X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=equations.frag;h=04e5370fd9d53baf5afda39ee140a526d6937945;hb=c49945ed13f2f58ed6f9ac2a4c4f6618e5d16b51;hp=190be60adc3a2dea2652371d55b72075a87af665;hpb=90ef36dcd300365b56b85152b7e239bf64ee9492;p=nageru diff --git a/equations.frag b/equations.frag index 190be60..04e5370 100644 --- a/equations.frag +++ b/equations.frag @@ -1,23 +1,83 @@ #version 450 core -in vec2 tc; -out uvec4 equation; +in vec3 tc0, tc_left0, tc_down0; +in vec3 tc1, tc_left1, tc_down1; +in float line_offset; +out uvec4 equation_red, equation_black; -uniform sampler2D I_x_y_tex, I_t_tex; -uniform sampler2D diff_flow_tex, base_flow_tex; -uniform sampler2D beta_0_tex; -uniform sampler2D smoothness_x_tex, smoothness_y_tex; +uniform sampler2DArray I_x_y_tex, I_t_tex; +uniform sampler2DArray diff_flow_tex, base_flow_tex; +uniform sampler2DArray beta_0_tex; +uniform sampler2DArray diffusivity_tex; -// TODO: Consider a specialized version for the case where we know that du = dv = 0, -// since we run so few iterations. +// Relative weighting of intensity term. +uniform float delta; +// Relative weighting of gradient term. +uniform float gamma; -void main() +uniform bool zero_diff_flow; + +// Similar to packHalf2x16, but the two values share exponent, and are stored +// as 12-bit fixed point numbers multiplied by that exponent (the leading one +// can't be implicit in this kind of format). This allows us to store a much +// greater range of numbers (8-bit, ie., full fp32 range), and also gives us an +// extra mantissa bit. (Well, ostensibly two, but because the numbers have to +// be stored denormalized, we only really gain one.) +// +// The price we pay is that if the numbers are of very different magnitudes, +// the smaller number gets less precision. +uint pack_floats_shared(float a, float b) +{ + float greatest = max(abs(a), abs(b)); + + // Find the exponent, increase it by one, and negate it. + // E.g., if the nonbiased exponent is 3, the number is between + // 2^3 and 2^4, so our normalization factor to get within -1..1 + // is going to be 2^-4. + // + // exponent -= 127; + // exponent = -(exponent + 1); + // exponent += 127; + // + // is the same as + // + // exponent = 252 - exponent; + uint e = floatBitsToUint(greatest) & 0x7f800000u; + float normalizer = uintBitsToFloat((252 << 23) - e); + + // The exponent is the same range as fp32, so just copy it + // verbatim, shifted up to where the sign bit used to be. + e <<= 1; + + // Quantize to 12 bits. + uint qa = uint(int(round(a * (normalizer * 2047.0)))); + uint qb = uint(int(round(b * (normalizer * 2047.0)))); + + return (qa & 0xfffu) | ((qb & 0xfffu) << 12) | e; +} + +float zero_if_outside_border(vec4 val) +{ + if (val.w < 1.0f) { + // We hit the border (or more like half-way to it), so zero smoothness. + return 0.0f; + } else { + return val.x; + } +} + +uvec4 compute_equation(vec3 tc, vec3 tc_left, vec3 tc_down) { // Read the flow (on top of the u0/v0 flow). - vec2 diff_flow = texture(diff_flow_tex, tc).xy; - float du = diff_flow.x; - float dv = diff_flow.y; + float du, dv; + if (zero_diff_flow) { + du = dv = 0.0f; + } else { + vec2 diff_flow = texture(diff_flow_tex, tc).xy; + du = diff_flow.x; + dv = diff_flow.y; + } // Read the first derivatives. vec2 I_x_y = texture(I_x_y_tex, tc).xy; @@ -25,14 +85,11 @@ void main() float I_y = I_x_y.y; float I_t = texture(I_t_tex, tc).x; - // E_I term. Note that we don't square β_0, in line with DeepFlow, - // even though it's probably an error. - // - // TODO: Evaluate squaring β_0. - // FIXME: Should the penalizer be adjusted for 0..1 intensity range instead of 0..255? - // TODO: Multiply by some alpha. + // E_I term. Note that we don't square β_0, in line with DeepFlow; + // it's probably an error (see variational_refinement.txt), + // but squaring it seems to give worse results. float beta_0 = texture(beta_0_tex, tc).x; - float k1 = beta_0 * inversesqrt(beta_0 * (I_x * du + I_y * dv + I_t) * (I_x * du + I_y * dv + I_t) + 1e-6); + float k1 = delta * beta_0 * inversesqrt(beta_0 * (I_x * du + I_y * dv + I_t) * (I_x * du + I_y * dv + I_t) + 1e-6); float A11 = k1 * I_x * I_x; float A12 = k1 * I_x * I_y; float A22 = k1 * I_y * I_y; @@ -66,11 +123,10 @@ void main() float I_xt = I_tx_ty.x; float I_yt = I_tx_ty.y; - // E_G term. Same TODOs as E_I. Same normalization as beta_0 - // (see derivatives.frag). + // E_G term. Same normalization as beta_0 (see derivatives.frag). float beta_x = 1.0 / (I_xx * I_xx + I_xy * I_xy + 1e-7); float beta_y = 1.0 / (I_xy * I_xy + I_yy * I_yy + 1e-7); - float k2 = inversesqrt( + float k2 = gamma * inversesqrt( beta_x * (I_xx * du + I_xy * dv + I_xt) * (I_xx * du + I_xy * dv + I_xt) + beta_y * (I_xy * du + I_yy * dv + I_yt) * (I_xy * du + I_yy * dv + I_yt) + 1e-6); @@ -83,12 +139,16 @@ void main() b2 -= k_x * I_xy * I_xt + k_y * I_yy * I_yt; // E_S term, sans the part on the right-hand side that deals with - // the neighboring pixels. - // TODO: Multiply by some gamma. - float smooth_l = textureOffset(smoothness_x_tex, tc, ivec2(-1, 0)).x; - float smooth_r = texture(smoothness_x_tex, tc).x; - float smooth_d = textureOffset(smoothness_y_tex, tc, ivec2( 0, -1)).x; - float smooth_u = texture(smoothness_y_tex, tc).x; + // the neighboring pixels. The gamma is multiplied in in smoothness.frag. + // + // Note that we sample in-between two texels, which gives us the 0.5 * + // (x[-1] + x[0]) part for free. If one of the texels is a border + // texel, it will have zero alpha, and zero_if_outside_border() will + // set smoothness to zero. + float smooth_l = zero_if_outside_border(texture(diffusivity_tex, tc_left)); + float smooth_r = zero_if_outside_border(textureOffset(diffusivity_tex, tc_left, ivec2(1, 0))); + float smooth_d = zero_if_outside_border(texture(diffusivity_tex, tc_down)); + float smooth_u = zero_if_outside_border(textureOffset(diffusivity_tex, tc_down, ivec2(0, 1))); A11 += smooth_l + smooth_r + smooth_d + smooth_u; A22 += smooth_l + smooth_r + smooth_d + smooth_u; @@ -103,8 +163,25 @@ void main() b2 += laplacian.y; // Encode the equation down into four uint32s. - equation.x = floatBitsToUint(1.0 / A11); - equation.y = floatBitsToUint(A12); - equation.z = floatBitsToUint(1.0 / A22); - equation.w = packHalf2x16(vec2(b1, b2)); + uvec4 ret; + ret.x = floatBitsToUint(1.0 / A11); + ret.y = floatBitsToUint(A12); + ret.z = floatBitsToUint(1.0 / A22); + ret.w = pack_floats_shared(b1, b2); + return ret; +} + +void main() +{ + uvec4 eq0 = compute_equation(tc0, tc_left0, tc_down0); + uvec4 eq1 = compute_equation(tc1, tc_left1, tc_down1); + + if ((int(round(line_offset)) & 1) == 1) { + // Odd line, so the right value is red. + equation_red = eq1; + equation_black = eq0; + } else { + equation_red = eq0; + equation_black = eq1; + } }