X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Faaccoder.c;h=f8a8f3d84487b703a0674b6064dffb84d74c9f8e;hb=17ae608127324cabd083202a32a8dc210d30c3a1;hp=f3193cddf6df3f91d887d2022b914f928b63a4f7;hpb=c91dce994d38d02431cba324775bce8b969428a5;p=ffmpeg diff --git a/libavcodec/aaccoder.c b/libavcodec/aaccoder.c index f3193cddf6d..f8a8f3d8448 100644 --- a/libavcodec/aaccoder.c +++ b/libavcodec/aaccoder.c @@ -2,20 +2,20 @@ * AAC coefficients encoder * Copyright (C) 2008-2009 Konstantin Shishkov * - * This file is part of FFmpeg. + * This file is part of Libav. * - * FFmpeg is free software; you can redistribute it and/or + * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * - * FFmpeg is distributed in the hope that it will be useful, + * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software + * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ @@ -30,7 +30,10 @@ * add sane pulse detection ***********************************/ +#include "libavutil/libm.h" // brought forward to work around cygwin header breakage + #include +#include "libavutil/mathematics.h" #include "avcodec.h" #include "put_bits.h" #include "aac.h" @@ -99,25 +102,27 @@ static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16} * * @return quantization distortion */ -static float quantize_and_encode_band_cost(struct AACEncContext *s, +static av_always_inline float quantize_and_encode_band_cost_template( + struct AACEncContext *s, PutBitContext *pb, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, - int *bits) + int *bits, int BT_ZERO, int BT_UNSIGNED, + int BT_PAIR, int BT_ESC) { - const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; - const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; + const float IQ = ff_aac_pow2sf_tab[POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; + const float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; const float CLIPPED_ESCAPE = 165140.0f*IQ; - int i, j, k; + int i, j; float cost = 0; - const int dim = cb < FIRST_PAIR_BT ? 4 : 2; + const int dim = BT_PAIR ? 2 : 4; int resbits = 0; const float Q34 = sqrtf(Q * sqrtf(Q)); const int range = aac_cb_range[cb]; const int maxval = aac_cb_maxval[cb]; int off; - if (!cb) { + if (BT_ZERO) { for (i = 0; i < size; i++) cost += in[i]*in[i]; if (bits) @@ -128,8 +133,8 @@ static float quantize_and_encode_band_cost(struct AACEncContext *s, abs_pow34_v(s->scoefs, in, size); scaled = s->scoefs; } - quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); - if (IS_CODEBOOK_UNSIGNED(cb)) { + quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval); + if (BT_UNSIGNED) { off = 0; } else { off = maxval; @@ -144,62 +149,110 @@ static float quantize_and_encode_band_cost(struct AACEncContext *s, curidx *= range; curidx += quants[j] + off; } - curbits = ff_aac_spectral_bits[cb-1][curidx]; - vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; - if (IS_CODEBOOK_UNSIGNED(cb)) { - for (k = 0; k < dim; k++) { - float t = fabsf(in[i+k]); - float di; - if (vec[k] == 64.0f) { //FIXME: slow - if (t >= CLIPPED_ESCAPE) { - di = t - CLIPPED_ESCAPE; - curbits += 21; - } else { - int c = av_clip(quant(t, Q), 0, 8191); - di = t - c*cbrtf(c)*IQ; - curbits += av_log2(c)*2 - 4 + 1; - } + curbits = ff_aac_spectral_bits[cb-1][curidx]; + vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; + if (BT_UNSIGNED) { + for (j = 0; j < dim; j++) { + float t = fabsf(in[i+j]); + float di; + if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow + if (t >= CLIPPED_ESCAPE) { + di = t - CLIPPED_ESCAPE; + curbits += 21; } else { - di = t - vec[k]*IQ; + int c = av_clip(quant(t, Q), 0, 8191); + di = t - c*cbrtf(c)*IQ; + curbits += av_log2(c)*2 - 4 + 1; } - if (vec[k] != 0.0f) - curbits++; - rd += di*di; - } - } else { - for (k = 0; k < dim; k++) { - float di = in[i+k] - vec[k]*IQ; - rd += di*di; + } else { + di = t - vec[j]*IQ; } + if (vec[j] != 0.0f) + curbits++; + rd += di*di; + } + } else { + for (j = 0; j < dim; j++) { + float di = in[i+j] - vec[j]*IQ; + rd += di*di; } + } cost += rd * lambda + curbits; resbits += curbits; if (cost >= uplim) return uplim; if (pb) { - put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]); - if (IS_CODEBOOK_UNSIGNED(cb)) - for (j = 0; j < dim; j++) - if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f) - put_bits(pb, 1, in[i+j] < 0.0f); - if (cb == ESC_BT) { - for (j = 0; j < 2; j++) { - if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) { - int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); - int