X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Faaccoder.c;h=35b98a9ae25d383cd7fc006e5c9c3a3603731703;hb=436ced244fadcde2c0b925627920e84b25482542;hp=4f0e58d0475bf1c3f99061d42273cbbc47177ea9;hpb=a71e9b62546e4467751c0219869a7f6d004a5986;p=ffmpeg diff --git a/libavcodec/aaccoder.c b/libavcodec/aaccoder.c index 4f0e58d0475..35b98a9ae25 100644 --- a/libavcodec/aaccoder.c +++ b/libavcodec/aaccoder.c @@ -2,25 +2,25 @@ * AAC coefficients encoder * Copyright (C) 2008-2009 Konstantin Shishkov * - * This file is part of FFmpeg. + * This file is part of Libav. * - * FFmpeg is free software; you can redistribute it and/or + * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * - * FFmpeg is distributed in the hope that it will be useful, + * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software + * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** - * @file libavcodec/aaccoder.c + * @file * AAC coefficients encoder */ @@ -30,6 +30,10 @@ * add sane pulse detection ***********************************/ +#include "libavutil/libm.h" // brought forward to work around cygwin header breakage + +#include +#include "libavutil/mathematics.h" #include "avcodec.h" #include "put_bits.h" #include "aac.h" @@ -65,18 +69,16 @@ static av_always_inline int quant(float coef, const float Q) return sqrtf(a * sqrtf(a)) + 0.4054; } -static void quantize_bands(int (*out)[2], const float *in, const float *scaled, +static void quantize_bands(int *out, const float *in, const float *scaled, int size, float Q34, int is_signed, int maxval) { int i; double qc; for (i = 0; i < size; i++) { qc = scaled[i] * Q34; - out[i][0] = (int)FFMIN(qc, (double)maxval); - out[i][1] = (int)FFMIN(qc + 0.4054, (double)maxval); + out[i] = (int)FFMIN(qc + 0.4054, (double)maxval); if (is_signed && in[i] < 0.0f) { - out[i][0] = -out[i][0]; - out[i][1] = -out[i][1]; + out[i] = -out[i]; } } } @@ -100,117 +102,104 @@ static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16} * * @return quantization distortion */ -static float quantize_band_cost(struct AACEncContext *s, const float *in, +static av_always_inline float quantize_and_encode_band_cost_template( + struct AACEncContext *s, + PutBitContext *pb, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, - int *bits) + int *bits, int BT_ZERO, int BT_UNSIGNED, + int BT_PAIR, int BT_ESC) { - const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; - const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; + const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512; + const float Q = ff_aac_pow2sf_tab [q_idx]; + const float Q34 = ff_aac_pow34sf_tab[q_idx]; + const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; const float CLIPPED_ESCAPE = 165140.0f*IQ; - int i, j, k; + int i, j; float cost = 0; - const int dim = cb < FIRST_PAIR_BT ? 4 : 2; + const int dim = BT_PAIR ? 2 : 4; int resbits = 0; -#ifndef USE_REALLY_FULL_SEARCH - const float Q34 = sqrtf(Q * sqrtf(Q)); const int range = aac_cb_range[cb]; const int maxval = aac_cb_maxval[cb]; - int offs[4]; -#endif /* USE_REALLY_FULL_SEARCH */ + int off; - if (!cb) { + if (BT_ZERO) { for (i = 0; i < size; i++) - cost += in[i]*in[i]*lambda; + cost += in[i]*in[i]; if (bits) *bits = 0; - return cost; + return cost * lambda; + } + if (!scaled) { + abs_pow34_v(s->scoefs, in, size); + scaled = s->scoefs; + } + quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval); + if (BT_UNSIGNED) { + off = 0; + } else { + off = maxval; } -#ifndef USE_REALLY_FULL_SEARCH - offs[0] = 1; - for (i = 1; i < dim; i++) - offs[i] = offs[i-1]*range; - quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); -#endif /* USE_REALLY_FULL_SEARCH */ for (i = 0; i < size; i += dim) { - float mincost; - int minidx = 0; - int minbits = 0; const float *vec; -#ifndef USE_REALLY_FULL_SEARCH - int (*quants)[2] = &s->qcoefs[i]; - mincost = 0.0f; - for (j = 0; j < dim; j++) - mincost += in[i+j]*in[i+j]*lambda; - minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; - minbits = ff_aac_spectral_bits[cb-1][minidx]; - mincost += minbits; - for (j = 0; j < (1<= CLIPPED_ESCAPE) { - di = t - CLIPPED_ESCAPE; - curbits += 21; - } else { - int c = av_clip(quant(t, Q), 