f_qp_avg_rc = h->fdec->f_qp_avg_aq = - rc->qpm = - rc->qp = x264_clip3( (int)(q + 0.5), 0, 51 ); - rc->f_qpm = q; + rc->qpm = q; if( rce ) - rce->new_qp = rc->qp; + rce->new_qp = q; - accum_p_qp_update( h, rc->qp ); + accum_p_qp_update( h, rc->qpm ); if( h->sh.i_type != SLICE_TYPE_B ) rc->last_non_b_pict_type = h->sh.i_type; } -static double predict_row_size( x264_t *h, int y, int qp ) +static float predict_row_size( x264_t *h, int y, float qscale ) { /* average between two predictors: * absolute SATD, and scaled bit cost of the colocated row in the previous frame */ x264_ratecontrol_t *rc = h->rc; - double pred_s = predict_size( rc->row_pred[0], qp2qscale(qp), h->fdec->i_row_satd[y] ); - double pred_t = 0; - if( h->sh.i_type == SLICE_TYPE_I || qp >= h->fref0[0]->i_row_qp[y] ) + float pred_s = predict_size( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y] ); + if( h->sh.i_type == SLICE_TYPE_I || qscale >= h->fref[0][0]->f_row_qscale[y] ) { if( h->sh.i_type == SLICE_TYPE_P - && h->fref0[0]->i_type == h->fdec->i_type - && h->fref0[0]->i_row_satd[y] > 0 - && (abs(h->fref0[0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2)) + && h->fref[0][0]->i_type == h->fdec->i_type + && h->fref[0][0]->f_row_qscale[y] > 0 + && h->fref[0][0]->i_row_satd[y] > 0 + && (abs(h->fref[0][0]->i_row_satd[y] - h->fdec->i_row_satd[y]) < h->fdec->i_row_satd[y]/2)) { - pred_t = h->fref0[0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref0[0]->i_row_satd[y] - * qp2qscale(h->fref0[0]->i_row_qp[y]) / qp2qscale(qp); + float pred_t = h->fref[0][0]->i_row_bits[y] * h->fdec->i_row_satd[y] / h->fref[0][0]->i_row_satd[y] + * h->fref[0][0]->f_row_qscale[y] / qscale; + return (pred_s + pred_t) * 0.5f; } - if( pred_t == 0 ) - pred_t = pred_s; - return (pred_s + pred_t) / 2; + return pred_s; } /* Our QP is lower than the reference! */ else { - double newq = qp2qscale(qp); - double oldq = qp2qscale(h->fref0[0]->i_row_qp[y]); - double pred_intra = predict_size( rc->row_pred[1], (1 - newq / oldq) * newq, h->fdec->i_row_satds[0][0][y] ); + float pred_intra = predict_size( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y] ); /* Sum: better to overestimate than underestimate by using only one of the two predictors. */ return pred_intra + pred_s; } } -static double row_bits_so_far( x264_t *h, int y ) +static int row_bits_so_far( x264_t *h, int y ) { - int i; - double bits = 0; - for( i = 0; i <= y; i++ ) + int bits = 0; + for( int i = h->i_threadslice_start; i <= y; i++ ) bits += h->fdec->i_row_bits[i]; return bits; } -static double predict_row_size_sum( x264_t *h, int y, int qp ) +static float predict_row_size_to_end( x264_t *h, int y, float qp ) { - int i; - double bits = row_bits_so_far(h, y); - for( i = y+1; i < h->sps->i_mb_height; i++ ) - bits += predict_row_size( h, i, qp ); + float qscale = qp2qscale( qp ); + float bits = 0; + for( int i = y+1; i < h->i_threadslice_end; i++ ) + bits += predict_row_size( h, i, qscale ); return bits; } - -void x264_ratecontrol_mb( x264_t *h, int bits ) +/* TODO: + * eliminate all use of qp in row ratecontrol: make it entirely qscale-based. + * make this function stop being needlessly O(N^2) + * update more often than once per row? */ +int x264_ratecontrol_mb( x264_t *h, int bits ) { x264_ratecontrol_t *rc = h->rc; const int y = h->mb.i_mb_y; - x264_emms(); - h->fdec->i_row_bits[y] += bits; - rc->qpa_rc += rc->f_qpm; rc->qpa_aq += h->mb.i_qp; - if( h->mb.i_mb_x != h->sps->i_mb_width - 1 || !rc->b_vbv ) - return; + if( h->mb.i_mb_x != h->mb.i_mb_width - 1 ) + return 0; - h->fdec->i_row_qp[y] = rc->qpm; + x264_emms(); + rc->qpa_rc += rc->qpm * h->mb.i_mb_width; - update_predictor( rc->row_pred[0], qp2qscale(rc->qpm), h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] ); - if( h->sh.i_type == SLICE_TYPE_P && rc->qpm < h->fref0[0]->i_row_qp[y] ) - { - double newq = qp2qscale(rc->qpm); - double oldq = qp2qscale(h->fref0[0]->i_row_qp[y]); - update_predictor( rc->row_pred[1], (1 - newq / oldq) * newq, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] ); - } + if( !rc->b_vbv ) + return 0; + + float qscale = qp2qscale( rc->qpm ); + h->fdec->f_row_qp[y] = rc->qpm; + h->fdec->f_row_qscale[y] = qscale; + + update_predictor( &rc->row_pred[0], qscale, h->fdec->i_row_satd[y], h->fdec->i_row_bits[y] ); + if( h->sh.i_type != SLICE_TYPE_I && rc->qpm < h->fref[0][0]->f_row_qp[y] ) + update_predictor( &rc->row_pred[1], qscale, h->fdec->i_row_satds[0][0][y], h->fdec->i_row_bits[y] ); + + /* update ratecontrol per-mbpair in MBAFF */ + if( SLICE_MBAFF && !(y&1) ) + return 0; + + /* FIXME: We don't currently support the case where there's a slice + * boundary in between. */ + int can_reencode_row = h->sh.i_first_mb <= ((h->mb.i_mb_y - SLICE_MBAFF) * h->mb.i_mb_stride); /* tweak quality based on difference from predicted size */ - if( y < h->sps->i_mb_height-1 ) + float prev_row_qp = h->fdec->f_row_qp[y]; + float qp_absolute_max = h->param.rc.i_qp_max; + if( rc->rate_factor_max_increment ) + qp_absolute_max = X264_MIN( qp_absolute_max, rc->qp_novbv + rc->rate_factor_max_increment ); + float qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, qp_absolute_max ); + float qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min ); + float step_size = 0.5f; + float slice_size_planned = h->param.b_sliced_threads ? rc->slice_size_planned : rc->frame_size_planned; + float bits_so_far = row_bits_so_far( h, y ); + float max_frame_error = x264_clip3f( 1.0 / h->mb.i_mb_height, 0.05, 0.25 ); + float max_frame_size = rc->frame_size_maximum - rc->frame_size_maximum * max_frame_error; + max_frame_size = X264_MIN( max_frame_size, rc->buffer_fill - rc->buffer_rate * max_frame_error ); + float size_of_other_slices = 0; + if( h->param.b_sliced_threads ) + { + float size_of_other_slices_planned = 0; + for( int i = 0; i < h->param.i_threads; i++ ) + if( h != h->thread[i] ) + { + size_of_other_slices += h->thread[i]->rc->frame_size_estimated; + size_of_other_slices_planned += h->thread[i]->rc->slice_size_planned; + } + float weight = rc->slice_size_planned / rc->frame_size_planned; + size_of_other_slices = (size_of_other_slices - size_of_other_slices_planned) * weight + size_of_other_slices_planned; + } + if( y < h->i_threadslice_end-1 ) { - int prev_row_qp = h->fdec->i_row_qp[y]; - int i_qp_max = X264_MIN( prev_row_qp + h->param.rc.i_qp_step, h->param.rc.i_qp_max ); - int i_qp_min = X264_MAX( prev_row_qp - h->param.rc.i_qp_step, h->param.rc.i_qp_min ); - /* B-frames shouldn't use lower QP than their reference frames. */ if( h->sh.i_type == SLICE_TYPE_B ) { - i_qp_min = X264_MAX( i_qp_min, X264_MAX( h->fref0[0]->i_row_qp[y+1], h->fref1[0]->i_row_qp[y+1] ) ); - rc->qpm = X264_MAX( rc->qpm, i_qp_min ); + qp_min = X264_MAX( qp_min, X264_MAX( h->fref[0][0]->f_row_qp[y+1], h->fref[1][0]->f_row_qp[y+1] ) ); + rc->qpm = X264_MAX( rc->qpm, qp_min ); } - int b0 = predict_row_size_sum( h, y, rc->qpm ); - int b1 = b0; float buffer_left_planned = rc->buffer_fill - rc->frame_size_planned; - + buffer_left_planned = X264_MAX( buffer_left_planned, 0.f ); /* More threads means we have to be more cautious in letting ratecontrol use up extra bits. */ float rc_tol = buffer_left_planned / h->param.i_threads * rc->rate_tolerance; + float b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices; + float trust_coeff = x264_clip3f( bits_so_far / slice_size_planned, 0.0, 1.0 ); - /* Don't modify the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */ + /* Don't increase the row QPs until a sufficent amount of the bits of the frame have been processed, in case a flat */ /* area at the top of the frame was measured inaccurately. */ - if( row_bits_so_far(h,y) < 0.05 * rc->frame_size_planned ) - return; + if( trust_coeff < 0.05f ) + qp_max = qp_absolute_max = prev_row_qp; if( h->sh.i_type != SLICE_TYPE_I ) - rc_tol /= 2; + rc_tol *= 0.5f; if( !rc->b_vbv_min_rate ) - i_qp_min = X264_MAX( i_qp_min, h->sh.i_qp ); + qp_min = X264_MAX( qp_min, rc->qp_novbv ); - while( rc->qpm < i_qp_max + while( rc->qpm < qp_max && ((b1 > rc->frame_size_planned + rc_tol) || - (rc->buffer_fill - b1 < buffer_left_planned * 0.5) || - (b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv)) ) + (b1 > rc->frame_size_planned && rc->qpm < rc->qp_novbv) || + (b1 > rc->buffer_fill - buffer_left_planned * 0.5f)) ) { - rc->qpm ++; - b1 = predict_row_size_sum( h, y, rc->qpm ); + rc->qpm += step_size; + b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices; } - while( rc->qpm > i_qp_min - && (rc->qpm > h->fdec->i_row_qp[0] || rc->single_frame_vbv) - && ((b1 < rc->frame_size_planned * 0.8 && rc->qpm <= prev_row_qp) - || b1 < (rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 1.1) ) + float b_max = b1 + ((rc->buffer_fill - rc->buffer_size + rc->buffer_rate) * 0.90f - b1) * trust_coeff; + rc->qpm -= step_size; + float b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices; + while( rc->qpm > qp_min && rc->qpm < prev_row_qp + && (rc->qpm > h->fdec->f_row_qp[0] || rc->single_frame_vbv) + && (b2 < max_frame_size) + && ((b2 < rc->frame_size_planned * 0.8f) || (b2 < b_max)) ) { - rc->qpm --; - b1 = predict_row_size_sum( h, y, rc->qpm ); + b1 = b2; + rc->qpm -= step_size; + b2 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices; } + rc->qpm += step_size; - /* avoid VBV underflow */ - while( (rc->qpm < h->param.rc.i_qp_max) - && (rc->buffer_fill - b1 < rc->buffer_rate * 0.05 ) ) + /* avoid VBV underflow or MinCR violation */ + while( rc->qpm < qp_absolute_max && (b1 > max_frame_size) ) { - rc->qpm ++; - b1 = predict_row_size_sum( h, y, rc->qpm ); + rc->qpm += step_size; + b1 = bits_so_far + predict_row_size_to_end( h, y, rc->qpm ) + size_of_other_slices; } - x264_ratecontrol_set_estimated_size(h, b1); + h->rc->frame_size_estimated = b1 - size_of_other_slices; + + /* If the current row was large enough to cause a large QP jump, try re-encoding it. */ + if( rc->qpm > qp_max && prev_row_qp < qp_max && can_reencode_row ) + { + /* Bump QP to halfway in between... close enough. */ + rc->qpm = x264_clip3f( (prev_row_qp + rc->qpm)*0.5f, prev_row_qp + 1.0f, qp_max ); + rc->qpa_rc = rc->qpa_rc_prev; + rc->qpa_aq = rc->qpa_aq_prev; + h->fdec->i_row_bits[y] = 0; + h->fdec->i_row_bits[y-SLICE_MBAFF] = 0; + return -1; + } } + else + { + h->rc->frame_size_estimated = bits_so_far; - /* loses the fractional part of the frame-wise qp */ - rc->f_qpm = rc->qpm; + /* Last-ditch attempt: if the last row of the frame underflowed the VBV, + * try again. */ + if( rc->qpm < qp_max && can_reencode_row + && (h->rc->frame_size_estimated + size_of_other_slices > X264_MIN( rc->frame_size_maximum, rc->buffer_fill )) ) + { + rc->qpm = qp_max; + rc->qpa_rc = rc->qpa_rc_prev; + rc->qpa_aq = rc->qpa_aq_prev; + h->fdec->i_row_bits[y] = 0; + h->fdec->i_row_bits[y-SLICE_MBAFF] = 0; + return -1; + } + } + + rc->qpa_rc_prev = rc->qpa_rc; + rc->qpa_aq_prev = rc->qpa_aq; + + return 0; } int x264_ratecontrol_qp( x264_t *h ) { - return h->rc->qpm; + x264_emms(); + return x264_clip3( h->rc->qpm + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max ); +} + +int x264_ratecontrol_mb_qp( x264_t *h ) +{ + x264_emms(); + float qp = h->rc->qpm; + if( h->param.rc.i_aq_mode ) + { + /* MB-tree currently doesn't adjust quantizers in unreferenced frames. */ + float qp_offset = h->fdec->b_kept_as_ref ? h->fenc->f_qp_offset[h->mb.i_mb_xy] : h->fenc->f_qp_offset_aq[h->mb.i_mb_xy]; + /* Scale AQ's effect towards zero in emergency mode. */ + if( qp > QP_MAX_SPEC ) + qp_offset *= (QP_MAX - qp) / (QP_MAX - QP_MAX_SPEC); + qp += qp_offset; + } + return x264_clip3( qp + 0.5f, h->param.rc.i_qp_min, h->param.rc.i_qp_max ); } /* In 2pass, force the same frame types as in the 1st pass */ @@ -1192,20 +1759,18 @@ int x264_ratecontrol_slice_type( x264_t *h, int frame_num ) /* We could try to initialize everything required for ABR and * adaptive B-frames, but that would be complicated. * So just calculate the average QP used so far. */ - int i; - - h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24 + h->param.rc.i_qp_constant = (h->stat.i_frame_count[SLICE_TYPE_P] == 0) ? 24 + QP_BD_OFFSET : 1 + h->stat.f_frame_qp[SLICE_TYPE_P] / h->stat.i_frame_count[SLICE_TYPE_P]; - rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, 51 ); - rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, 51 ); - rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, 51 ); + rc->qp_constant[SLICE_TYPE_P] = x264_clip3( h->param.rc.i_qp_constant, 0, QP_MAX ); + rc->qp_constant[SLICE_TYPE_I] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) / fabs( h->param.rc.f_ip_factor )) + 0.5 ), 0, QP_MAX ); + rc->qp_constant[SLICE_TYPE_B] = x264_clip3( (int)( qscale2qp( qp2qscale( h->param.rc.i_qp_constant ) * fabs( h->param.rc.f_pb_factor )) + 0.5 ), 0, QP_MAX ); - x264_log(h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries); - x264_log(h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant); + x264_log( h, X264_LOG_ERROR, "2nd pass has more frames than 1st pass (%d)\n", rc->num_entries ); + x264_log( h, X264_LOG_ERROR, "continuing anyway, at constant QP=%d\n", h->param.rc.i_qp_constant ); if( h->param.i_bframe_adaptive ) - x264_log(h, X264_LOG_ERROR, "disabling adaptive B-frames\n"); + x264_log( h, X264_LOG_ERROR, "disabling adaptive B-frames\n" ); - for( i = 0; i < h->param.i_threads; i++ ) + for( int i = 0; i < h->param.i_threads; i++ ) { h->thread[i]->rc->b_abr = 0; h->thread[i]->rc->b_2pass = 0; @@ -1213,47 +1778,51 @@ int x264_ratecontrol_slice_type( x264_t *h, int frame_num ) h->thread[i]->param.rc.b_stat_read = 0; h->thread[i]->param.i_bframe_adaptive = 0; h->thread[i]->param.i_scenecut_threshold = 0; + h->thread[i]->param.rc.b_mb_tree = 0; if( h->thread[i]->param.i_bframe > 1 ) h->thread[i]->param.i_bframe = 1; } return X264_TYPE_AUTO; } - switch( rc->entry[frame_num].pict_type ) - { - case SLICE_TYPE_I: - return rc->entry[frame_num].kept_as_ref ? X264_TYPE_IDR : X264_TYPE_I; - - case SLICE_TYPE_B: - return rc->entry[frame_num].kept_as_ref ? X264_TYPE_BREF : X264_TYPE_B; - - case SLICE_TYPE_P: - default: - return X264_TYPE_P; - } + return rc->entry[frame_num].frame_type; } else - { return X264_TYPE_AUTO; +} + +void x264_ratecontrol_set_weights( x264_t *h, x264_frame_t *frm ) +{ + ratecontrol_entry_t *rce = &h->rc->entry[frm->i_frame]; + if( h->param.analyse.i_weighted_pred <= 0 ) + return; + + if( rce->i_weight_denom[0] >= 0 ) + SET_WEIGHT( frm->weight[0][0], 1, rce->weight[0][0], rce->i_weight_denom[0], rce->weight[0][1] ); + + if( rce->i_weight_denom[1] >= 0 ) + { + SET_WEIGHT( frm->weight[0][1], 1, rce->weight[1][0], rce->i_weight_denom[1], rce->weight[1][1] ); + SET_WEIGHT( frm->weight[0][2], 1, rce->weight[2][0], rce->i_weight_denom[1], rce->weight[2][1] ); } } /* After encoding one frame, save stats and update ratecontrol state */ -int x264_ratecontrol_end( x264_t *h, int bits ) +int x264_ratecontrol_end( x264_t *h, int bits, int *filler ) { x264_ratecontrol_t *rc = h->rc; const int *mbs = h->stat.frame.i_mb_count; - int i; x264_emms(); h->stat.frame.i_mb_count_skip = mbs[P_SKIP] + mbs[B_SKIP]; h->stat.frame.i_mb_count_i = mbs[I_16x16] + mbs[I_8x8] + mbs[I_4x4]; h->stat.frame.i_mb_count_p = mbs[P_L0] + mbs[P_8x8]; - for( i = B_DIRECT; i < B_8x8; i++ ) + for( int i = B_DIRECT; i < B_8x8; i++ ) h->stat.frame.i_mb_count_p += mbs[i]; h->fdec->f_qp_avg_rc = rc->qpa_rc /= h->mb.i_mb_count; - h->fdec->f_qp_avg_aq = rc->qpa_aq /= h->mb.i_mb_count; + h->fdec->f_qp_avg_aq = (float)rc->qpa_aq / h->mb.i_mb_count; + h->fdec->f_crf_avg = h->param.rc.f_rf_constant + h->fdec->f_qp_avg_rc - rc->qp_novbv; if( h->param.rc.b_stat_write ) { @@ -1267,9 +1836,11 @@ int x264_ratecontrol_end( x264_t *h, int bits ) dir_avg>0 ? 's' : dir_avg<0 ? 