len = av_log2(coef); + put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]); + if (BT_UNSIGNED) + for (j = 0; j < dim; j++) + if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f) + put_bits(pb, 1, in[i+j] < 0.0f); + if (BT_ESC) { + for (j = 0; j < 2; j++) { + if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) { + int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); + int len = av_log2(coef); - put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); - put_bits(pb, len, coef & ((1 << len) - 1)); + put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); + put_bits(pb, len, coef & ((1 << len) - 1)); + } } } } - } } if (bits) *bits = resbits; return cost; } + +#define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \ +static float quantize_and_encode_band_cost_ ## NAME( \ + struct AACEncContext *s, \ + PutBitContext *pb, const float *in, \ + const float *scaled, int size, int scale_idx, \ + int cb, const float lambda, const float uplim, \ + int *bits) { \ + return quantize_and_encode_band_cost_template( \ + s, pb, in, scaled, size, scale_idx, \ + BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \ + BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC); \ +} + +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0) +QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1) + +static float (*const quantize_and_encode_band_cost_arr[])( + struct AACEncContext *s, + PutBitContext *pb, const float *in, + const float *scaled, int size, int scale_idx, + int cb, const float lambda, const float uplim, + int *bits) = { + quantize_and_encode_band_cost_ZERO, + quantize_and_encode_band_cost_SQUAD, + quantize_and_encode_band_cost_SQUAD, + quantize_and_encode_band_cost_UQUAD, + quantize_and_encode_band_cost_UQUAD, + quantize_and_encode_band_cost_SPAIR, + quantize_and_encode_band_cost_SPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_UPAIR, + quantize_and_encode_band_cost_ESC, +}; + +#define quantize_and_encode_band_cost( \ + s, pb, in, scaled, size, scale_idx, cb, \ + lambda, uplim, bits) \ + quantize_and_encode_band_cost_arr[cb]( \ + s, pb, in, scaled, size, scale_idx, cb, \ + lambda, uplim, bits) + static float quantize_band_cost(struct AACEncContext *s, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, @@ -229,7 +282,7 @@ static float find_max_val(int group_len, int swb_size, const float *scaled) { } static int find_min_book(float maxval, int sf) { - float Q = ff_aac_pow2sf_tab[200 - sf + SCALE_ONE_POS - SCALE_DIV_512]; + float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512]; float Q34 = sqrtf(Q * sqrtf(Q)); int qmaxval, cb; qmaxval = maxval * Q34 + 0.4054f; @@ -259,7 +312,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce int win, int group_len, const float lambda) { BandCodingPath path[120][12]; - int w, swb, cb, start, start2, size; + int w, swb, cb, start, size; int i, j; const int max_sfb = sce->ics.max_sfb; const int run_bits = sce->ics.num_windows == 1 ? 5 : 3; @@ -277,7 +330,6 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce path[0][cb].run = 0; } for (swb = 0; swb < max_sfb; swb++) { - start2 = start; size = sce->ics.swb_sizes[swb]; if (sce->zeroes[win*16 + swb]) { for (cb = 0; cb < 12; cb++) { @@ -294,7 +346,7 @@ static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce float cost_stay_here, cost_get_here; float rd = 0.0f; for (w = 0; w < group_len; w++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(win+w)*16+swb]; rd += quantize_band_cost(s, sce->coeffs + start + w*128, s->scoefs + start + w*128, size, sce->sf_idx[(win+w)*16+swb], cb, @@ -361,7 +413,7 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, int win, int group_len, const float lambda) { BandCodingPath path[120][12]; - int w, swb, cb, start, start2, size; + int w, swb, cb, start, size; int i, j; const int max_sfb = sce->ics.max_sfb; const int run_bits = sce->ics.num_windows == 1 ? 