0, 8191); - di = t - c*cbrt(c)*IQ; - curbits += av_log2(c)*2 - 4 + 1; - } + int *quants = s->qcoefs + i; + int curidx = 0; + int curbits; + float rd = 0.0f; + for (j = 0; j < dim; j++) { + curidx *= range; + curidx += quants[j] + off; + } + curbits = ff_aac_spectral_bits[cb-1][curidx]; + vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; + if (BT_UNSIGNED) { + for (j = 0; j < dim; j++) { + float t = fabsf(in[i+j]); + float di; + if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow + if (t >= CLIPPED_ESCAPE) { + di = t - CLIPPED_ESCAPE; + curbits += 21; } else { - di = t - vec[k]*IQ; + int c = av_clip(quant(t, Q), 0, 8191); + di = t - c*cbrtf(c)*IQ; + curbits += av_log2(c)*2 - 4 + 1; } - if (vec[k] != 0.0f) - curbits++; - rd += di*di*lambda; - } - } else { - for (k = 0; k < dim; k++) { - float di = in[i+k] - vec[k]*IQ; - rd += di*di*lambda; + } else { + di = t - vec[j]*IQ; } + if (vec[j] != 0.0f) + curbits++; + rd += di*di; } - rd += curbits; - if (rd < mincost) { - mincost = rd; - minidx = j; - minbits = curbits; + } else { + for (j = 0; j < dim; j++) { + float di = in[i+j] - vec[j]*IQ; + rd += di*di; } } - cost += mincost; - resbits += minbits; + cost += rd * lambda + curbits; + resbits += curbits; if (cost >= uplim) return uplim; + if (pb) { + put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]); + if (BT_UNSIGNED) + for (j = 0; j < dim; j++) + if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f) + put_bits(pb, 1, in[i+j] < 0.0f); + if (BT_ESC) { + for (j = 0; j < 2; j++) { + if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) { + int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); + int len = av_log2(coef); + + put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); + put_bits(pb, len, coef & ((1 << len) - 1)); + } + } + } + } } if (bits) @@ -218,128 +207,94 @@ static float quantize_band_cost(struct AACEncContext *s, const float *in, return cost; } +#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \ +static float quantize_and_encode_band_cost_ ## NAME( \ + struct AACEncContext *s, \ + PutBitContext *pb, const float *in, \ + const float *scaled, int size, int scale_idx, \ + int cb, const float lambda, const float uplim, \ + int *bits) { \ + return quantize_and_encode_band_cost_template( \ + s, pb, in, scaled, size, scale_idx, \ + BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \ + BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC); \ +} + +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1) + +static float (*const quantize_and_encode_band_cost_arr[])( + struct AACEncContext *s, + PutBitContext *pb, const float *in, + const float *scaled, int size, int scale_idx, + int cb, const float lambda, const float uplim, + int *bits) = { + quantize_and_encode_band_cost_ZERO, + quantize_and_encode_band_cost_SQUAD, + quantize_and_encode_band_cost_SQUAD, + quantize_and_encode_band_cost_UQUAD, + quantize_and_encode_band_cost_UQUAD, + quantize_and_encode_band_cost_SPAIR, + quantize_and_encode_band_cost_SPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_ESC, +}; + +#define quantize_and_encode_band_cost( \ + s, pb, in, scaled, size, scale_idx, cb, \ + lambda, uplim, bits) \ + quantize_and_encode_band_cost_arr[cb]( \ + s, pb, in, scaled, size, scale_idx, cb, \ + lambda, uplim, bits) + +static float quantize_band_cost(struct AACEncContext *s, const float *in, + const float *scaled, int size, int scale_idx, + int cb, const float lambda, const float uplim, + int *bits) +{ + return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx, + cb, lambda, uplim, bits); +} + static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, const float *in, int size, int scale_idx, int cb, const float lambda) { - const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; - const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; - const float CLIPPED_ESCAPE = 165140.0f*IQ; - const int dim = (cb < FIRST_PAIR_BT) ? 