't' : '-' ) : '-'; if( fprintf( rc->p_stat_file_out, - "in:%d out:%d type:%c q:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:", + "in:%d out:%d type:%c dur:%"PRId64" cpbdur:%"PRId64" q:%.2f aq:%.2f tex:%d mv:%d misc:%d imb:%d pmb:%d smb:%d d:%c ref:", h->fenc->i_frame, h->i_frame, - c_type, rc->qpa_rc, + c_type, h->fenc->i_duration, + h->fenc->i_cpb_duration, + rc->qpa_rc, h->fdec->f_qp_avg_aq, h->stat.frame.i_tex_bits, h->stat.frame.i_mv_bits, h->stat.frame.i_misc_bits, @@ -1279,29 +1850,45 @@ int x264_ratecontrol_end( x264_t *h, int bits ) c_direct) < 0 ) goto fail; - for( i = 0; i < h->i_ref0; i++ ) + /* Only write information for reference reordering once. */ + int use_old_stats = h->param.rc.b_stat_read && rc->rce->refs > 1; + for( int i = 0; i < (use_old_stats ? rc->rce->refs : h->i_ref[0]); i++ ) { - int refcount = h->param.b_interlaced ? h->stat.frame.i_mb_count_ref[0][i*2] - + h->stat.frame.i_mb_count_ref[0][i*2+1] : - h->stat.frame.i_mb_count_ref[0][i]; + int refcount = use_old_stats ? rc->rce->refcount[i] + : PARAM_INTERLACED ? h->stat.frame.i_mb_count_ref[0][i*2] + + h->stat.frame.i_mb_count_ref[0][i*2+1] + : h->stat.frame.i_mb_count_ref[0][i]; if( fprintf( rc->p_stat_file_out, "%d ", refcount ) < 0 ) goto fail; } - if( fprintf( rc->p_stat_file_out, ";\n" ) < 0 ) + if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE && h->sh.weight[0][0].weightfn ) + { + if( fprintf( rc->p_stat_file_out, "w:%d,%d,%d", + h->sh.weight[0][0].i_denom, h->sh.weight[0][0].i_scale, h->sh.weight[0][0].i_offset ) < 0 ) + goto fail; + if( h->sh.weight[0][1].weightfn || h->sh.weight[0][2].weightfn ) + { + if( fprintf( rc->p_stat_file_out, ",%d,%d,%d,%d,%d ", + h->sh.weight[0][1].i_denom, h->sh.weight[0][1].i_scale, h->sh.weight[0][1].i_offset, + h->sh.weight[0][2].i_scale, h->sh.weight[0][2].i_offset ) < 0 ) + goto fail; + } + else if( fprintf( rc->p_stat_file_out, " " ) < 0 ) + goto fail; + } + + if( fprintf( rc->p_stat_file_out, ";\n") < 0 ) goto fail; /* Don't re-write the data in multi-pass mode. */ if( h->param.rc.b_mb_tree && h->fenc->b_kept_as_ref && !h->param.rc.b_stat_read ) { uint8_t i_type = h->sh.i_type; - int i; - /* Values are stored as big-endian FIX8.8 */ - for( i = 0; i < h->mb.i_mb_count; i++ ) - rc->qp_buffer[i] = endian_fix16( h->fenc->f_qp_offset[i]*256.0 ); + h->mc.mbtree_fix8_pack( rc->mbtree.qp_buffer[0], h->fenc->f_qp_offset, h->mb.i_mb_count ); if( fwrite( &i_type, 1, 1, rc->p_mbtree_stat_file_out ) < 1 ) goto fail; - if( fwrite( rc->qp_buffer, sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < h->mb.i_mb_count ) + if( fwrite( rc->mbtree.qp_buffer[0], sizeof(uint16_t), h->mb.i_mb_count, rc->p_mbtree_stat_file_out ) < h->mb.i_mb_count ) goto fail; } } @@ -1309,22 +1896,20 @@ int x264_ratecontrol_end( x264_t *h, int bits ) if( rc->b_abr ) { if( h->sh.i_type != SLICE_TYPE_B ) - rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / rc->last_rceq; + rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / rc->last_rceq; else { /* Depends on the fact that B-frame's QP is an offset from the following P-frame's. * Not perfectly accurate with B-refs, but good enough. */ - rc->cplxr_sum += bits * qp2qscale(rc->qpa_rc) / (rc->last_rceq * fabs(h->param.rc.f_pb_factor)); + rc->cplxr_sum += bits * qp2qscale( rc->qpa_rc ) / (rc->last_rceq * fabs( h->param.rc.f_pb_factor )); } rc->cplxr_sum *= rc->cbr_decay; - rc->wanted_bits_window += rc->bitrate / rc->fps; + rc->wanted_bits_window += h->fenc->f_duration * rc->bitrate; rc->wanted_bits_window *= rc->cbr_decay; } if( rc->b_2pass ) - { - rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale(rc->rce->new_qp) ); - } + rc->expected_bits_sum += qscale2bits( rc->rce, qp2qscale( rc->rce->new_qp ) ); if( h->mb.b_variable_qp ) { @@ -1333,17 +1918,59 @@ int x264_ratecontrol_end( x264_t *h, int bits ) rc->bframe_bits += bits; if( h->fenc->b_last_minigop_bframe ) { - update_predictor( rc->pred_b_from_p, qp2qscale(rc->qpa_rc), - h->fref1[h->i_ref1-1]->i_satd, rc->bframe_bits / rc->bframes ); + update_predictor( rc->pred_b_from_p, qp2qscale( rc->qpa_rc ), + h->fref[1][h->i_ref[1]-1]->i_satd, rc->bframe_bits / rc->bframes ); rc->bframe_bits = 0; } } } - update_vbv( h, bits ); + *filler = update_vbv( h, bits ); + rc->filler_bits_sum += *filler * 8; + + if( h->sps->vui.b_nal_hrd_parameters_present ) + { + if( h->fenc->i_frame == 0 ) + { + // access unit initialises the HRD + h->fenc->hrd_timing.cpb_initial_arrival_time = 0; + rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay; + rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset; + h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit = (double)rc->initial_cpb_removal_delay / 90000; + } + else + { + h->fenc->hrd_timing.cpb_removal_time = rc->nrt_first_access_unit + (double)(h->fenc->i_cpb_delay - h->i_cpb_delay_pir_offset) * + h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale; + + if( h->fenc->b_keyframe ) + { + rc->nrt_first_access_unit = h->fenc->hrd_timing.cpb_removal_time; + rc->initial_cpb_removal_delay = h->initial_cpb_removal_delay; + rc->initial_cpb_removal_delay_offset = h->initial_cpb_removal_delay_offset; + } + + double cpb_earliest_arrival_time = h->fenc->hrd_timing.cpb_removal_time - (double)rc->initial_cpb_removal_delay / 90000; + if( !h->fenc->b_keyframe ) + cpb_earliest_arrival_time -= (double)rc->initial_cpb_removal_delay_offset / 90000; + + if( h->sps->vui.hrd.b_cbr_hrd ) + h->fenc->hrd_timing.cpb_initial_arrival_time = rc->previous_cpb_final_arrival_time; + else + h->fenc->hrd_timing.cpb_initial_arrival_time = X264_MAX( rc->previous_cpb_final_arrival_time, cpb_earliest_arrival_time ); + } + int filler_bits = *filler ? X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), *filler )*8 : 0; + // Equation C-6 + h->fenc->hrd_timing.cpb_final_arrival_time = rc->previous_cpb_final_arrival_time = h->fenc->hrd_timing.cpb_initial_arrival_time + + (double)(bits + filler_bits) / h->sps->vui.hrd.i_bit_rate_unscaled; + + h->fenc->hrd_timing.dpb_output_time = (double)h->fenc->i_dpb_output_delay * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale + + h->fenc->hrd_timing.cpb_removal_time; + } + return 0; fail: - x264_log(h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n"); + x264_log( h, X264_LOG_ERROR, "ratecontrol_end: stats file could not be written to\n" ); return -1; } @@ -1357,13 +1984,18 @@ fail: static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor, int frame_num) { x264_ratecontrol_t *rcc= h->rc; - double q; x264_zone_t *zone = get_zone( h, frame_num ); - - q = pow( rce->blurred_complexity, 1 - rcc->qcompress ); + double q; + if( h->param.rc.b_mb_tree ) + { + double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale; + q = pow( BASE_FRAME_DURATION / CLIP_DURATION(rce->i_duration * timescale), 1 - h->param.rc.f_qcompress ); + } + else + q = pow( rce->blurred_complexity, 1 - rcc->qcompress ); // avoid NaN's in the rc_eq - if(!isfinite(q) || rce->tex_bits + rce->mv_bits == 0) + if( !isfinite(q) || rce->tex_bits + rce->mv_bits == 0 ) q = rcc->last_qscale_for[rce->pict_type]; else { @@ -1375,7 +2007,7 @@ static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor if( zone ) { if( zone->b_force_qp ) - q = qp2qscale(zone->i_qp); + q = qp2qscale( zone->i_qp ); else q /= zone->f_bitrate_factor; } @@ -1383,10 +2015,11 @@ static double get_qscale(x264_t *h, ratecontrol_entry_t *rce, double rate_factor return q; } -static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q) +static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q, int frame_num) { x264_ratecontrol_t *rcc = h->rc; const int pict_type = rce->pict_type; + x264_zone_t *zone = get_zone( h, frame_num ); // force I/B quants as a function of P quants const double last_p_q = rcc->last_qscale_for[SLICE_TYPE_P]; @@ -1421,49 +2054,59 @@ static double get_diff_limited_q(x264_t *h, ratecontrol_entry_t *rce, double q) } /* last qscale / qdiff stuff */ - if(rcc->last_non_b_pict_type==pict_type - && (pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1)) + if( rcc->last_non_b_pict_type == pict_type && + (pict_type!=SLICE_TYPE_I || rcc->last_accum_p_norm < 1) ) { double last_q = rcc->last_qscale_for[pict_type]; double max_qscale = last_q * rcc->lstep; double min_qscale = last_q / rcc->lstep; - if (q > max_qscale) q = max_qscale; - else if(q < min_qscale) q = min_qscale; + if ( q > max_qscale ) q = max_qscale; + else if( q < min_qscale ) q = min_qscale; } rcc->last_qscale_for[pict_type] = q; - if(pict_type!