X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Faaccoder.c;h=8063fb6cd44dd93688341d161c748dbbc201a86d;hb=dc7e07ac1f015117a3abaa9c5f3a594cc7fd0b7a;hp=0f4fc54a3953964ea861d17f795ebffe7069c3fb;hpb=9069b7d35fba37e0e0d9dbb44f03c10ff2e50acf;p=ffmpeg diff --git a/libavcodec/aaccoder.c b/libavcodec/aaccoder.c index 0f4fc54a395..8063fb6cd44 100644 --- a/libavcodec/aaccoder.c +++ b/libavcodec/aaccoder.c @@ -99,25 +99,27 @@ static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16} * * @return quantization distortion */ -static float quantize_and_encode_band_cost(struct AACEncContext *s, +static av_always_inline float quantize_and_encode_band_cost_template( + struct AACEncContext *s, PutBitContext *pb, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, - int *bits) + int *bits, int BT_ZERO, int BT_UNSIGNED, + int BT_PAIR, int BT_ESC) { const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; const float CLIPPED_ESCAPE = 165140.0f*IQ; int i, j, k; float cost = 0; - const int dim = cb < FIRST_PAIR_BT ? 4 : 2; + const int dim = BT_PAIR ? 2 : 4; int resbits = 0; const float Q34 = sqrtf(Q * sqrtf(Q)); const int range = aac_cb_range[cb]; const int maxval = aac_cb_maxval[cb]; int off; - if (!cb) { + if (BT_ZERO) { for (i = 0; i < size; i++) cost += in[i]*in[i]; if (bits) @@ -128,8 +130,8 @@ static float quantize_and_encode_band_cost(struct AACEncContext *s, abs_pow34_v(s->scoefs, in, size); scaled = s->scoefs; } - quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); - if (IS_CODEBOOK_UNSIGNED(cb)) { + quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval); + if (BT_UNSIGNED) { off = 0; } else { off = maxval; @@ -146,11 +148,11 @@ static float quantize_and_encode_band_cost(struct AACEncContext *s, } curbits = ff_aac_spectral_bits[cb-1][curidx]; vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; - if (IS_CODEBOOK_UNSIGNED(cb)) { + if (BT_UNSIGNED) { for (k = 0; k < dim; k++) { float t = fabsf(in[i+k]); float di; - if (vec[k] == 64.0f) { //FIXME: slow + if (BT_ESC && vec[k] == 64.0f) { //FIXME: slow if (t >= CLIPPED_ESCAPE) { di = t - CLIPPED_ESCAPE; curbits += 21; @@ -177,29 +179,77 @@ static float quantize_and_encode_band_cost(struct AACEncContext *s, if (cost >= uplim) return uplim; if (pb) { - put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]); - if (IS_CODEBOOK_UNSIGNED(cb)) - for (j = 0; j < dim; j++) - if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f) - put_bits(pb, 1, in[i+j] < 0.0f); - if (cb == ESC_BT) { - for (j = 0; j < 2; j++) { - if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) { - int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); - int len = av_log2(coef); + put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]); + if (BT_UNSIGNED) + for (j = 0; j < dim; j++) + if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f) + put_bits(pb, 1, in[i+j] < 0.0f); + if (BT_ESC) { + for (j = 0; j < 2; j++) { + if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) { + int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); + int len = av_log2(coef); - put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); - put_bits(pb, len, coef & ((1 << len) - 1)); + put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); + put_bits(pb, len, coef & ((1 << len) - 1)); + } } } } - } } if (bits) *bits = resbits; return cost; } + +#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \ +static float quantize_and_encode_band_cost_ ## NAME( \ + struct AACEncContext *s, \ + PutBitContext *pb, const float *in, \ + const float *scaled, int size, int scale_idx, \ + int cb, const float lambda, const float uplim, \ + int *bits) { \ + return quantize_and_encode_band_cost_template( \ + s, pb, in, scaled, size, scale_idx, \ + BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \ + BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC); \ +} + +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1) + +static float (*const quantize_and_encode_band_cost_arr[])( + struct AACEncContext *s, + PutBitContext *pb, const float *in, + const float *scaled, int size, int scale_idx, + int cb, const float lambda, const float uplim, + int *bits) = { + quantize_and_encode_band_cost_ZERO, + quantize_and_encode_band_cost_SQUAD, + quantize_and_encode_band_cost_SQUAD, + quantize_and_encode_band_cost_UQUAD, + quantize_and_encode_band_cost_UQUAD, + quantize_and_encode_band_cost_SPAIR, + quantize_and_encode_band_cost_SPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_ESC, +}; + +#define quantize_and_encode_band_cost( \ + s, pb, in, scaled, size, scale_idx, cb, \ + lambda, uplim, bits) \ + quantize_and_encode_band_cost_arr[cb]( \ + s, pb, in, scaled, size, scale_idx, cb, \ + lambda, uplim, bits) + static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, @@ -438,7 +488,7 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, idx = cb; ppos = max_sfb; while (ppos > 0) { - if (idx < 0) abort(); + assert(idx >= 0); cb = idx; stackrun[stack_len] = path[ppos][cb].run; stackcb [stack_len] = cb; @@ -465,6 +515,16 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, } } +/** Return the minimum scalefactor where the quantized coef does not clip. */ +static av_always_inline uint8_t coef2minsf(float coef) { + return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); +} + +/** Return the maximum scalefactor where the quantized coef is not zero. */ +static av_always_inline uint8_t coef2maxsf(float coef) { + return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); +} + typedef struct TrellisPath { float cost; int prev; @@ -504,15 +564,15 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, } //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped - q0 = av_clip_uint8(log2(q0f)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); + q0 = coef2minsf(q0f); //maximum scalefactor index is when maximum coefficient after quantizing is still not zero - q1 = av_clip_uint8(log2(q1f)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); + q1 = coef2maxsf(q1f); //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1); if (q1 - q0 > 60) { int q0low = q0; int q1high = q1; //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped - int qnrg = av_clip_uint8(log2(sqrt(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512); + int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512); q1 = qnrg + 30; q0 = qnrg - 30; //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1); @@ -568,9 +628,9 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, float minrd = INFINITY; float maxval; //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped - minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); + minscale = coef2minsf(qmin); //maximum scalefactor index is when maximum coefficient after quantizing is still not zero - maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); + maxscale = coef2maxsf(qmax); minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1); maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES); maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start); @@ -580,7 +640,7 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], - q + q0, cb, lambda / band->threshold, INFINITY, NULL); + q + q0, cb, lambda / band->threshold, INFINITY, NULL); } minrd = FFMIN(minrd, dist); @@ -596,8 +656,8 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, } } else { for (q = 0; q < q1 - q0; q++) { - paths[idx][q].cost = paths[idx - 1][q].cost + 1; - paths[idx][q].prev = q; + paths[idx][q].cost = paths[idx - 1][q].cost + 1; + paths[idx][q].prev = q; } } sce->zeroes[w*16+g] = !nz; @@ -637,6 +697,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, int start = 0, i, w, w2, g; int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels; float dists[128], uplims[128]; + float maxvals[128]; int fflag, minscaler; int its = 0; int allz = 0; @@ -671,13 +732,23 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->sf_idx[w*16+g] = SCALE_ONE_POS; continue; } - sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59); + sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59); } } if (!allz) return; abs_pow34_v(s->scoefs, sce->coeffs, 1024); + + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { + start = w*128; + for (g = 0; g < sce->ics.num_swb; g++) { + const float *scaled = s->scoefs + start; + maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled); + start += sce->ics.swb_sizes[g]; + } + } + //perform two-loop search //outer loop - improve quality do { @@ -696,36 +767,27 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, const float *scaled = s->scoefs + start; int bits = 0; int cb; - float mindist = INFINITY; - int minbits = 0; + float dist = 0.0f; if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { start += sce->ics.swb_sizes[g]; continue; } minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); - { - float dist = 0.0f; - int bb = 0; - cb = find_min_book(find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled), sce->sf_idx[w*16+g]); - sce->band_type[w*16+g] = cb; - for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - int b; - dist += quantize_band_cost(s, coefs + w2*128, - scaled + w2*128, - sce->ics.swb_sizes[g], - sce->sf_idx[w*16+g], - cb, - lambda, - INFINITY, - &b); - bb += b; - } - mindist = dist; - minbits = bb; + cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { + int b; + dist += quantize_band_cost(s, coefs + w2*128, + scaled + w2*128, + sce->ics.swb_sizes[g], + sce->sf_idx[w*16+g], + cb, + 1.0f, + INFINITY, + &b); + bits += b; } - dists[w*16+g] = (mindist - minbits) / lambda; - bits = minbits; + dists[w*16+g] = dist - bits; if (prev != -1) { bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO]; } @@ -744,24 +806,26 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->sf_idx[i] -= qstep; } qstep >>= 1; - if (!qstep && tbits > destbits*1.02) + if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217) qstep = 1; - if (sce->sf_idx[0] >= 217) - break; } while (qstep); fflag = 0; minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { - start = w*128; for (g = 0; g < sce->ics.num_swb; g++) { int prevsc = sce->sf_idx[w*16+g]; - if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) + if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) { + if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1)) sce->sf_idx[w*16+g]--; + else //Try to make sure there is some energy in every band + sce->sf_idx[w*16+g]-=2; + } sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); if (sce->sf_idx[w*16+g] != prevsc) fflag = 1; + sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); } } its++; @@ -871,7 +935,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, continue; } sce->zeroes[w*16+g] = 0; - scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218); + scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218); step = 16; for (;;) { float dist = 0.0f; @@ -900,7 +964,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, if (curdiff <= 1.0f) step = 0; else - step = log2(curdiff); + step = log2f(curdiff); if (dist > uplim[w*16+g]) step = -step; scf += step; @@ -953,7 +1017,7 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, sce->sf_idx[(w+w2)*16+g] = 218; sce->zeroes[(w+w2)*16+g] = 1; } else { - sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218); + sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218); sce->zeroes[(w+w2)*16+g] = 0; } minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);