4 : 2; - int i, j, k; -#ifndef USE_REALLY_FULL_SEARCH - const float Q34 = sqrtf(Q * sqrtf(Q)); - const int range = aac_cb_range[cb]; - const int maxval = aac_cb_maxval[cb]; - int offs[4]; - float *scaled = s->scoefs; -#endif /* USE_REALLY_FULL_SEARCH */ - -//START_TIMER - if (!cb) - return; - -#ifndef USE_REALLY_FULL_SEARCH - offs[0] = 1; - for (i = 1; i < dim; i++) - offs[i] = offs[i-1]*range; - abs_pow34_v(scaled, in, size); - quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); -#endif /* USE_REALLY_FULL_SEARCH */ - for (i = 0; i < size; i += dim) { - float mincost; - int minidx = 0; - int minbits = 0; - const float *vec; -#ifndef USE_REALLY_FULL_SEARCH - int (*quants)[2] = &s->qcoefs[i]; - mincost = 0.0f; - for (j = 0; j < dim; j++) - mincost += in[i+j]*in[i+j]*lambda; - minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; - minbits = ff_aac_spectral_bits[cb-1][minidx]; - mincost += minbits; - for (j = 0; j < (1<= CLIPPED_ESCAPE) { - di = t - CLIPPED_ESCAPE; - curbits += 21; - } else { - int c = av_clip(quant(t, Q), 0, 8191); - di = t - c*cbrt(c)*IQ; - curbits += av_log2(c)*2 - 4 + 1; - } - } else { - di = t - vec[k]*IQ; - } - if (vec[k] != 0.0f) - curbits++; - rd += di*di*lambda; - } - } else { - for (k = 0; k < dim; k++) { - float di = in[i+k] - vec[k]*IQ; - rd += di*di*lambda; - } - } - rd += curbits; - if (rd < mincost) { - mincost = rd; - minidx = curidx; - minbits = curbits; - } - } - put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]); - if (IS_CODEBOOK_UNSIGNED(cb)) - for (j = 0; j < dim; j++) - if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f) - put_bits(pb, 1, in[i+j] < 0.0f); - if (cb == ESC_BT) { - for (j = 0; j < 2; j++) { - if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) { - int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); - int len = av_log2(coef); + quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda, + INFINITY, NULL); +} - put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); - put_bits(pb, len, coef & ((1 << len) - 1)); - } - } +static float find_max_val(int group_len, int swb_size, const float *scaled) { + float maxval = 0.0f; + int w2, i; + for (w2 = 0; w2 < group_len; w2++) { + for (i = 0; i < swb_size; i++) { + maxval = FFMAX(maxval, scaled[w2*128+i]); } } -//STOP_TIMER("quantize_and_encode") + return maxval; +} + +static int find_min_book(float maxval, int sf) { + float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512]; + float Q34 = sqrtf(Q * sqrtf(Q)); + int qmaxval, cb; + qmaxval = maxval * Q34 + 0.4054f; + if (qmaxval == 0) cb = 0; + else if (qmaxval == 1) cb = 1; + else if (qmaxval == 2) cb = 3; + else if (qmaxval <= 4) cb = 5; + else if (qmaxval <= 7) cb = 7; + else if (qmaxval <= 12) cb = 9; + else cb = 11; + return cb; } /** @@ -358,7 +313,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce int win, int group_len, const float lambda) { BandCodingPath path[120][12]; - int w, swb, cb, start, start2, size; + int w, swb, cb, start, size; int i, j; const int max_sfb = sce->ics.max_sfb; const int run_bits = sce->ics.num_windows == 1 ? 5 : 3; @@ -376,7 +331,6 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce path[0][cb].run = 0; } for (swb = 0; swb < max_sfb; swb++) { - start2 = start; size = sce->ics.swb_sizes[swb]; if (sce->zeroes[win*16 + swb]) { for (cb = 0; cb < 12; cb++) { @@ -393,7 +347,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce float cost_stay_here, cost_get_here; float rd = 0.0f; for (w = 0; w < group_len; w++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb]; rd += quantize_band_cost(s, sce->coeffs + start + w*128, s->scoefs + start + w*128, size, sce->sf_idx[(win+w)*16+swb], cb, @@ -456,38 +410,208 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce } } +static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, + int win, int group_len, const float lambda) +{ + BandCodingPath path[120][12]; + int w, swb, cb, start, size; + int i, j; + const int max_sfb = sce->ics.max_sfb; + const int run_bits = sce->ics.num_windows == 1 ? 