=SLICE_TYPE_B) + if( pict_type != SLICE_TYPE_B ) rcc->last_non_b_pict_type = pict_type; - if(pict_type==SLICE_TYPE_I) + if( pict_type == SLICE_TYPE_I ) { rcc->last_accum_p_norm = rcc->accum_p_norm; rcc->accum_p_norm = 0; rcc->accum_p_qp = 0; } - if(pict_type==SLICE_TYPE_P) + if( pict_type == SLICE_TYPE_P ) { float mask = 1 - pow( (float)rce->i_count / rcc->nmb, 2 ); - rcc->accum_p_qp = mask * (qscale2qp(q) + rcc->accum_p_qp); + rcc->accum_p_qp = mask * (qscale2qp( q ) + rcc->accum_p_qp); rcc->accum_p_norm = mask * (1 + rcc->accum_p_norm); } + + if( zone ) + { + if( zone->b_force_qp ) + q = qp2qscale( zone->i_qp ); + else + q /= zone->f_bitrate_factor; + } + return q; } -static double predict_size( predictor_t *p, double q, double var ) +static float predict_size( predictor_t *p, float q, float var ) { - return (p->coeff*var + p->offset) / (q*p->count); + return (p->coeff*var + p->offset) / (q*p->count); } -static void update_predictor( predictor_t *p, double q, double var, double bits ) +static void update_predictor( predictor_t *p, float q, float var, float bits ) { - const double range = 1.5; + float range = 1.5; if( var < 10 ) return; - double old_coeff = p->coeff / p->count; - double new_coeff = bits*q / var; - double new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range ); - double new_offset = bits*q - new_coeff_clipped * var; + float old_coeff = p->coeff / p->count; + float old_offset = p->offset / p->count; + float new_coeff = X264_MAX( (bits*q - old_offset) / var, p->coeff_min ); + float new_coeff_clipped = x264_clip3f( new_coeff, old_coeff/range, old_coeff*range ); + float new_offset = bits*q - new_coeff_clipped * var; if( new_offset >= 0 ) new_coeff = new_coeff_clipped; else @@ -1477,47 +2120,108 @@ static void update_predictor( predictor_t *p, double q, double var, double bits } // update VBV after encoding a frame -static void update_vbv( x264_t *h, int bits ) +static int update_vbv( x264_t *h, int bits ) { + int filler = 0; + int bitrate = h->sps->vui.hrd.i_bit_rate_unscaled; x264_ratecontrol_t *rcc = h->rc; x264_ratecontrol_t *rct = h->thread[0]->rc; + int64_t buffer_size = (int64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale; if( rcc->last_satd >= h->mb.i_mb_count ) - update_predictor( &rct->pred[h->sh.i_type], qp2qscale(rcc->qpa_rc), rcc->last_satd, bits ); + update_predictor( &rct->pred[h->sh.i_type], qp2qscale( rcc->qpa_rc ), rcc->last_satd, bits ); if( !rcc->b_vbv ) - return; + return filler; + + uint64_t buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale; + rct->buffer_fill_final -= buffer_diff; + rct->buffer_fill_final_min -= buffer_diff; + + if( rct->buffer_fill_final_min < 0 ) + { + double underflow = (double)rct->buffer_fill_final_min / h->sps->vui.i_time_scale; + if( rcc->rate_factor_max_increment && rcc->qpm >= rcc->qp_novbv + rcc->rate_factor_max_increment ) + x264_log( h, X264_LOG_DEBUG, "VBV underflow due to CRF-max (frame %d, %.0f bits)\n", h->i_frame, underflow ); + else + x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, underflow ); + rct->buffer_fill_final = + rct->buffer_fill_final_min = 0; + } + + if( h->param.i_avcintra_class ) + buffer_diff = buffer_size; + else + buffer_diff = (uint64_t)bitrate * h->sps->vui.i_num_units_in_tick * h->fenc->i_cpb_duration; + rct->buffer_fill_final += buffer_diff; + rct->buffer_fill_final_min += buffer_diff; + + if( rct->buffer_fill_final > buffer_size ) + { + if( h->param.rc.b_filler ) + { + int64_t scale = (int64_t)h->sps->vui.i_time_scale * 8; + filler = (rct->buffer_fill_final - buffer_size + scale - 1) / scale; + bits = h->param.i_avcintra_class ? filler * 8 : X264_MAX( (FILLER_OVERHEAD - h->param.b_annexb), filler ) * 8; + buffer_diff = (uint64_t)bits * h->sps->vui.i_time_scale; + rct->buffer_fill_final -= buffer_diff; + rct->buffer_fill_final_min -= buffer_diff; + } + else + { + rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, buffer_size ); + rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, buffer_size ); + } + } + + return filler; +} + +void x264_hrd_fullness( x264_t *h ) +{ + x264_ratecontrol_t *rct = h->thread[0]->rc; + uint64_t denom = (uint64_t)h->sps->vui.hrd.i_bit_rate_unscaled * h->sps->vui.i_time_scale / rct->hrd_multiply_denom; + uint64_t cpb_state = rct->buffer_fill_final; + uint64_t cpb_size = (uint64_t)h->sps->vui.hrd.i_cpb_size_unscaled * h->sps->vui.i_time_scale; + uint64_t multiply_factor = 90000 / rct->hrd_multiply_denom; + + if( rct->buffer_fill_final < 0 || rct->buffer_fill_final > (int64_t)cpb_size ) + { + x264_log( h, X264_LOG_WARNING, "CPB %s: %.0f bits in a %.0f-bit buffer\n", + rct->buffer_fill_final < 0 ? "underflow" : "overflow", + (double)rct->buffer_fill_final / h->sps->vui.i_time_scale, (double)cpb_size / h->sps->vui.i_time_scale ); + } - rct->buffer_fill_final -= bits; - if( rct->buffer_fill_final < 0 ) - x264_log( h, X264_LOG_WARNING, "VBV underflow (frame %d, %.0f bits)\n", h->i_frame, rct->buffer_fill_final ); - rct->buffer_fill_final = X264_MAX( rct->buffer_fill_final, 0 ); - rct->buffer_fill_final += rct->buffer_rate; - rct->buffer_fill_final = X264_MIN( rct->buffer_fill_final, rct->buffer_size ); + h->initial_cpb_removal_delay = (multiply_factor * cpb_state) / denom; + h->initial_cpb_removal_delay_offset = (multiply_factor * cpb_size) / denom - h->initial_cpb_removal_delay; + + int64_t decoder_buffer_fill = h->initial_cpb_removal_delay * denom / multiply_factor; + rct->buffer_fill_final_min = X264_MIN( rct->buffer_fill_final_min, decoder_buffer_fill ); } // provisionally update VBV according to the planned size of all frames currently in progress static void update_vbv_plan( x264_t *h, int overhead ) { x264_ratecontrol_t *rcc = h->rc; - rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final - overhead; - if( h->param.i_threads > 1 ) + rcc->buffer_fill = h->thread[0]->rc->buffer_fill_final_min / h->sps->vui.i_time_scale; + if( h->i_thread_frames > 1 ) { int j = h->rc - h->thread[0]->rc; - int i; - for( i=1; iparam.i_threads; i++ ) + for( int i = 1; i < h->i_thread_frames; i++ ) { - x264_t *t = h->thread[ (j+i)%h->param.i_threads ]; + x264_t *t = h->thread[ (j+i)%h->i_thread_frames ]; double bits = t->rc->frame_size_planned; if( !t->b_thread_active ) continue; - bits = X264_MAX(bits, x264_ratecontrol_get_estimated_size(t)); + bits = X264_MAX(bits, t->rc->frame_size_estimated); rcc->buffer_fill -= bits; rcc->buffer_fill = X264_MAX( rcc->buffer_fill, 0 ); - rcc->buffer_fill += rcc->buffer_rate; + rcc->buffer_fill += t->rc->buffer_rate; rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size ); } } + rcc->buffer_fill = X264_MIN( rcc->buffer_fill, rcc->buffer_size ); + rcc->buffer_fill -= overhead; } // apply VBV constraints and clip qscale to between lmin and lmax @@ -1526,6 +2230,8 @@ static double clip_qscale( x264_t *h, int pict_type, double q ) x264_ratecontrol_t *rcc = h->rc; double lmin = rcc->lmin[pict_type]; double lmax = rcc->lmax[pict_type]; + if( rcc->rate_factor_max_increment ) + lmax = X264_MIN( lmax, qp2qscale( rcc->qp_novbv + rcc->rate_factor_max_increment ) ); double q0 = q; /* B-frames are not directly subject to VBV, @@ -1533,37 +2239,44 @@ static double clip_qscale( x264_t *h, int pict_type, double q ) if( rcc->b_vbv && rcc->last_satd > 0 ) { + double fenc_cpb_duration = (double)h->fenc->i_cpb_duration * + h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale; /* Lookahead VBV: raise the quantizer as necessary such that no frames in * the lookahead overflow and such that the buffer is in a reasonable state * by the end of the lookahead. */ if( h->param.rc.i_lookahead ) { - int j, iterations, terminate = 0; + int terminate = 0; /* Avoid an infinite loop. */ - for( iterations = 0; iterations < 1000 && terminate != 3; iterations++ ) + for( int iterations = 0; iterations < 1000 && terminate != 3; iterations++ ) { double frame_q[3]; double cur_bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); - double buffer_fill_cur = rcc->buffer_fill - cur_bits + rcc->buffer_rate; + double buffer_fill_cur = rcc->buffer_fill - cur_bits; double target_fill; + double total_duration = 0; + double last_duration = fenc_cpb_duration; frame_q[0] = h->sh.i_type == SLICE_TYPE_I ? q * h->param.rc.f_ip_factor : q; frame_q[1] = frame_q[0] * h->param.rc.f_pb_factor; frame_q[2] = frame_q[0] / h->param.rc.f_ip_factor; /* Loop over the planned future frames. */ - for( j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ ) + for( int j = 0; buffer_fill_cur >= 0 && buffer_fill_cur <= rcc->buffer_size; j++ ) { + total_duration += last_duration; + buffer_fill_cur += rcc->vbv_max_rate * last_duration; int i_type = h->fenc->i_planned_type[j]; int i_satd = h->fenc->i_planned_satd[j]; if( i_type == X264_TYPE_AUTO ) break; i_type = IS_X264_TYPE_I( i_type ) ? SLICE_TYPE_I : IS_X264_TYPE_B( i_type ) ? SLICE_TYPE_B : SLICE_TYPE_P; cur_bits = predict_size( &rcc->pred[i_type], frame_q[i_type], i_satd ); - buffer_fill_cur = buffer_fill_cur - cur_bits + rcc->buffer_rate; + buffer_fill_cur -= cur_bits; + last_duration = h->fenc->f_planned_cpb_duration[j]; } /* Try to get to get the buffer at least 50% filled, but don't set an impossible goal. */ - target_fill = X264_MIN( rcc->buffer_fill + j * rcc->buffer_rate * 0.5, rcc->buffer_size * 0.5 ); + target_fill = X264_MIN( rcc->buffer_fill + total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.5 ); if( buffer_fill_cur < target_fill ) { q *= 1.01; @@ -1571,7 +2284,7 @@ static double clip_qscale( x264_t *h, int pict_type, double q ) continue; } /* Try to get the buffer no more than 80% filled, but don't set an impossible goal. */ - target_fill = x264_clip3f( rcc->buffer_fill - j * rcc->buffer_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size ); + target_fill = x264_clip3f( rcc->buffer_fill - total_duration * rcc->vbv_max_rate * 0.5, rcc->buffer_size * 0.8, rcc->buffer_size ); if( rcc->b_vbv_min_rate && buffer_fill_cur > target_fill ) { q /= 1.01; @@ -1594,18 +2307,22 @@ static double clip_qscale( x264_t *h, int pict_type, double q ) /* Now a hard threshold to make sure the frame fits in VBV. * This one is mostly for I-frames. */ double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); - double qf = 1.0; /* For small VBVs, allow the frame to use up the entire VBV. */ double max_fill_factor = h->param.rc.i_vbv_buffer_size >= 5*h->param.rc.i_vbv_max_bitrate / rcc->fps ? 2 : 1; /* For single-frame VBVs, request that the frame use up the entire VBV. */ double min_fill_factor = rcc->single_frame_vbv ? 1 : 2; if( bits > rcc->buffer_fill/max_fill_factor ) - qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 ); - q /= qf; - bits *= qf; + { + double qf = x264_clip3f( rcc->buffer_fill/(max_fill_factor*bits), 0.2, 1.0 ); + q /= qf; + bits *= qf; + } if( bits < rcc->buffer_rate/min_fill_factor ) - q *= bits*min_fill_factor/rcc->buffer_rate; + { + double qf = x264_clip3f( bits*min_fill_factor/rcc->buffer_rate, 0.001, 1.0 ); + q *= qf; + } q = X264_MAX( q0, q ); } @@ -1618,35 +2335,47 @@ static double clip_qscale( x264_t *h, int pict_type, double q ) double pbbits = bits; double bbits = predict_size( rcc->pred_b_from_p, q * h->param.rc.f_pb_factor, rcc->last_satd ); double space; - if( bbits > rcc->buffer_rate ) + double bframe_cpb_duration = 0; + double minigop_cpb_duration; + for( int i = 0; i < nb; i++ ) + bframe_cpb_duration += h->fenc->f_planned_cpb_duration[i]; + + if( bbits * nb > bframe_cpb_duration * rcc->vbv_max_rate ) nb = 0; pbbits += nb * bbits; - space = rcc->buffer_fill + (1+nb)*rcc->buffer_rate - rcc->buffer_size; + minigop_cpb_duration = bframe_cpb_duration + fenc_cpb_duration; + space = rcc->buffer_fill + minigop_cpb_duration*rcc->vbv_max_rate - rcc->buffer_size; if( pbbits < space ) { q *= X264_MAX( pbbits / space, bits / (0.5 * rcc->buffer_size) ); } - q = X264_MAX( q0-5, q ); + q = X264_MAX( q0/2, q ); } + /* Apply MinCR and buffer fill restrictions */ + double bits = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); + double frame_size_maximum = X264_MIN( rcc->frame_size_maximum, X264_MAX( rcc->buffer_fill, 0.001 ) ); + if( bits > frame_size_maximum ) + q *= bits / frame_size_maximum; + if( !rcc->b_vbv_min_rate ) q = X264_MAX( q0, q ); } - if(lmin==lmax) + if( lmin==lmax ) return lmin; - else if(rcc->b_2pass) + else if( rcc->b_2pass ) { - double min2 = log(lmin); - double max2 = log(lmax); + double min2 = log( lmin ); + double max2 = log( lmax ); q = (log(q) - min2)/(max2-min2) - 0.5; - q = 1.0/(1.0 + exp(-4*q)); + q = 1.0/(1.0 + exp( -4*q )); q = q*(max2-min2) + min2; - return exp(q); + return exp( q ); } else - return x264_clip3f(q, lmin, lmax); + return x264_clip3f( q, lmin, lmax ); } // update qscale for 1 frame based on actual bits used so far @@ -1654,21 +2383,20 @@ static float rate_estimate_qscale( x264_t *h ) { float q; x264_ratecontrol_t *rcc = h->rc; - ratecontrol_entry_t rce; + ratecontrol_entry_t rce = {0}; int pict_type = h->sh.i_type; - double lmin = rcc->lmin[pict_type]; - double lmax = rcc->lmax[pict_type]; int64_t total_bits = 8*(h->stat.i_frame_size[SLICE_TYPE_I] + h->stat.i_frame_size[SLICE_TYPE_P] - + h->stat.i_frame_size[SLICE_TYPE_B]); + + h->stat.i_frame_size[SLICE_TYPE_B]) + - rcc->filler_bits_sum; if( rcc->b_2pass ) { rce = *rcc->rce; - if(pict_type != rce.pict_type) + if( pict_type != rce.pict_type ) { - x264_log(h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n", - slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type]); + x264_log( h, X264_LOG_ERROR, "slice=%c but 2pass stats say %c\n", + slice_type_to_char[pict_type], slice_type_to_char[rce.pict_type] ); } } @@ -1677,100 +2405,103 @@ static float rate_estimate_qscale( x264_t *h ) /* B-frames don't have independent ratecontrol, but rather get the * average QP of the two adjacent P-frames + an offset */ - int i0 = IS_X264_TYPE_I(h->fref0[0]->i_type); - int i1 = IS_X264_TYPE_I(h->fref1[0]->i_type); - int dt0 = abs(h->fenc->i_poc - h->fref0[0]->i_poc); - int dt1 = abs(h->fenc->i_poc - h->fref1[0]->i_poc); - float q0 = h->fref0[0]->f_qp_avg_rc; - float q1 = h->fref1[0]->f_qp_avg_rc; + int i0 = IS_X264_TYPE_I(h->fref_nearest[0]->i_type); + int i1 = IS_X264_TYPE_I(h->fref_nearest[1]->i_type); + int dt0 = abs(h->fenc->i_poc - h->fref_nearest[0]->i_poc); + int dt1 = abs(h->fenc->i_poc - h->fref_nearest[1]->i_poc); + float q0 = h->fref_nearest[0]->f_qp_avg_rc; + float q1 = h->fref_nearest[1]->f_qp_avg_rc; - if( h->fref0[0]->i_type == X264_TYPE_BREF ) + if( h->fref_nearest[0]->i_type == X264_TYPE_BREF ) q0 -= rcc->pb_offset/2; - if( h->fref1[0]->i_type == X264_TYPE_BREF ) + if( h->fref_nearest[1]->i_type == X264_TYPE_BREF ) q1 -= rcc->pb_offset/2; - if(i0 && i1) + if( i0 && i1 ) q = (q0 + q1) / 2 + rcc->ip_offset; - else if(i0) + else if( i0 ) q = q1; - else if(i1) + else if( i1 ) q = q0; else q = (q0*dt1 + q1*dt0) / (dt0 + dt1); - if(h->fenc->b_kept_as_ref) + if( h->fenc->b_kept_as_ref ) q += rcc->pb_offset/2; else q += rcc->pb_offset; - if( rcc->b_2pass && rcc->b_vbv ) + rcc->qp_novbv = q; + q = qp2qscale( q ); + if( rcc->b_2pass ) rcc->frame_size_planned = qscale2bits( &rce, q ); else - rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref1[h->i_ref1-1]->i_satd ); - x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned); + rcc->frame_size_planned = predict_size( rcc->pred_b_from_p, q, h->fref[1][h->i_ref[1]-1]->i_satd ); + /* Limit planned size by MinCR */ + if( rcc->b_vbv ) + rcc->frame_size_planned = X264_MIN( rcc->frame_size_planned, rcc->frame_size_maximum ); + h->rc->frame_size_estimated = rcc->frame_size_planned; /* For row SATDs */ if( rcc->b_vbv ) rcc->last_satd = x264_rc_analyse_slice( h ); - return qp2qscale(q); + return q; } else { double abr_buffer = 2 * rcc->rate_tolerance * rcc->bitrate; + double predicted_bits = total_bits; + if( h->i_thread_frames > 1 ) + { + int j = h->rc - h->thread[0]->rc; + for( int i = 1; i < h->i_thread_frames; i++ ) + { + x264_t *t = h->thread[(j+i) % h->i_thread_frames]; + double bits = t->rc->frame_size_planned; + if( !t->b_thread_active ) + continue; + bits = X264_MAX(bits, t->rc->frame_size_estimated); + predicted_bits += bits; + } + } if( rcc->b_2pass ) { - //FIXME adjust abr_buffer based on distance to the end of the video - int64_t diff; - int64_t predicted_bits = total_bits; + double lmin = rcc->lmin[pict_type]; + double lmax = rcc->lmax[pict_type]; + double diff; - if( rcc->b_vbv ) + /* Adjust ABR buffer based on distance to the end of the video. */ + if( rcc->num_entries > h->i_frame ) { - if( h->param.i_threads > 1 ) - { - int j = h->rc - h->thread[0]->rc; - int i; - for( i=1; iparam.i_threads; i++ ) - { - x264_t *t = h->thread[ (j+i)%h->param.i_threads ]; - double bits = t->rc->frame_size_planned; - if( !t->b_thread_active ) - continue; - bits = X264_MAX(bits, x264_ratecontrol_get_estimated_size(t)); - predicted_bits += (int64_t)bits; - } - } - } - else - { - if( h->fenc->i_frame < h->param.i_threads ) - predicted_bits += (int64_t)h->fenc->i_frame * rcc->bitrate / rcc->fps; - else - predicted_bits += (int64_t)(h->param.i_threads - 