5 : 3; @@ -379,13 +431,28 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, path[0][cb].run = 0; } for (swb = 0; swb < max_sfb; swb++) { - start2 = start; size = sce->ics.swb_sizes[swb]; if (sce->zeroes[win*16 + swb]) { - for (cb = 0; cb < 12; cb++) { - path[swb+1][cb].prev_idx = cb; - path[swb+1][cb].cost = path[swb][cb].cost; - path[swb+1][cb].run = path[swb][cb].run + 1; + float cost_stay_here = path[swb][0].cost; + float cost_get_here = next_minrd + run_bits + 4; + if ( run_value_bits[sce->ics.num_windows == 8][path[swb][0].run] + != run_value_bits[sce->ics.num_windows == 8][path[swb][0].run+1]) + cost_stay_here += run_bits; + if (cost_get_here < cost_stay_here) { + path[swb+1][0].prev_idx = next_mincb; + path[swb+1][0].cost = cost_get_here; + path[swb+1][0].run = 1; + } else { + path[swb+1][0].prev_idx = 0; + path[swb+1][0].cost = cost_stay_here; + path[swb+1][0].run = path[swb][0].run + 1; + } + next_minrd = path[swb+1][0].cost; + next_mincb = 0; + for (cb = 1; cb < 12; cb++) { + path[swb+1][cb].cost = 61450; + path[swb+1][cb].prev_idx = -1; + path[swb+1][cb].run = 0; } } else { float minrd = next_minrd; @@ -438,7 +505,7 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, idx = cb; ppos = max_sfb; while (ppos > 0) { - if (idx < 0) abort(); + assert(idx >= 0); cb = idx; stackrun[stack_len] = path[ppos][cb].run; stackcb [stack_len] = cb; @@ -465,6 +532,16 @@ static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce, } } +/** Return the minimum scalefactor where the quantized coef does not clip. */ +static av_always_inline uint8_t coef2minsf(float coef) { + return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); +} + +/** Return the maximum scalefactor where the quantized coef is not zero. */ +static av_always_inline uint8_t coef2maxsf(float coef) { + return av_clip_uint8(log2f(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); +} + typedef struct TrellisPath { float cost; int prev; @@ -504,18 +581,18 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, } //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped - q0 = av_clip_uint8(log2(q0f)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); + q0 = coef2minsf(q0f); //maximum scalefactor index is when maximum coefficient after quantizing is still not zero - q1 = av_clip_uint8(log2(q1f)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); + q1 = coef2maxsf(q1f); //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1); if (q1 - q0 > 60) { int q0low = q0; int q1high = q1; //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped - int qnrg = av_clip_uint8(log2(sqrt(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512); + int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512); q1 = qnrg + 30; q0 = qnrg - 30; - //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1); + //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1); if (q0 < q0low) { q1 += q0low - q0; q0 = q0low; @@ -549,7 +626,7 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, qmin = INT_MAX; qmax = 0.0f; for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; continue; @@ -568,9 +645,9 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, float minrd = INFINITY; float maxval; //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped - minscale = av_clip_uint8(log2(qmin)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512); + minscale = coef2minsf(qmin); //maximum scalefactor index is when maximum coefficient after quantizing is still not zero - maxscale = av_clip_uint8(log2(qmax)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512); + maxscale = coef2maxsf(qmax); minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1); maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES); maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start); @@ -578,7 +655,7 @@ static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s, float dist = 0; int cb = find_min_book(maxval, sce->sf_idx[w*16+g]); for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g], q + q0, cb, lambda / band->threshold, INFINITY, NULL); } @@ -637,6 +714,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, int start = 0, i, w, w2, g; int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels; float dists[128], uplims[128]; + float maxvals[128]; int fflag, minscaler; int its = 0; int allz = 0; @@ -650,7 +728,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, int nz = 0; float uplim = 0.0f; for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; uplim += band->threshold; if (band->energy <= band->threshold || band->threshold == 0.0f) { sce->zeroes[(w+w2)*16+g] = 1; @@ -662,7 +740,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->zeroes[w*16+g] = !nz; if (nz) minthr = FFMIN(minthr, uplim); - allz = FFMAX(allz, nz); + allz |= nz; } } for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { @@ -671,13 +749,23 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->sf_idx[w*16+g] = SCALE_ONE_POS; continue; } - sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59); + sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59); } } if (!allz) return; abs_pow34_v(s->scoefs, sce->coeffs, 1024); + + for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { + start = w*128; + for (g = 0; g < sce->ics.num_swb; g++) { + const float *scaled = s->scoefs + start; + maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled); + start += sce->ics.swb_sizes[g]; + } + } + //perform two-loop search //outer loop - improve quality do { @@ -703,8 +791,7 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, continue; } minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]); - cb = find_min_book(find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled), sce->sf_idx[w*16+g]); - sce->band_type[w*16+g] = cb; + cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { int b; dist += quantize_band_cost(s, coefs + w2*128, @@ -736,24 +823,26 @@ static void search_for_quantizers_twoloop(AVCodecContext *avctx, sce->sf_idx[i] -= qstep; } qstep >>= 1; - if (!qstep && tbits > destbits*1.02) + if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217) qstep = 1; - if (sce->sf_idx[0] >= 217) - break; } while (qstep); fflag = 0; minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF); for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { - start = w*128; for (g = 0; g < sce->ics.num_swb; g++) { int prevsc = sce->sf_idx[w*16+g]; - if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) - sce->sf_idx[w*16+g]--; + if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) { + if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1)) + sce->sf_idx[w*16+g]--; + else //Try to make sure there is some energy in every band + sce->sf_idx[w*16+g]-=2; + } sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF); sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219); if (sce->sf_idx[w*16+g] != prevsc) fflag = 1; + sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]); } } its++; @@ -863,7 +952,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, continue; } sce->zeroes[w*16+g] = 0; - scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218); + scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218); step = 16; for (;;) { float dist = 0.0f; @@ -882,7 +971,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, dist -= b; } dist *= 1.0f / 512.0f / lambda; - quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]); + quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]); if (quant_max >= 8191) { // too much, return to the previous quantizer sce->sf_idx[w*16+g] = prev_scf; break; @@ -892,7 +981,7 @@ static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s, if (curdiff <= 1.0f) step = 0; else - step = log2(curdiff); + step = log2f(curdiff); if (dist > uplim[w*16+g]) step = -step; scf += step; @@ -932,20 +1021,19 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s, SingleChannelElement *sce, const float lambda) { - int start = 0, i, w, w2, g; + int i, w, w2, g; int minq = 255; memset(sce->sf_idx, 0, sizeof(sce->sf_idx)); for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { - start = w*128; for (g = 0; g < sce->ics.num_swb; g++) { for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { - FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; if (band->energy <= band->threshold) { sce->sf_idx[(w+w2)*16+g] = 218; sce->zeroes[(w+w2)*16+g] = 1; } else { - sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218); + sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218); sce->zeroes[(w+w2)*16+g] = 0; } minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]); @@ -978,14 +1066,14 @@ static void search_for_ms(AACEncContext *s, ChannelElement *cpe, if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) { float dist1 = 0.0f, dist2 = 0.0f; for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) { - FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g]; - FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g]; + FFPsyBand *band0 = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g]; + FFPsyBand *band1 = &s->psy.ch[s->cur_channel+1].psy_bands[(w+w2)*16+g]; float minthr = FFMIN(band0->threshold, band1->threshold); float maxthr = FFMAX(band0->threshold, band1->threshold); for (i = 0; i < sce0->ics.swb_sizes[g]; i++) { M[i] = (sce0->coeffs[start+w2*128+i] + sce1->coeffs[start+w2*128+i]) * 0.5; - S[i] = sce0->coeffs[start+w2*128+i] + S[i] = M[i] - sce1->coeffs[start+w2*128+i]; } abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);