5 : 3; + const int run_esc = (1 << run_bits) - 1; + int idx, ppos, count; + int stackrun[120], stackcb[120], stack_len; + float next_minbits = INFINITY; + int next_mincb = 0; + + abs_pow34_v(s->scoefs, sce->coeffs, 1024); + start = win*128; + for (cb = 0; cb < 12; cb++) { + path[0][cb].cost = run_bits+4; + path[0][cb].prev_idx = -1; + path[0][cb].run = 0; + } + for (swb = 0; swb < max_sfb; swb++) { + size = sce->ics.swb_sizes[swb]; + if (sce->zeroes[win*16 + swb]) { + float cost_stay_here = path[swb][0].cost; + float cost_get_here = next_minbits + run_bits + 4; + if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run] + != run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1]) + cost_stay_here += run_bits; + if (cost_get_here < cost_stay_here) { + path[swb+1][0].prev_idx = next_mincb; + path[swb+1][0].cost = cost_get_here; + path[swb+1][0].run = 1; + } else { + path[swb+1][0].prev_idx = 0; + path[swb+1][0].cost = cost_stay_here; + path[swb+1][0].run = path[swb][0].run + 1; + } + next_minbits = path[swb+1][0].cost; + next_mincb = 0; + for (cb = 1; cb < 12; cb++) { + path[swb+1][cb].cost = 61450; + path[swb+1][cb].prev_idx = -1; + path[swb+1][cb].run = 0; + } + } else { + float minbits = next_minbits; + int mincb = next_mincb; + int startcb = sce->band_type[win*16+swb]; + next_minbits = INFINITY; + next_mincb = 0; + for (cb = 0; cb < startcb; cb++) { + path[swb+1][cb].cost = 61450; + path[swb+1][cb].prev_idx = -1; + path[swb+1][cb].run = 0; + } + for (cb = startcb; cb < 12; cb++) { + float cost_stay_here, cost_get_here; + float bits = 0.0f; + for (w = 0; w < group_len; w++) { + bits += quantize_band_cost(s, sce->coeffs + start + w*128, + s->scoefs + start + w*128, size, + sce->sf_idx[(win+w)*16+swb], cb, + 0, INFINITY, NULL); + } + cost_stay_here = path[swb][cb].cost + bits; + cost_get_here = minbits + bits + run_bits + 4; + if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] + != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1]) + cost_stay_here += run_bits; + if (cost_get_here < cost_stay_here) { + path[swb+1][cb].prev_idx = mincb; + path[swb+1][cb].cost = cost_get_here; + path[swb+1][cb].run = 1; + } else { + path[swb+1][cb].prev_idx = cb; + path[swb+1][cb].cost = cost_stay_here; + path[swb+1][cb].run = path[swb][cb].run + 1; + } + if (path[swb+1][cb].cost < next_minbits) { + next_minbits = path[swb+1][cb].cost; + next_mincb = cb; + } + } + } + start += sce->ics.swb_sizes[swb]; + } + + //convert resulting path from backward-linked list + stack_len = 0; + idx = 0; + for (cb = 1; cb < 12; cb++) + if (path[max_sfb][cb].cost < path[max_sfb][idx].cost) + idx = cb; + ppos = max_sfb; + while (ppos > 0) { + assert(idx >= 0); + cb = idx; + stackrun[stack_len] = path[ppos][cb].run; + stackcb [stack_len] = cb; + idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx; + ppos -= path[ppos][cb].run; + stack_len++; + } + //perform actual band info encoding + start = 0; + for (i = stack_len - 1; i >= 0; i--) { + put_bits(&s->pb, 4, stackcb[i]); + count = stackrun[i]; + memset(sce->zeroes + win*16 + start, !stackcb[i], count); + //XXX: memset when band_type is also uint8_t + for (j = 0; j < count; j++) { + sce->band_type[win*16 + start] = stackcb[i]; + start++; + } + while (count >= run_esc) { + put_bits(&s->pb, run_bits, run_esc); + count -= run_esc; + } + put_bits(&s->pb, run_bits, count); + } +} + +/** Return the minimum scalefactor where the quantized coef does not clip. */ +static av_always_inline uint8_t coef2minsf(float coef) { + return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); +} + +/** Return the maximum scalefactor where the quantized coef is not zero. */ +static av_always_inline uint8_t coef2maxsf(float coef) { + return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); +} + typedef struct TrellisPath { float cost; int prev; - int min_val; - int max_val; } TrellisPath; +#define TRELLIS_STAGES 121 +#define TRELLIS_STATES (SCALE_MAX_DIFF+1) + static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda) { int q, w, w2, g, start = 0; - int i; + int i, j; int idx; - TrellisPath paths[256*121]; - int bandaddr[121]; + TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES]; + int bandaddr[TRELLIS_STAGES]; int minq; float mincost; + float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f; + int q0, q1, qcnt = 0; + + for (i = 0; i < 1024; i++) { + float t = fabsf(sce->coeffs[i]); + if (t > 0.0f) { + q0f = FFMIN(q0f, t); + q1f = FFMAX(q1f, t); + qnrgf += t*t; + qcnt++; + } + } + + if (!qcnt) { + memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); + memset(sce->zeroes, 1, sizeof(sce->zeroes)); + return; + } - for (i = 0; i < 256; i++) { - paths[i].cost = 0.0f; - paths[i].prev = -1; - paths[i].min_val = i; - paths[i].max_val = i; + //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped + q0 = coef2minsf(q0f); + //maximum scalefactor index is when maximum coefficient after quantizing is still not zero + q1 = coef2maxsf(q1f); + if (q1 - q0 > 60) { + int q0low = q0; + int q1high = q1; + //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped + int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512); + q1 = qnrg + 30; + q0 = qnrg - 30; + if (q0 < q0low) { + q1 += q0low - q0; + q0 = q0low; + } else if (q1 > q1high) { + q0 -= q1 - q1high; + q1 = q1high; + } } - for (i = 256; i < 256*121; i++) { - paths[i].cost = INFINITY; - paths[i].prev = -2; - paths[i].min_val = INT_MAX; - paths[i].max_val = 0; + + for (i = 0; i < TRELLIS_STATES; i++) { + paths[0][i].cost = 0.0f; + paths[0][i].prev = -1; } - idx = 256; + for (j = 1; j < TRELLIS_STAGES; j++) { + for (i = 0; i < TRELLIS_STATES; i++) { + paths[j][i].cost = INFINITY; + paths[j][i].prev = -2; + } + } + idx = 1; abs_pow34_v(s->scoefs, sce->coeffs, 1024); for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { start = w*128; @@ -496,11 +620,11 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, float qmin, qmax; int nz = 0; - bandaddr[idx >> 8] = w * 16 + g; + bandaddr[idx] = w * 16 + g; qmin = INT_MAX; qmax = 0.0f; for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; continue; @@ -517,85 +641,58 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, if (nz) { int minscale, maxscale; float minrd = INFINITY; + float maxval; //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped - minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); + minscale = coef2minsf(qmin); //maximum scalefactor index is when maximum coefficient after quantizing is still not zero - maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); + maxscale = coef2maxsf(qmax); + minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1); + maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES); + maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start); for (q = minscale; q < maxscale; q++) { - float dists[12], dist; - memset(dists, 0, sizeof(dists)); + float dist = 0; + int cb = find_min_book(maxval, sce->sf_idx[w*16+g]); for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; - int cb; - for (cb = 0; cb <= ESC_BT; cb++) - dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], - q, cb, lambda / band->threshold, INFINITY, NULL); + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; + dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], + q + q0, cb, lambda / band->threshold, INFINITY, NULL); } - dist = dists[0]; - for (i = 1; i <= ESC_BT; i++) - dist = FFMIN(dist, dists[i]); minrd = FFMIN(minrd, dist); - for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) { + for (i = 0; i < q1 - q0; i++) { float cost; - int minv, maxv; - if (isinf(paths[idx - 256 + i].cost)) - continue; - cost = paths[idx - 256 + i].cost + dist + cost = paths[idx - 1][i].cost + dist + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; - minv = FFMIN(paths[idx - 256 + i].min_val, q); - maxv = FFMAX(paths[idx - 256 + i].max_val, q); - if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) { - paths[idx + q].cost = cost; - paths[idx + q].prev = idx - 256 + i; - paths[idx + q].min_val = minv; - paths[idx + q].max_val = maxv; + if (cost < paths[idx][q].cost) { + paths[idx][q].cost = cost; + paths[idx][q].prev = i; } } } } else { - for (q = 0; q < 256; q++) { - if (!isinf(paths[idx - 256 + q].cost)) { - paths[idx + q].cost = paths[idx - 256 + q].cost + 1; - paths[idx + q].prev = idx - 256 + q; - paths[idx + q].min_val = FFMIN(paths[idx - 256 + q].min_val, q); - paths[idx + q].max_val = FFMAX(paths[idx - 256 + q].max_val, q); - continue; - } - for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, 256); i++) { - float cost; - int minv, maxv; - if (isinf(paths[idx - 256 + i].cost)) - continue; - cost = paths[idx - 256 + i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; - minv = FFMIN(paths[idx - 256 + i].min_val, q); - maxv = FFMAX(paths[idx - 256 + i].max_val, q); - if (cost < paths[idx + q].cost && maxv-minv < SCALE_MAX_DIFF) { - paths[idx + q].cost = cost; - paths[idx + q].prev = idx - 256 + i; - paths[idx + q].min_val = minv; - paths[idx + q].max_val = maxv; - } - } + for (q = 0; q < q1 - q0; q++) { + paths[idx][q].cost = paths[idx - 1][q].cost + 1; + paths[idx][q].prev = q; } } sce->zeroes[w*16+g] = !nz; start += sce->ics.swb_sizes[g]; - idx += 256; + idx++; } } - idx -= 256; - mincost = paths[idx].cost; - minq = idx; - for (i = 1; i < 256; i++) { - if (paths[idx + i].cost < mincost) { - mincost = paths[idx + i].cost; - minq = idx + i; + idx--; + mincost = paths[idx][0].cost; + minq = 0; + for (i = 1; i < TRELLIS_STATES; i++) { + if (paths[idx][i].cost < mincost) { + mincost = paths[idx][i].cost; + minq = i; } } - while (minq >= 256) { - sce->sf_idx[bandaddr[minq>>8]] = minq & 0xFF; - minq = paths[minq].prev; + while (idx) { + sce->sf_idx[bandaddr[idx]] = minq + q0; + minq = paths[idx][minq].prev; + idx--; } //set the same quantizers inside window groups for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) @@ -613,22 +710,25 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, const float lambda) { int start = 0, i, w, w2, g; - int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels; - float dists[128], uplims[128]; + int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f); + float dists[128] = { 0 }, uplims[128]; + float maxvals[128]; int fflag, minscaler; int its = 0; int allz = 0; float minthr = INFINITY; + // for values above this the decoder might end up in an endless loop + // due to always having more bits than what can be encoded. + destbits = FFMIN(destbits, 5800); //XXX: some heuristic to determine initial quantizers will reduce search time - memset(dists, 0, sizeof(dists)); //determine zero bands and upper limits for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (g = 0; g < sce->ics.num_swb; g++) { int nz = 0; float uplim = 0.0f; for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; uplim += band->threshold; if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; @@ -640,7 +740,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->zeroes[w*16+g] = !nz; if (nz) minthr = FFMIN(minthr, uplim); - allz = FFMAX(allz, nz); + allz |= nz; } } for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { @@ -649,13 +749,23 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->sf_idx[w*16+g] = SCALE_ONE_POS; continue; } - sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59); + sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59); } } if (!allz) return; abs_pow34_v(s->scoefs, sce->coeffs, 1024); + + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { + start = w*128; + for (g = 0; g < sce->ics.num_swb; g++) { + const float *scaled = s->scoefs + start; + maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled); + start += sce->ics.swb_sizes[g]; + } + } + //perform two-loop search //outer loop - improve quality do { @@ -674,36 +784,27 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, const float *scaled = s->scoefs + start; int bits = 0; int cb; - float mindist = INFINITY; - int minbits = 0; + float dist = 0.0f; if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { start += sce->ics.swb_sizes[g]; continue; } minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); - for (cb = 0; cb <= ESC_BT; cb++) { - float dist = 0.0f; - int bb = 0; - for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - int b; - dist += quantize_band_cost(s, coefs + w2*128, - scaled + w2*128, - sce->ics.swb_sizes[g], - sce->sf_idx[w*16+g], - cb, - lambda, - INFINITY, - &b); - bb += b; - } - if (dist < mindist) { - mindist = dist; - minbits = bb; - } + cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { + int b; + dist += quantize_band_cost(s, coefs + w2*128, + scaled + w2*128, + sce->ics.swb_sizes[g], + sce->sf_idx[w*16+g], + cb, + 1.0f, + INFINITY, + &b); + bits += b; } - dists[w*16+g] = (mindist - minbits) / lambda; - bits = minbits; + dists[w*16+g] = dist - bits; if (prev != -1) { bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO]; } @@ -722,24 +823,26 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->sf_idx[i] -= qstep; } qstep >>= 1; - if (!qstep && tbits > destbits*1.02) + if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217) qstep = 1; - if (sce->sf_idx[0] >= 217) - break; } while (qstep); fflag = 0; minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { - start = w*128; for (g = 0; g < sce->ics.num_swb; g++) { int prevsc = sce->sf_idx[w*16+g]; - if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) - sce->sf_idx[w*16+g]--; + if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) { + if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1)) + sce->sf_idx[w*16+g]--; + else //Try to make sure there is some energy in every band + sce->sf_idx[w*16+g]-=2; + } sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); if (sce->sf_idx[w*16+g] != prevsc) fflag = 1; + sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); } } its++; @@ -841,7 +944,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, const float *scaled = s->scoefs + start; const int size = sce->ics.swb_sizes[g]; int scf, prev_scf, step; - int min_scf = 0, max_scf = 255; + int min_scf = -1, max_scf = 256; float curdiff; if (maxq[w*16+g] < 21.544) { sce->zeroes[w*16+g] = 1; @@ -849,7 +952,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, continue; } sce->zeroes[w*16+g] = 0; - scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218); + scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218); step = 16; for (;;) { float dist = 0.0f; @@ -868,28 +971,30 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, dist -= b; } dist *= 1.0f / 512.0f / lambda; - quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]); + quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]); if (quant_max >= 8191) { // too much, return to the previous quantizer sce->sf_idx[w*16+g] = prev_scf; break; } prev_scf = scf; curdiff = fabsf(dist - uplim[w*16+g]); - if (curdiff == 0.0f) + if (curdiff <= 1.0f) step = 0; else - step = fabsf(log2(curdiff)); + step = log2f(curdiff); if (dist > uplim[w*16+g]) step = -step; + scf += step; + scf = av_clip_uint8(scf); + step = scf - prev_scf; if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) { - sce->sf_idx[w*16+g] = scf; + sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf); break; } - scf += step; if (step > 0) - min_scf = scf; + min_scf = prev_scf; else - max_scf = scf; + max_scf = prev_scf; } start += size; } @@ -916,20 +1021,19 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda) { - int start = 0, i, w, w2, g; + int i, w, w2, g; int minq = 255; memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { - start = w*128; for (g = 0; g < sce->ics.num_swb; g++) { for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; if (band->energy <= band->threshold) { sce->sf_idx[(w+w2)*16+g] = 218; sce->zeroes[(w+w2)*16+g] = 1; } else { - sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218); + sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218); sce->zeroes[(w+w2)*16+g] = 0; } minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]); @@ -962,14 +1066,14 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe, if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) { float dist1 = 0.0f, dist2 = 0.0f; for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { - FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g]; - FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g]; + FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g]; float minthr = FFMIN(band0->threshold, band1->threshold); float maxthr = FFMAX(band0->threshold, band1->threshold); for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { M[i] = (sce0->coeffs[start+w2*128+i] + sce1->coeffs[start+w2*128+i]) * 0.5; - S[i] = sce0->coeffs[start+w2*128+i] + S[i] = M[i] - sce1->coeffs[start+w2*128+i]; } abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]); @@ -1023,7 +1127,7 @@ AACCoefficientsEncoder ff_aac_coders[] = { }, { search_for_quantizers_twoloop, - encode_window_bands_info, + codebook_trellis_rate, quantize_and_encode_band, search_for_ms, },