1) * rcc->bitrate / rcc->fps; + double final_bits = rcc->entry_out[rcc->num_entries-1]->expected_bits; + double video_pos = rce.expected_bits / final_bits; + double scale_factor = sqrt( (1 - video_pos) * rcc->num_entries ); + abr_buffer *= 0.5 * X264_MAX( scale_factor, 0.5 ); } - diff = predicted_bits - (int64_t)rce.expected_bits; + diff = predicted_bits - rce.expected_bits; q = rce.new_qscale; - q /= x264_clip3f((double)(abr_buffer - diff) / abr_buffer, .5, 2); - if( ((h->fenc->i_frame + 1 - h->param.i_threads) >= rcc->fps) && - (rcc->expected_bits_sum > 0)) + q /= x264_clip3f((abr_buffer - diff) / abr_buffer, .5, 2); + if( h->i_frame >= rcc->fps && rcc->expected_bits_sum >= 1 ) { /* Adjust quant based on the difference between * achieved and expected bitrate so far */ - double time = (double)h->fenc->i_frame / rcc->num_entries; - double w = x264_clip3f( time*100, 0.0, 1.0 ); + double cur_time = (double)h->i_frame / rcc->num_entries; + double w = x264_clip3f( cur_time*100, 0.0, 1.0 ); q *= pow( (double)total_bits / rcc->expected_bits_sum, w ); } + rcc->qp_novbv = qscale2qp( q ); if( rcc->b_vbv ) { /* Do not overflow vbv */ - double expected_size = qscale2bits(&rce, q); + double expected_size = qscale2bits( &rce, q ); double expected_vbv = rcc->buffer_fill + rcc->buffer_rate - expected_size; - double expected_fullness = rce.expected_vbv / rcc->buffer_size; + double expected_fullness = rce.expected_vbv / rcc->buffer_size; double qmax = q*(2 - expected_fullness); double size_constraint = 1 + expected_fullness; - qmax = X264_MAX(qmax, rce.new_qscale); - if (expected_fullness < .05) + qmax = X264_MAX( qmax, rce.new_qscale ); + if( expected_fullness < .05 ) qmax = lmax; qmax = X264_MIN(qmax, lmax); while( ((expected_vbv < rce.expected_vbv/size_constraint) && (q < qmax)) || @@ -1796,12 +2527,12 @@ static float rate_estimate_qscale( x264_t *h ) * tradeoff between quality and bitrate precision. But at large * tolerances, the bit distribution approaches that of 2pass. */ - double wanted_bits, overflow=1, lmin, lmax; + double wanted_bits, overflow = 1; rcc->last_satd = x264_rc_analyse_slice( h ); rcc->short_term_cplxsum *= 0.5; rcc->short_term_cplxcount *= 0.5; - rcc->short_term_cplxsum += rcc->last_satd; + rcc->short_term_cplxsum += rcc->last_satd / (CLIP_DURATION(h->fenc->f_duration) / BASE_FRAME_DURATION); rcc->short_term_cplxcount ++; rce.tex_bits = rcc->last_satd; @@ -1812,6 +2543,7 @@ static float rate_estimate_qscale( x264_t *h ) rce.s_count = 0; rce.qscale = 1; rce.pict_type = pict_type; + rce.i_duration = h->fenc->i_duration; if( h->param.rc.i_rc_method == X264_RC_CRF ) { @@ -1819,17 +2551,24 @@ static float rate_estimate_qscale( x264_t *h ) } else { - int i_frame_done = h->fenc->i_frame + 1 - h->param.i_threads; - q = get_qscale( h, &rce, rcc->wanted_bits_window / rcc->cplxr_sum, h->fenc->i_frame ); - // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end? - wanted_bits = i_frame_done * rcc->bitrate / rcc->fps; - if( wanted_bits > 0 ) + /* ABR code can potentially be counterproductive in CBR, so just don't bother. + * Don't run it if the frame complexity is zero either. */ + if( !rcc->b_vbv_min_rate && rcc->last_satd ) { - abr_buffer *= X264_MAX( 1, sqrt(i_frame_done/25) ); - overflow = x264_clip3f( 1.0 + (total_bits - wanted_bits) / abr_buffer, .5, 2 ); - q *= overflow; + // FIXME is it simpler to keep track of wanted_bits in ratecontrol_end? + int i_frame_done = h->i_frame; + double time_done = i_frame_done / rcc->fps; + if( h->param.b_vfr_input && i_frame_done > 0 ) + time_done = ((double)(h->fenc->i_reordered_pts - h->i_reordered_pts_delay)) * h->param.i_timebase_num / h->param.i_timebase_den; + wanted_bits = time_done * rcc->bitrate; + if( wanted_bits > 0 ) + { + abr_buffer *= X264_MAX( 1, sqrt( time_done ) ); + overflow = x264_clip3f( 1.0 + (predicted_bits - wanted_bits) / abr_buffer, .5, 2 ); + q *= overflow; + } } } @@ -1842,22 +2581,25 @@ static float rate_estimate_qscale( x264_t *h ) } else if( h->i_frame > 0 ) { - /* Asymmetric clipping, because symmetric would prevent - * overflow control in areas of rapidly oscillating complexity */ - lmin = rcc->last_qscale_for[pict_type] / rcc->lstep; - lmax = rcc->last_qscale_for[pict_type] * rcc->lstep; - if( overflow > 1.1 && h->i_frame > 3 ) - lmax *= rcc->lstep; - else if( overflow < 0.9 ) - lmin /= rcc->lstep; - - q = x264_clip3f(q, lmin, lmax); + if( h->param.rc.i_rc_method != X264_RC_CRF ) + { + /* Asymmetric clipping, because symmetric would prevent + * overflow control in areas of rapidly oscillating complexity */ + double lmin = rcc->last_qscale_for[pict_type] / rcc->lstep; + double lmax = rcc->last_qscale_for[pict_type] * rcc->lstep; + if( overflow > 1.1 && h->i_frame > 3 ) + lmax *= rcc->lstep; + else if( overflow < 0.9 ) + lmin /= rcc->lstep; + + q = x264_clip3f(q, lmin, lmax); + } } else if( h->param.rc.i_rc_method == X264_RC_CRF && rcc->qcompress != 1 ) { q = qp2qscale( ABR_INIT_QP ) / fabs( h->param.rc.f_ip_factor ); } - rcc->qp_novbv = qscale2qp(q); + rcc->qp_novbv = qscale2qp( q ); //FIXME use get_diff_limited_q() ? q = clip_qscale( h, pict_type, q ); @@ -1869,15 +2611,111 @@ static float rate_estimate_qscale( x264_t *h ) if( !(rcc->b_2pass && !rcc->b_vbv) && h->fenc->i_frame == 0 ) rcc->last_qscale_for[SLICE_TYPE_P] = q * fabs( h->param.rc.f_ip_factor ); - if( rcc->b_2pass && rcc->b_vbv ) - rcc->frame_size_planned = qscale2bits(&rce, q); + if( rcc->b_2pass ) + rcc->frame_size_planned = qscale2bits( &rce, q ); else rcc->frame_size_planned = predict_size( &rcc->pred[h->sh.i_type], q, rcc->last_satd ); - x264_ratecontrol_set_estimated_size(h, rcc->frame_size_planned); + + /* Always use up the whole VBV in this case. */ + if( rcc->single_frame_vbv ) + rcc->frame_size_planned = rcc->buffer_rate; + /* Limit planned size by MinCR */ + if( rcc->b_vbv ) + rcc->frame_size_planned = X264_MIN( rcc->frame_size_planned, rcc->frame_size_maximum ); + h->rc->frame_size_estimated = rcc->frame_size_planned; return q; } } +static void x264_threads_normalize_predictors( x264_t *h ) +{ + double totalsize = 0; + for( int i = 0; i < h->param.i_threads; i++ ) + totalsize += h->thread[i]->rc->slice_size_planned; + double factor = h->rc->frame_size_planned / totalsize; + for( int i = 0; i < h->param.i_threads; i++ ) + h->thread[i]->rc->slice_size_planned *= factor; +} + +void x264_threads_distribute_ratecontrol( x264_t *h ) +{ + int row; + x264_ratecontrol_t *rc = h->rc; + x264_emms(); + float qscale = qp2qscale( rc->qpm ); + + /* Initialize row predictors */ + if( h->i_frame == 0 ) + for( int i = 0; i < h->param.i_threads; i++ ) + { + x264_t *t = h->thread[i]; + if( t != h ) + memcpy( t->rc->row_preds, rc->row_preds, sizeof(rc->row_preds) ); + } + + for( int i = 0; i < h->param.i_threads; i++ ) + { + x264_t *t = h->thread[i]; + if( t != h ) + memcpy( t->rc, rc, offsetof(x264_ratecontrol_t, row_pred) ); + t->rc->row_pred = t->rc->row_preds[h->sh.i_type]; + /* Calculate the planned slice size. */ + if( rc->b_vbv && rc->frame_size_planned ) + { + int size = 0; + for( row = t->i_threadslice_start; row < t->i_threadslice_end; row++ ) + size += h->fdec->i_row_satd[row]; + t->rc->slice_size_planned = predict_size( &rc->pred[h->sh.i_type + (i+1)*5], qscale, size ); + } + else + t->rc->slice_size_planned = 0; + } + if( rc->b_vbv && rc->frame_size_planned ) + { + x264_threads_normalize_predictors( h ); + + if( rc->single_frame_vbv ) + { + /* Compensate for our max frame error threshold: give more bits (proportionally) to smaller slices. */ + for( int i = 0; i < h->param.i_threads; i++ ) + { + x264_t *t = h->thread[i]; + float max_frame_error = x264_clip3f( 1.0 / (t->i_threadslice_end - t->i_threadslice_start), 0.05, 0.25 ); + t->rc->slice_size_planned += 2 * max_frame_error * rc->frame_size_planned; + } + x264_threads_normalize_predictors( h ); + } + + for( int i = 0; i < h->param.i_threads; i++ ) + h->thread[i]->rc->frame_size_estimated = h->thread[i]->rc->slice_size_planned; + } +} + +void x264_threads_merge_ratecontrol( x264_t *h ) +{ + x264_ratecontrol_t *rc = h->rc; + x264_emms(); + + for( int i = 0; i < h->param.i_threads; i++ ) + { + x264_t *t = h->thread[i]; + x264_ratecontrol_t *rct = h->thread[i]->rc; + if( h->param.rc.i_vbv_buffer_size ) + { + int size = 0; + for( int row = t->i_threadslice_start; row < t->i_threadslice_end; row++ ) + size += h->fdec->i_row_satd[row]; + int bits = t->stat.frame.i_mv_bits + t->stat.frame.i_tex_bits + t->stat.frame.i_misc_bits; + int mb_count = (t->i_threadslice_end - t->i_threadslice_start) * h->mb.i_mb_width; + update_predictor( &rc->pred[h->sh.i_type+(i+1)*5], qp2qscale( rct->qpa_rc/mb_count ), size, bits ); + } + if( !i ) + continue; + rc->qpa_rc += rct->qpa_rc; + rc->qpa_aq += rct->qpa_aq; + } +} + void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next ) { if( cur != prev ) @@ -1885,8 +2723,7 @@ void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next ) #define COPY(var) memcpy(&cur->rc->var, &prev->rc->var, sizeof(cur->rc->var)) /* these vars are updated in x264_ratecontrol_start() * so copy them from the context that most recently started (prev) - * to the context that's about to start (cur). - */ + * to the context that's about to start (cur). */ COPY(accum_p_qp); COPY(accum_p_norm); COPY(last_satd); @@ -1897,6 +2734,16 @@ void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next ) COPY(short_term_cplxcount); COPY(bframes); COPY(prev_zone); + COPY(mbtree.qpbuf_pos); + /* these vars can be updated by x264_ratecontrol_init_reconfigurable */ + COPY(bitrate); + COPY(buffer_size); + COPY(buffer_rate); + COPY(vbv_max_rate); + COPY(single_frame_vbv); + COPY(cbr_decay); + COPY(rate_factor_constant); + COPY(rate_factor_max_increment); #undef COPY } if( cur != next ) @@ -1904,12 +2751,16 @@ void x264_thread_sync_ratecontrol( x264_t *cur, x264_t *prev, x264_t *next ) #define COPY(var) next->rc->var = cur->rc->var /* these vars are updated in x264_ratecontrol_end() * so copy them from the context that most recently ended (cur) - * to the context that's about to end (next) - */ + * to the context that's about to end (next) */ COPY(cplxr_sum); COPY(expected_bits_sum); + COPY(filler_bits_sum); COPY(wanted_bits_window); COPY(bframe_bits); + COPY(initial_cpb_removal_delay); + COPY(initial_cpb_removal_delay_offset); + COPY(nrt_first_access_unit); + COPY(previous_cpb_final_arrival_time); #undef COPY } //FIXME row_preds[] (not strictly necessary, but would improve prediction) @@ -1922,45 +2773,45 @@ static int find_underflow( x264_t *h, double *fills, int *t0, int *t1, int over * we're adding or removing bits), and starting on the earliest frame that * can influence the buffer fill of that end frame. */ x264_ratecontrol_t *rcc = h->rc; - const double buffer_min = (over ? .1 : .1) * rcc->buffer_size; + const double buffer_min = .1 * rcc->buffer_size; const double buffer_max = .9 * rcc->buffer_size; double fill = fills[*t0-1]; double parity = over ? 1. : -1.; - int i, start=-1, end=-1; - for(i = *t0; i < rcc->num_entries; i++) + int start = -1, end = -1; + for( int i = *t0; i < rcc->num_entries; i++ ) { - fill += (rcc->buffer_rate - qscale2bits(&rcc->entry[i], rcc->entry[i].new_qscale)) * parity; + fill += (rcc->entry_out[i]->i_cpb_duration * rcc->vbv_max_rate * h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale - + qscale2bits( rcc->entry_out[i], rcc->entry_out[i]->new_qscale )) * parity; fill = x264_clip3f(fill, 0, rcc->buffer_size); fills[i] = fill; - if(fill <= buffer_min || i == 0) + if( fill <= buffer_min || i == 0 ) { - if(end >= 0) + if( end >= 0 ) break; start = i; } - else if(fill >= buffer_max && start >= 0) + else if( fill >= buffer_max && start >= 0 ) end = i; } *t0 = start; *t1 = end; - return start>=0 && end>=0; + return start >= 0 && end >= 0; } -static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max) +static int fix_underflow( x264_t *h, int t0, int t1, double adjustment, double qscale_min, double qscale_max ) { x264_ratecontrol_t *rcc = h->rc; double qscale_orig, qscale_new; - int i; int adjusted = 0; - if(t0 > 0) + if( t0 > 0 ) t0++; - for(i = t0; i <= t1; i++) + for( int i = t0; i <= t1; i++ ) { - qscale_orig = rcc->entry[i].new_qscale; - qscale_orig = x264_clip3f(qscale_orig, qscale_min, qscale_max); + qscale_orig = rcc->entry_out[i]->new_qscale; + qscale_orig = x264_clip3f( qscale_orig, qscale_min, qscale_max ); qscale_new = qscale_orig * adjustment; - qscale_new = x264_clip3f(qscale_new, qscale_min, qscale_max); - rcc->entry[i].new_qscale = qscale_new; + qscale_new = x264_clip3f( qscale_new, qscale_min, qscale_max ); + rcc->entry_out[i]->new_qscale = qscale_new; adjusted = adjusted || (qscale_new != qscale_orig); } return adjusted; @@ -1970,17 +2821,16 @@ static double count_expected_bits( x264_t *h ) { x264_ratecontrol_t *rcc = h->rc; double expected_bits = 0; - int i; - for(i = 0; i < rcc->num_entries; i++) + for( int i = 0; i < rcc->num_entries; i++ ) { - ratecontrol_entry_t *rce = &rcc->entry[i]; + ratecontrol_entry_t *rce = rcc->entry_out[i]; rce->expected_bits = expected_bits; - expected_bits += qscale2bits(rce, rce->new_qscale); + expected_bits += qscale2bits( rce, rce->new_qscale ); } return expected_bits; } -static int vbv_pass2( x264_t *h ) +static int vbv_pass2( x264_t *h, double all_available_bits ) { /* for each interval of buffer_full .. underflow, uniformly increase the qp of all * frames in the interval until either buffer is full at some intermediate frame or the @@ -1989,13 +2839,12 @@ static int vbv_pass2( x264_t *h ) x264_ratecontrol_t *rcc = h->rc; double *fills; - double all_available_bits = h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps; double expected_bits = 0; double adjustment; double prev_bits = 0; - int i, t0, t1; - double qscale_min = qp2qscale(h->param.rc.i_qp_min); - double qscale_max = qp2qscale(h->param.rc.i_qp_max); + int t0, t1; + double qscale_min = qp2qscale( h->param.rc.i_qp_min ); + double qscale_max = qp2qscale( h->param.rc.i_qp_max ); int iterations = 0; int adj_min, adj_max; CHECKED_MALLOC( fills, (rcc->num_entries+1)*sizeof(double) ); @@ -2008,16 +2857,16 @@ static int vbv_pass2( x264_t *h ) iterations++; prev_bits = expected_bits; - if(expected_bits != 0) + if( expected_bits ) { /* not first iteration */ adjustment = X264_MAX(X264_MIN(expected_bits / all_available_bits, 0.999), 0.9); fills[-1] = rcc->buffer_size * h->param.rc.f_vbv_buffer_init; t0 = 0; /* fix overflows */ adj_min = 1; - while(adj_min && find_underflow(h, fills, &t0, &t1, 1)) + while(adj_min && find_underflow( h, fills, &t0, &t1, 1 )) { - adj_min = fix_underflow(h, t0, t1, adjustment, qscale_min, qscale_max); + adj_min = fix_underflow( h, t0, t1, adjustment, qscale_min, qscale_max ); t0 = t1; } } @@ -2026,20 +2875,20 @@ static int vbv_pass2( x264_t *h ) t0 = 0; /* fix underflows -- should be done after overflow, as we'd better undersize target than underflowing VBV */ adj_max = 1; - while(adj_max && find_underflow(h, fills, &t0, &t1, 0)) - adj_max = fix_underflow(h, t0, t1, 1.001, qscale_min, qscale_max); + while( adj_max && find_underflow( h, fills, &t0, &t1, 0 ) ) + adj_max = fix_underflow( h, t0, t1, 1.001, qscale_min, qscale_max ); - expected_bits = count_expected_bits(h); - } while((expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) ); + expected_bits = count_expected_bits( h ); + } while( (expected_bits < .995*all_available_bits) && ((int64_t)(expected_bits+.5) > (int64_t)(prev_bits+.5)) ); - if (!adj_max) + if( !adj_max ) x264_log( h, X264_LOG_WARNING, "vbv-maxrate issue, qpmax or vbv-maxrate too low\n"); /* store expected vbv filling values for tracking when encoding */ - for(i = 0; i < rcc->num_entries; i++) - rcc->entry[i].expected_vbv = rcc->buffer_size - fills[i]; + for( int i = 0; i < rcc->num_entries; i++ ) + rcc->entry_out[i]->expected_vbv = rcc->buffer_size - fills[i]; - x264_free(fills-1); + x264_free( fills-1 ); return 0; fail: return -1; @@ -2049,17 +2898,22 @@ static int init_pass2( x264_t *h ) { x264_ratecontrol_t *rcc = h->rc; uint64_t all_const_bits = 0; - uint64_t all_available_bits = (uint64_t)(h->param.rc.i_bitrate * 1000. * rcc->num_entries / rcc->fps); - double rate_factor, step, step_mult; + double timescale = (double)h->sps->vui.i_num_units_in_tick / h->sps->vui.i_time_scale; + double duration = 0; + for( int i = 0; i < rcc->num_entries; i++ ) + duration += rcc->entry[i].i_duration; + duration *= timescale; + uint64_t all_available_bits = h->param.rc.i_bitrate * 1000. * duration; + double rate_factor, step_mult; double qblur = h->param.rc.f_qblur; double cplxblur = h->param.rc.f_complexity_blur; const int filter_size = (int)(qblur*4) | 1; double expected_bits; double *qscale, *blurred_qscale; - int i; + double base_cplx = h->mb.i_mb_count * (h->param.i_bframe ? 