X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Faaccoder.c;h=d65d8d9584d50b04a2361d067ec84de65fb24080;hb=de16f08e48a2e0dbd7311882d97fe379535c5a48;hp=706f6ac9e6e6db17b2b6f078b6e2ef5944cbbed1;hpb=759510e6af5199db237d6319c310724b82618ed2;p=ffmpeg diff --git a/libavcodec/aaccoder.c b/libavcodec/aaccoder.c index 706f6ac9e6e..d65d8d9584d 100644 --- a/libavcodec/aaccoder.c +++ b/libavcodec/aaccoder.c @@ -2,20 +2,20 @@ * AAC coefficients encoder * Copyright (C) 2008-2009 Konstantin Shishkov * - * This file is part of FFmpeg. + * This file is part of Libav. * - * FFmpeg is free software; you can redistribute it and/or + * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * - * FFmpeg is distributed in the hope that it will be useful, + * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software + * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ @@ -30,6 +30,10 @@ * add sane pulse detection ***********************************/ +#include "libavutil/libm.h" // brought forward to work around cygwin header breakage + +#include +#include "libavutil/mathematics.h" #include "avcodec.h" #include "put_bits.h" #include "aac.h" @@ -98,25 +102,28 @@ static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16} * * @return quantization distortion */ -static float quantize_and_encode_band_cost(struct AACEncContext *s, +static av_always_inline float quantize_and_encode_band_cost_template( + struct AACEncContext *s, PutBitContext *pb, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, - int *bits) + int *bits, int BT_ZERO, int BT_UNSIGNED, + int BT_PAIR, int BT_ESC) { - const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; - const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; + const int q_idx = POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512; + const float Q = ff_aac_pow2sf_tab [q_idx]; + const float Q34 = ff_aac_pow34sf_tab[q_idx]; + const float IQ = ff_aac_pow2sf_tab [POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; const float CLIPPED_ESCAPE = 165140.0f*IQ; - int i, j, k; + int i, j; float cost = 0; - const int dim = cb < FIRST_PAIR_BT ? 4 : 2; + const int dim = BT_PAIR ? 2 : 4; int resbits = 0; - const float Q34 = sqrtf(Q * sqrtf(Q)); const int range = aac_cb_range[cb]; const int maxval = aac_cb_maxval[cb]; int off; - if (!cb) { + if (BT_ZERO) { for (i = 0; i < size; i++) cost += in[i]*in[i]; if (bits) @@ -127,8 +134,8 @@ static float quantize_and_encode_band_cost(struct AACEncContext *s, abs_pow34_v(s->scoefs, in, size); scaled = s->scoefs; } - quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); - if (IS_CODEBOOK_UNSIGNED(cb)) { + quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval); + if (BT_UNSIGNED) { off = 0; } else { off = maxval; @@ -143,62 +150,110 @@ static float quantize_and_encode_band_cost(struct AACEncContext *s, curidx *= range; curidx += quants[j] + off; } - curbits = ff_aac_spectral_bits[cb-1][curidx]; - vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; - if (IS_CODEBOOK_UNSIGNED(cb)) { - for (k = 0; k < dim; k++) { - float t = fabsf(in[i+k]); - float di; - if (vec[k] == 64.0f) { //FIXME: slow - if (t >= CLIPPED_ESCAPE) { - di = t - CLIPPED_ESCAPE; - curbits += 21; - } else { - int c = av_clip(quant(t, Q), 0, 8191); - di = t - c*cbrtf(c)*IQ; - curbits += av_log2(c)*2 - 4 + 1; - } + curbits = ff_aac_spectral_bits[cb-1][curidx]; + vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; + if (BT_UNSIGNED) { + for (j = 0; j < dim; j++) { + float t = fabsf(in[i+j]); + float di; + if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow + if (t >= CLIPPED_ESCAPE) { + di = t - CLIPPED_ESCAPE; + curbits += 21; } else { - di = t - vec[k]*IQ; + int c = av_clip(quant(t, Q), 0, 8191); + di = t - c*cbrtf(c)*IQ; + curbits += av_log2(c)*2 - 4 + 1; } - if (vec[k] != 0.0f) - curbits++; - rd += di*di; - } - } else { - for (k = 0; k < dim; k++) { - float di = in[i+k] - vec[k]*IQ; - rd += di*di; + } else { + di = t - vec[j]*IQ; } + if (vec[j] != 0.0f) + curbits++; + rd += di*di; + } + } else { + for (j = 0; j < dim; j++) { + float di = in[i+j] - vec[j]*IQ; + rd += di*di; } + } cost += rd * lambda + curbits; resbits += curbits; if (cost >= uplim) return uplim; if (pb) { - put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]); - if (IS_CODEBOOK_UNSIGNED(cb)) - for (j = 0; j < dim; j++) - if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f) - put_bits(pb, 1, in[i+j] < 0.0f); - if (cb == ESC_BT) { - for (j = 0; j < 2; j++) { - if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) { - int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); - int len = av_log2(coef); + put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]); + if (BT_UNSIGNED) + for (j = 0; j < dim; j++) + if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f) + put_bits(pb, 1, in[i+j] < 0.0f); + if (BT_ESC) { + for (j = 0; j < 2; j++) { + if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) { + int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); + int len = av_log2(coef); - put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); - put_bits(pb, len, coef & ((1 << len) - 1)); + put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); + put_bits(pb, len, coef & ((1 << len) - 1)); + } } } } - } } if (bits) *bits = resbits; return cost; } + +#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \ +static float quantize_and_encode_band_cost_ ## NAME( \ + struct AACEncContext *s, \ + PutBitContext *pb, const float *in, \ + const float *scaled, int size, int scale_idx, \ + int cb, const float lambda, const float uplim, \ + int *bits) { \ + return quantize_and_encode_band_cost_template( \ + s, pb, in, scaled, size, scale_idx, \ + BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \ + BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC); \ +} + +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1) + +static float (*const quantize_and_encode_band_cost_arr[])( + struct AACEncContext *s, + PutBitContext *pb, const float *in, + const float *scaled, int size, int scale_idx, + int cb, const float lambda, const float uplim, + int *bits) = { + quantize_and_encode_band_cost_ZERO, + quantize_and_encode_band_cost_SQUAD, + quantize_and_encode_band_cost_SQUAD, + quantize_and_encode_band_cost_UQUAD, + quantize_and_encode_band_cost_UQUAD, + quantize_and_encode_band_cost_SPAIR, + quantize_and_encode_band_cost_SPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_ESC, +}; + +#define quantize_and_encode_band_cost( \ + s, pb, in, scaled, size, scale_idx, cb, \ + lambda, uplim, bits) \ + quantize_and_encode_band_cost_arr[cb]( \ + s, pb, in, scaled, size, scale_idx, cb, \ + lambda, uplim, bits) + static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, @@ -216,6 +271,32 @@ static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb, INFINITY, NULL); } +static float find_max_val(int group_len, int swb_size, const float *scaled) { + float maxval = 0.0f; + int w2, i; + for (w2 = 0; w2 < group_len; w2++) { + for (i = 0; i < swb_size; i++) { + maxval = FFMAX(maxval, scaled[w2*128+i]); + } + } + return maxval; +} + +static int find_min_book(float maxval, int sf) { + float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512]; + float Q34 = sqrtf(Q * sqrtf(Q)); + int qmaxval, cb; + qmaxval = maxval * Q34 + 0.4054f; + if (qmaxval == 0) cb = 0; + else if (qmaxval == 1) cb = 1; + else if (qmaxval == 2) cb = 3; + else if (qmaxval <= 4) cb = 5; + else if (qmaxval <= 7) cb = 7; + else if (qmaxval <= 12) cb = 9; + else cb = 11; + return cb; +} + /** * structure used in optimal codebook search */ @@ -232,7 +313,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce int win, int group_len, const float lambda) { BandCodingPath path[120][12]; - int w, swb, cb, start, start2, size; + int w, swb, cb, start, size; int i, j; const int max_sfb = sce->ics.max_sfb; const int run_bits = sce->ics.num_windows == 1 ? 