120 : 80); /* find total/average complexity & const_bits */ - for(i=0; inum_entries; i++) + for( int i = 0; i < rcc->num_entries; i++ ) { ratecontrol_entry_t *rce = &rcc->entry[i]; all_const_bits += rce->misc_bits; @@ -2067,8 +2921,8 @@ static int init_pass2( x264_t *h ) if( all_available_bits < all_const_bits) { - x264_log(h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n", - (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.))); + x264_log( h, X264_LOG_ERROR, "requested bitrate is too low. estimated minimum is %d kbps\n", + (int)(all_const_bits * rcc->fps / (rcc->num_entries * 1000.)) ); return -1; } @@ -2076,35 +2930,36 @@ static int init_pass2( x264_t *h ) * We don't blur the QPs directly, because then one very simple frame * could drag down the QP of a nearby complex frame and give it more * bits than intended. */ - for(i=0; inum_entries; i++) + for( int i = 0; i < rcc->num_entries; i++ ) { ratecontrol_entry_t *rce = &rcc->entry[i]; double weight_sum = 0; double cplx_sum = 0; double weight = 1.0; double gaussian_weight; - int j; /* weighted average of cplx of future frames */ - for(j=1; jnum_entries-i; j++) + for( int j = 1; j < cplxblur*2 && j < rcc->num_entries-i; j++ ) { ratecontrol_entry_t *rcj = &rcc->entry[i+j]; + double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION; weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 ); - if(weight < .0001) + if( weight < .0001 ) break; - gaussian_weight = weight * exp(-j*j/200.0); + gaussian_weight = weight * exp( -j*j/200.0 ); weight_sum += gaussian_weight; - cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits); + cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration; } /* weighted average of cplx of past frames */ weight = 1.0; - for(j=0; j<=cplxblur*2 && j<=i; j++) + for( int j = 0; j <= cplxblur*2 && j <= i; j++ ) { ratecontrol_entry_t *rcj = &rcc->entry[i-j]; - gaussian_weight = weight * exp(-j*j/200.0); + double frame_duration = CLIP_DURATION(rcj->i_duration * timescale) / BASE_FRAME_DURATION; + gaussian_weight = weight * exp( -j*j/200.0 ); weight_sum += gaussian_weight; - cplx_sum += gaussian_weight * (qscale2bits(rcj, 1) - rcj->misc_bits); + cplx_sum += gaussian_weight * (qscale2bits( rcj, 1 ) - rcj->misc_bits) / frame_duration; weight *= 1 - pow( (float)rcj->i_count / rcc->nmb, 2 ); - if(weight < .0001) + if( weight < .0001 ) break; } rce->blurred_complexity = cplx_sum / weight_sum; @@ -2124,12 +2979,16 @@ static int init_pass2( x264_t *h ) * The search range is probably overkill, but speed doesn't matter here. */ expected_bits = 1; - for(i=0; inum_entries; i++) - expected_bits += qscale2bits(&rcc->entry[i], get_qscale(h, &rcc->entry[i], 1.0, i)); + for( int i = 0; i < rcc->num_entries; i++ ) + { + double q = get_qscale(h, &rcc->entry[i], 1.0, i); + expected_bits += qscale2bits(&rcc->entry[i], q); + rcc->last_qscale_for[rcc->entry[i].pict_type] = q; + } step_mult = all_available_bits / expected_bits; rate_factor = 0; - for(step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5) + for( double step = 1E4 * step_mult; step > 1E-7 * step_mult; step *= 0.5) { expected_bits = 0; rate_factor += step; @@ -2138,39 +2997,43 @@ static int init_pass2( x264_t *h ) rcc->last_accum_p_norm = 1; rcc->accum_p_norm = 0; + rcc->last_qscale_for[0] = + rcc->last_qscale_for[1] = + rcc->last_qscale_for[2] = pow( base_cplx, 1 - rcc->qcompress ) / rate_factor; + /* find qscale */ - for(i=0; inum_entries; i++) + for( int i = 0; i < rcc->num_entries; i++ ) { - qscale[i] = get_qscale(h, &rcc->entry[i], rate_factor, i); + qscale[i] = get_qscale( h, &rcc->entry[i], rate_factor, -1 ); + rcc->last_qscale_for[rcc->entry[i].pict_type] = qscale[i]; } /* fixed I/B qscale relative to P */ - for(i=rcc->num_entries-1; i>=0; i--) + for( int i = rcc->num_entries-1; i >= 0; i-- ) { - qscale[i] = get_diff_limited_q(h, &rcc->entry[i], qscale[i]); + qscale[i] = get_diff_limited_q( h, &rcc->entry[i], qscale[i], i ); assert(qscale[i] >= 0); } /* smooth curve */ - if(filter_size > 1) + if( filter_size > 1 ) { - assert(filter_size%2==1); - for(i=0; inum_entries; i++) + assert( filter_size%2 == 1 ); + for( int i = 0; i < rcc->num_entries; i++ ) { ratecontrol_entry_t *rce = &rcc->entry[i]; - int j; - double q=0.0, sum=0.0; + double q = 0.0, sum = 0.0; - for(j=0; j= rcc->num_entries) + int idx = i+j-filter_size/2; + double d = idx-i; + double coeff = qblur==0 ? 1.0 : exp( -d*d/(qblur*qblur) ); + if( idx < 0 || idx >= rcc->num_entries ) continue; - if(rce->pict_type != rcc->entry[index].pict_type) + if( rce->pict_type != rcc->entry[idx].pict_type ) continue; - q += qscale[index] * coeff; + q += qscale[idx] * coeff; sum += coeff; } blurred_qscale[i] = q/sum; @@ -2178,55 +3041,56 @@ static int init_pass2( x264_t *h ) } /* find expected bits */ - for(i=0; inum_entries; i++) + for( int i = 0; i < rcc->num_entries; i++ ) { ratecontrol_entry_t *rce = &rcc->entry[i]; - rce->new_qscale = clip_qscale(h, rce->pict_type, blurred_qscale[i]); + rce->new_qscale = clip_qscale( h, rce->pict_type, blurred_qscale[i] ); assert(rce->new_qscale >= 0); - expected_bits += qscale2bits(rce, rce->new_qscale); + expected_bits += qscale2bits( rce, rce->new_qscale ); } - if(expected_bits > all_available_bits) rate_factor -= step; + if( expected_bits > all_available_bits ) + rate_factor -= step; } - x264_free(qscale); - if(filter_size > 1) - x264_free(blurred_qscale); + x264_free( qscale ); + if( filter_size > 1 ) + x264_free( blurred_qscale ); - if(rcc->b_vbv) - if( vbv_pass2( h ) ) + if( rcc->b_vbv ) + if( vbv_pass2( h, all_available_bits ) ) return -1; - expected_bits = count_expected_bits(h); + expected_bits = count_expected_bits( h ); - if(fabs(expected_bits/all_available_bits - 1.0) > 0.01) + if( fabs( expected_bits/all_available_bits - 1.0 ) > 0.01 ) { double avgq = 0; - for(i=0; inum_entries; i++) + for( int i = 0; i < rcc->num_entries; i++ ) avgq += rcc->entry[i].new_qscale; - avgq = qscale2qp(avgq / rcc->num_entries); - - if ((expected_bits > all_available_bits) || (!rcc->b_vbv)) - x264_log(h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n"); - x264_log(h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n", - (float)h->param.rc.i_bitrate, - expected_bits * rcc->fps / (rcc->num_entries * 1000.), - avgq); - if(expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2) - { - if(h->param.rc.i_qp_min > 0) - x264_log(h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min); + avgq = qscale2qp( avgq / rcc->num_entries ); + + if( expected_bits > all_available_bits || !rcc->b_vbv ) + x264_log( h, X264_LOG_WARNING, "Error: 2pass curve failed to converge\n" ); + x264_log( h, X264_LOG_WARNING, "target: %.2f kbit/s, expected: %.2f kbit/s, avg QP: %.4f\n", + (float)h->param.rc.i_bitrate, + expected_bits * rcc->fps / (rcc->num_entries * 1000.), + avgq ); + if( expected_bits < all_available_bits && avgq < h->param.rc.i_qp_min + 2 ) + { + if( h->param.rc.i_qp_min > 0 ) + x264_log( h, X264_LOG_WARNING, "try reducing target bitrate or reducing qp_min (currently %d)\n", h->param.rc.i_qp_min ); else - x264_log(h, X264_LOG_WARNING, "try reducing target bitrate\n"); + x264_log( h, X264_LOG_WARNING, "try reducing target bitrate\n" ); } - else if(expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2) + else if( expected_bits > all_available_bits && avgq > h->param.rc.i_qp_max - 2 ) { - if(h->param.rc.i_qp_max < 51) - x264_log(h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max); + if( h->param.rc.i_qp_max < QP_MAX ) + x264_log( h, X264_LOG_WARNING, "try increasing target bitrate or increasing qp_max (currently %d)\n", h->param.rc.i_qp_max ); else - x264_log(h, X264_LOG_WARNING, "try increasing target bitrate\n"); + x264_log( h, X264_LOG_WARNING, "try increasing target bitrate\n"); } - else if(!(rcc->b_2pass && rcc->b_vbv)) - x264_log(h, X264_LOG_WARNING, "internal error\n"); + else if( !(rcc->b_2pass && rcc->b_vbv) ) + x264_log( h, X264_LOG_WARNING, "internal error\n" ); } return 0;