5 : 3; @@ -250,7 +331,6 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce path[0][cb].run = 0; } for (swb = 0; swb < max_sfb; swb++) { - start2 = start; size = sce->ics.swb_sizes[swb]; if (sce->zeroes[win*16 + swb]) { for (cb = 0; cb < 12; cb++) { @@ -267,7 +347,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce float cost_stay_here, cost_get_here; float rd = 0.0f; for (w = 0; w < group_len; w++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb]; rd += quantize_band_cost(s, sce->coeffs + start + w*128, s->scoefs + start + w*128, size, sce->sf_idx[(win+w)*16+swb], cb, @@ -334,14 +414,14 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, int win, int group_len, const float lambda) { BandCodingPath path[120][12]; - int w, swb, cb, start, start2, size; + int w, swb, cb, start, size; int i, j; const int max_sfb = sce->ics.max_sfb; const int run_bits = sce->ics.num_windows == 1 ? 5 : 3; const int run_esc = (1 << run_bits) - 1; int idx, ppos, count; int stackrun[120], stackcb[120], stack_len; - float next_minrd = INFINITY; + float next_minbits = INFINITY; int next_mincb = 0; abs_pow34_v(s->scoefs, sce->coeffs, 1024); @@ -352,19 +432,34 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, path[0][cb].run = 0; } for (swb = 0; swb < max_sfb; swb++) { - start2 = start; size = sce->ics.swb_sizes[swb]; if (sce->zeroes[win*16 + swb]) { - for (cb = 0; cb < 12; cb++) { - path[swb+1][cb].prev_idx = cb; - path[swb+1][cb].cost = path[swb][cb].cost; - path[swb+1][cb].run = path[swb][cb].run + 1; + float cost_stay_here = path[swb][0].cost; + float cost_get_here = next_minbits + run_bits + 4; + if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run] + != run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1]) + cost_stay_here += run_bits; + if (cost_get_here < cost_stay_here) { + path[swb+1][0].prev_idx = next_mincb; + path[swb+1][0].cost = cost_get_here; + path[swb+1][0].run = 1; + } else { + path[swb+1][0].prev_idx = 0; + path[swb+1][0].cost = cost_stay_here; + path[swb+1][0].run = path[swb][0].run + 1; + } + next_minbits = path[swb+1][0].cost; + next_mincb = 0; + for (cb = 1; cb < 12; cb++) { + path[swb+1][cb].cost = 61450; + path[swb+1][cb].prev_idx = -1; + path[swb+1][cb].run = 0; } } else { - float minrd = next_minrd; + float minbits = next_minbits; int mincb = next_mincb; int startcb = sce->band_type[win*16+swb]; - next_minrd = INFINITY; + next_minbits = INFINITY; next_mincb = 0; for (cb = 0; cb < startcb; cb++) { path[swb+1][cb].cost = 61450; @@ -373,15 +468,15 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, } for (cb = startcb; cb < 12; cb++) { float cost_stay_here, cost_get_here; - float rd = 0.0f; + float bits = 0.0f; for (w = 0; w < group_len; w++) { - rd += quantize_band_cost(s, sce->coeffs + start + w*128, - s->scoefs + start + w*128, size, - sce->sf_idx[(win+w)*16+swb], cb, - 0, INFINITY, NULL); + bits += quantize_band_cost(s, sce->coeffs + start + w*128, + s->scoefs + start + w*128, size, + sce->sf_idx[(win+w)*16+swb], cb, + 0, INFINITY, NULL); } - cost_stay_here = path[swb][cb].cost + rd; - cost_get_here = minrd + rd + run_bits + 4; + cost_stay_here = path[swb][cb].cost + bits; + cost_get_here = minbits + bits + run_bits + 4; if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run] != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1]) cost_stay_here += run_bits; @@ -394,8 +489,8 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, path[swb+1][cb].cost = cost_stay_here; path[swb+1][cb].run = path[swb][cb].run + 1; } - if (path[swb+1][cb].cost < next_minrd) { - next_minrd = path[swb+1][cb].cost; + if (path[swb+1][cb].cost < next_minbits) { + next_minbits = path[swb+1][cb].cost; next_mincb = cb; } } @@ -411,7 +506,7 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, idx = cb; ppos = max_sfb; while (ppos > 0) { - if (idx < 0) abort(); + assert(idx >= 0); cb = idx; stackrun[stack_len] = path[ppos][cb].run; stackcb [stack_len] = cb; @@ -438,15 +533,23 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, } } +/** Return the minimum scalefactor where the quantized coef does not clip. */ +static av_always_inline uint8_t coef2minsf(float coef) { + return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); +} + +/** Return the maximum scalefactor where the quantized coef is not zero. */ +static av_always_inline uint8_t coef2maxsf(float coef) { + return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); +} + typedef struct TrellisPath { float cost; int prev; - int min_val; - int max_val; } TrellisPath; #define TRELLIS_STAGES 121 -#define TRELLIS_STATES 256 +#define TRELLIS_STATES (SCALE_MAX_DIFF+1) static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, @@ -459,19 +562,53 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, int bandaddr[TRELLIS_STAGES]; int minq; float mincost; + float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f; + int q0, q1, qcnt = 0; + + for (i = 0; i < 1024; i++) { + float t = fabsf(sce->coeffs[i]); + if (t > 0.0f) { + q0f = FFMIN(q0f, t); + q1f = FFMAX(q1f, t); + qnrgf += t*t; + qcnt++; + } + } + + if (!qcnt) { + memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); + memset(sce->zeroes, 1, sizeof(sce->zeroes)); + return; + } + + //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped + q0 = coef2minsf(q0f); + //maximum scalefactor index is when maximum coefficient after quantizing is still not zero + q1 = coef2maxsf(q1f); + if (q1 - q0 > 60) { + int q0low = q0; + int q1high = q1; + //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped + int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512); + q1 = qnrg + 30; + q0 = qnrg - 30; + if (q0 < q0low) { + q1 += q0low - q0; + q0 = q0low; + } else if (q1 > q1high) { + q0 -= q1 - q1high; + q1 = q1high; + } + } for (i = 0; i < TRELLIS_STATES; i++) { paths[0][i].cost = 0.0f; paths[0][i].prev = -1; - paths[0][i].min_val = i; - paths[0][i].max_val = i; } for (j = 1; j < TRELLIS_STAGES; j++) { for (i = 0; i < TRELLIS_STATES; i++) { paths[j][i].cost = INFINITY; paths[j][i].prev = -2; - paths[j][i].min_val = INT_MAX; - paths[j][i].max_val = 0; } } idx = 1; @@ -487,7 +624,7 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, qmin = INT_MAX; qmax = 0.0f; for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; continue; @@ -504,66 +641,38 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, if (nz) { int minscale, maxscale; float minrd = INFINITY; + float maxval; //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped - minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); + minscale = coef2minsf(qmin); //maximum scalefactor index is when maximum coefficient after quantizing is still not zero - maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); + maxscale = coef2maxsf(qmax); + minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1); + maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES); + maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start); for (q = minscale; q < maxscale; q++) { - float dists[12], dist; - memset(dists, 0, sizeof(dists)); + float dist = 0; + int cb = find_min_book(maxval, sce->sf_idx[w*16+g]); for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; - int cb; - for (cb = 0; cb <= ESC_BT; cb++) - dists[cb] += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], - q, cb, lambda / band->threshold, INFINITY, NULL); + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; + dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], + q + q0, cb, lambda / band->threshold, INFINITY, NULL); } - dist = dists[0]; - for (i = 1; i <= ESC_BT; i++) - dist = FFMIN(dist, dists[i]); minrd = FFMIN(minrd, dist); - for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, TRELLIS_STATES); i++) { + for (i = 0; i < q1 - q0; i++) { float cost; - int minv, maxv; - if (isinf(paths[idx - 1][i].cost)) - continue; cost = paths[idx - 1][i].cost + dist + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; - minv = FFMIN(paths[idx - 1][i].min_val, q); - maxv = FFMAX(paths[idx - 1][i].max_val, q); - if (cost < paths[idx][q].cost && maxv-minv < SCALE_MAX_DIFF) { + if (cost < paths[idx][q].cost) { paths[idx][q].cost = cost; paths[idx][q].prev = i; - paths[idx][q].min_val = minv; - paths[idx][q].max_val = maxv; } } } } else { - for (q = 0; q < TRELLIS_STATES; q++) { - if (!isinf(paths[idx - 1][q].cost)) { - paths[idx][q].cost = paths[idx - 1][q].cost + 1; - paths[idx][q].prev = q; - paths[idx][q].min_val = FFMIN(paths[idx - 1][q].min_val, q); - paths[idx][q].max_val = FFMAX(paths[idx - 1][q].max_val, q); - continue; - } - for (i = FFMAX(q - SCALE_MAX_DIFF, 0); i < FFMIN(q + SCALE_MAX_DIFF, TRELLIS_STATES); i++) { - float cost; - int minv, maxv; - if (isinf(paths[idx - 1][i].cost)) - continue; - cost = paths[idx - 1][i].cost + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO]; - minv = FFMIN(paths[idx - 1][i].min_val, q); - maxv = FFMAX(paths[idx - 1][i].max_val, q); - if (cost < paths[idx][q].cost && maxv-minv < SCALE_MAX_DIFF) { - paths[idx][q].cost = cost; - paths[idx][q].prev = i; - paths[idx][q].min_val = minv; - paths[idx][q].max_val = maxv; - } - } + for (q = 0; q < q1 - q0; q++) { + paths[idx][q].cost = paths[idx - 1][q].cost + 1; + paths[idx][q].prev = q; } } sce->zeroes[w*16+g] = !nz; @@ -581,7 +690,7 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, } } while (idx) { - sce->sf_idx[bandaddr[idx]] = minq; + sce->sf_idx[bandaddr[idx]] = minq + q0; minq = paths[idx][minq].prev; idx--; } @@ -602,21 +711,24 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, { int start = 0, i, w, w2, g; int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels; - float dists[128], uplims[128]; + float dists[128] = { 0 }, uplims[128]; + float maxvals[128]; int fflag, minscaler; int its = 0; int allz = 0; float minthr = INFINITY; + // for values above this the decoder might end up in an endless loop + // due to always having more bits than what can be encoded. + destbits = FFMIN(destbits, 5800); //XXX: some heuristic to determine initial quantizers will reduce search time - memset(dists, 0, sizeof(dists)); //determine zero bands and upper limits for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { for (g = 0; g < sce->ics.num_swb; g++) { int nz = 0; float uplim = 0.0f; for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; uplim += band->threshold; if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; @@ -628,7 +740,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->zeroes[w*16+g] = !nz; if (nz) minthr = FFMIN(minthr, uplim); - allz = FFMAX(allz, nz); + allz |= nz; } } for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { @@ -637,13 +749,23 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->sf_idx[w*16+g] = SCALE_ONE_POS; continue; } - sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59); + sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59); } } if (!allz) return; abs_pow34_v(s->scoefs, sce->coeffs, 1024); + + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { + start = w*128; + for (g = 0; g < sce->ics.num_swb; g++) { + const float *scaled = s->scoefs + start; + maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled); + start += sce->ics.swb_sizes[g]; + } + } + //perform two-loop search //outer loop - improve quality do { @@ -662,52 +784,27 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, const float *scaled = s->scoefs + start; int bits = 0; int cb; - float mindist = INFINITY; - int minbits = 0; + float dist = 0.0f; if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) { start += sce->ics.swb_sizes[g]; continue; } minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); - { - float dist = 0.0f; - int bb = 0; - float maxval = 0.0f; - float Q = ff_aac_pow2sf_tab[200 - sce->sf_idx[w*16+g] + SCALE_ONE_POS - SCALE_DIV_512]; - float Q34 = sqrtf(Q * sqrtf(Q)); - int qmaxval; - for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - for (i = 0; i < sce->ics.swb_sizes[g]; i++) { - maxval = fmaxf(maxval, scaled[w2*128+i]); - } - } - qmaxval = maxval * Q34 + 0.4054; - if (qmaxval == 0) cb = 0; - else if (qmaxval == 1) cb = 1; - else if (qmaxval == 2) cb = 3; - else if (qmaxval <= 4) cb = 5; - else if (qmaxval <= 7) cb = 7; - else if (qmaxval <= 12) cb = 9; - else cb = 11; - sce->band_type[w*16+g] = cb; - for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - int b; - dist += quantize_band_cost(s, coefs + w2*128, - scaled + w2*128, - sce->ics.swb_sizes[g], - sce->sf_idx[w*16+g], - cb, - lambda, - INFINITY, - &b); - bb += b; - } - mindist = dist; - minbits = bb; + cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); + for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { + int b; + dist += quantize_band_cost(s, coefs + w2*128, + scaled + w2*128, + sce->ics.swb_sizes[g], + sce->sf_idx[w*16+g], + cb, + 1.0f, + INFINITY, + &b); + bits += b; } - dists[w*16+g] = (mindist - minbits) / lambda; - bits = minbits; + dists[w*16+g] = dist - bits; if (prev != -1) { bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO]; } @@ -726,24 +823,26 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->sf_idx[i] -= qstep; } qstep >>= 1; - if (!qstep && tbits > destbits*1.02) + if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217) qstep = 1; - if (sce->sf_idx[0] >= 217) - break; } while (qstep); fflag = 0; minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { - start = w*128; for (g = 0; g < sce->ics.num_swb; g++) { int prevsc = sce->sf_idx[w*16+g]; - if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) - sce->sf_idx[w*16+g]--; + if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) { + if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1)) + sce->sf_idx[w*16+g]--; + else //Try to make sure there is some energy in every band + sce->sf_idx[w*16+g]-=2; + } sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); if (sce->sf_idx[w*16+g] != prevsc) fflag = 1; + sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); } } its++; @@ -853,7 +952,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, continue; } sce->zeroes[w*16+g] = 0; - scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218); + scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218); step = 16; for (;;) { float dist = 0.0f; @@ -872,7 +971,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, dist -= b; } dist *= 1.0f / 512.0f / lambda; - quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]); + quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]); if (quant_max >= 8191) { // too much, return to the previous quantizer sce->sf_idx[w*16+g] = prev_scf; break; @@ -882,7 +981,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, if (curdiff <= 1.0f) step = 0; else - step = log2(curdiff); + step = log2f(curdiff); if (dist > uplim[w*16+g]) step = -step; scf += step; @@ -922,20 +1021,19 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda) { - int start = 0, i, w, w2, g; + int i, w, w2, g; int minq = 255; memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { - start = w*128; for (g = 0; g < sce->ics.num_swb; g++) { for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; if (band->energy <= band->threshold) { sce->sf_idx[(w+w2)*16+g] = 218; sce->zeroes[(w+w2)*16+g] = 1; } else { - sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218); + sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218); sce->zeroes[(w+w2)*16+g] = 0; } minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]); @@ -968,14 +1066,14 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe, if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) { float dist1 = 0.0f, dist2 = 0.0f; for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { - FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g]; - FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g]; + FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g]; float minthr = FFMIN(band0->threshold, band1->threshold); float maxthr = FFMAX(band0->threshold, band1->threshold); for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { M[i] = (sce0->coeffs[start+w2*128+i] + sce1->coeffs[start+w2*128+i]) * 0.5; - S[i] = sce0->coeffs[start+w2*128+i] + S[i] = M[i] - sce1->coeffs[start+w2*128+i]; } abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);