X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Fac3enc.c;h=c577c87dda9340f105bcc6215f124f1968a67798;hb=f7a2e12f2a050d9c97c63c3d60c04439aa3ef103;hp=fbf5566b134e6d21be238f8af93de8c2967155f8;hpb=f1cbbb79bfe0a5a42e179b07a77e17acc5827c16;p=ffmpeg diff --git a/libavcodec/ac3enc.c b/libavcodec/ac3enc.c index fbf5566b134..c577c87dda9 100644 --- a/libavcodec/ac3enc.c +++ b/libavcodec/ac3enc.c @@ -4,20 +4,20 @@ * Copyright (c) 2006-2010 Justin Ruggles * Copyright (c) 2006-2010 Prakash Punnoor * - * This file is part of FFmpeg. + * This file is part of Libav. * - * FFmpeg is free software; you can redistribute it and/or + * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * - * FFmpeg is distributed in the hope that it will be useful, + * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software + * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ @@ -26,145 +26,58 @@ * The simplest AC-3 encoder. */ -//#define DEBUG +//#define ASSERT_LEVEL 2 -#include "libavcore/audioconvert.h" +#include + +#include "libavutil/audioconvert.h" +#include "libavutil/avassert.h" +#include "libavutil/avstring.h" #include "libavutil/crc.h" +#include "libavutil/opt.h" #include "avcodec.h" #include "put_bits.h" #include "dsputil.h" +#include "ac3dsp.h" #include "ac3.h" #include "audioconvert.h" +#include "fft.h" +#include "ac3enc.h" +#include "eac3enc.h" - -#ifndef CONFIG_AC3ENC_FLOAT -#define CONFIG_AC3ENC_FLOAT 0 -#endif - - -/** Maximum number of exponent groups. +1 for separate DC exponent. */ -#define AC3_MAX_EXP_GROUPS 85 - -/** Scale a float value by 2^bits and convert to an integer. */ -#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits))) - - -#if CONFIG_AC3ENC_FLOAT -#include "ac3enc_float.h" -#else -#include "ac3enc_fixed.h" -#endif - - -/** - * Data for a single audio block. - */ -typedef struct AC3Block { - uint8_t **bap; ///< bit allocation pointers (bap) - CoefType **mdct_coef; ///< MDCT coefficients - uint8_t **exp; ///< original exponents - uint8_t **grouped_exp; ///< grouped exponents - int16_t **psd; ///< psd per frequency bin - int16_t **band_psd; ///< psd per critical band - int16_t **mask; ///< masking curve - uint16_t **qmant; ///< quantized mantissas - uint8_t exp_strategy[AC3_MAX_CHANNELS]; ///< exponent strategies - int8_t exp_shift[AC3_MAX_CHANNELS]; ///< exponent shift values -} AC3Block; - -/** - * AC-3 encoder private context. - */ -typedef struct AC3EncodeContext { - PutBitContext pb; ///< bitstream writer context - DSPContext dsp; - AC3MDCTContext mdct; ///< MDCT context - - AC3Block blocks[AC3_MAX_BLOCKS]; ///< per-block info - - int bitstream_id; ///< bitstream id (bsid) - int bitstream_mode; ///< bitstream mode (bsmod) - - int bit_rate; ///< target bit rate, in bits-per-second - int sample_rate; ///< sampling frequency, in Hz - - int frame_size_min; ///< minimum frame size in case rounding is necessary - int frame_size; ///< current frame size in bytes - int frame_size_code; ///< frame size code (frmsizecod) - uint16_t crc_inv[2]; - int bits_written; ///< bit count (used to avg. bitrate) - int samples_written; ///< sample count (used to avg. bitrate) - - int fbw_channels; ///< number of full-bandwidth channels (nfchans) - int channels; ///< total number of channels (nchans) - int lfe_on; ///< indicates if there is an LFE channel (lfeon) - int lfe_channel; ///< channel index of the LFE channel - int channel_mode; ///< channel mode (acmod) - const uint8_t *channel_map; ///< channel map used to reorder channels - - int cutoff; ///< user-specified cutoff frequency, in Hz - int bandwidth_code[AC3_MAX_CHANNELS]; ///< bandwidth code (0 to 60) (chbwcod) - int nb_coefs[AC3_MAX_CHANNELS]; - - /* bitrate allocation control */ - int slow_gain_code; ///< slow gain code (sgaincod) - int slow_decay_code; ///< slow decay code (sdcycod) - int fast_decay_code; ///< fast decay code (fdcycod) - int db_per_bit_code; ///< dB/bit code (dbpbcod) - int floor_code; ///< floor code (floorcod) - AC3BitAllocParameters bit_alloc; ///< bit allocation parameters - int coarse_snr_offset; ///< coarse SNR offsets (csnroffst) - int fast_gain_code[AC3_MAX_CHANNELS]; ///< fast gain codes (signal-to-mask ratio) (fgaincod) - int fine_snr_offset[AC3_MAX_CHANNELS]; ///< fine SNR offsets (fsnroffst) - int frame_bits_fixed; ///< number of non-coefficient bits for fixed parameters - int frame_bits; ///< all frame bits except exponents and mantissas - int exponent_bits; ///< number of bits used for exponents - - /* mantissa encoding */ +typedef struct AC3Mant { + int16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4 int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4 - uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4 +} AC3Mant; - SampleType **planar_samples; - uint8_t *bap_buffer; - uint8_t *bap1_buffer; - CoefType *mdct_coef_buffer; - uint8_t *exp_buffer; - uint8_t *grouped_exp_buffer; - int16_t *psd_buffer; - int16_t *band_psd_buffer; - int16_t *mask_buffer; - uint16_t *qmant_buffer; - - DECLARE_ALIGNED(16, SampleType, windowed_samples)[AC3_WINDOW_SIZE]; -} AC3EncodeContext; - - -/* prototypes for functions in ac3enc_fixed.c and ac3enc_float.c */ - -static av_cold void mdct_end(AC3MDCTContext *mdct); - -static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct, - int nbits); - -static void mdct512(AC3MDCTContext *mdct, CoefType *out, SampleType *in); +#define CMIXLEV_NUM_OPTIONS 3 +static const float cmixlev_options[CMIXLEV_NUM_OPTIONS] = { + LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB +}; -static void apply_window(SampleType *output, const SampleType *input, - const SampleType *window, int n); +#define SURMIXLEV_NUM_OPTIONS 3 +static const float surmixlev_options[SURMIXLEV_NUM_OPTIONS] = { + LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO +}; -static int normalize_samples(AC3EncodeContext *s); +#define EXTMIXLEV_NUM_OPTIONS 8 +static const float extmixlev_options[EXTMIXLEV_NUM_OPTIONS] = { + LEVEL_PLUS_3DB, LEVEL_PLUS_1POINT5DB, LEVEL_ONE, LEVEL_MINUS_4POINT5DB, + LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB, LEVEL_MINUS_6DB, LEVEL_ZERO +}; /** * LUT for number of exponent groups. - * exponent_group_tab[exponent strategy-1][number of coefficients] + * exponent_group_tab[coupling][exponent strategy-1][number of coefficients] */ -static uint8_t exponent_group_tab[3][256]; +static uint8_t exponent_group_tab[2][3][256]; /** * List of supported channel layouts. */ -static const int64_t ac3_channel_layouts[] = { +const uint64_t ff_ac3_channel_layouts[19] = { AV_CH_LAYOUT_MONO, AV_CH_LAYOUT_STEREO, AV_CH_LAYOUT_2_1, @@ -187,11 +100,86 @@ static const int64_t ac3_channel_layouts[] = { }; +/** + * LUT to select the bandwidth code based on the bit rate, sample rate, and + * number of full-bandwidth channels. + * bandwidth_tab[fbw_channels-1][sample rate code][bit rate code] + */ +static const uint8_t ac3_bandwidth_tab[5][3][19] = { +// 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640 + + { { 0, 0, 0, 12, 16, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 }, + { 0, 0, 0, 16, 20, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56 }, + { 0, 0, 0, 32, 40, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } }, + + { { 0, 0, 0, 0, 0, 0, 0, 20, 24, 32, 48, 48, 48, 48, 48, 48, 48, 48, 48 }, + { 0, 0, 0, 0, 0, 0, 4, 24, 28, 36, 56, 56, 56, 56, 56, 56, 56, 56, 56 }, + { 0, 0, 0, 0, 0, 0, 20, 44, 52, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60 } }, + + { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 24, 32, 40, 48, 48, 48, 48, 48, 48 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 4, 20, 28, 36, 44, 56, 56, 56, 56, 56, 56 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 20, 40, 48, 60, 60, 60, 60, 60, 60, 60, 60 } }, + + { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 32, 48, 48, 48, 48, 48, 48 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 28, 36, 56, 56, 56, 56, 56, 56 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 48, 60, 60, 60, 60, 60, 60, 60 } }, + + { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 20, 32, 40, 48, 48, 48, 48 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 36, 44, 56, 56, 56, 56 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 28, 44, 60, 60, 60, 60, 60, 60 } } +}; + + +/** + * LUT to select the coupling start band based on the bit rate, sample rate, and + * number of full-bandwidth channels. -1 = coupling off + * ac3_coupling_start_tab[channel_mode-2][sample rate code][bit rate code] + * + * TODO: more testing for optimal parameters. + * multi-channel tests at 44.1kHz and 32kHz. + */ +static const int8_t ac3_coupling_start_tab[6][3][19] = { +// 32 40 48 56 64 80 96 112 128 160 192 224 256 320 384 448 512 576 640 + + // 2/0 + { { 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 8, 11, 12, -1, -1, -1, -1, -1, -1 }, + { 0, 0, 0, 0, 0, 0, 1, 3, 5, 7, 10, 12, 13, -1, -1, -1, -1, -1, -1 }, + { 0, 0, 0, 0, 1, 2, 2, 9, 13, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, + + // 3/0 + { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, + { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, + + // 2/1 - untested + { { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 6, 9, 11, 12, 13, -1, -1, -1, -1 }, + { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, + + // 3/1 + { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, + { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, + + // 2/2 - untested + { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 10, 11, 11, 12, 12, 14, -1 }, + { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, + + // 3/2 + { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 8, 11, 12, 12, -1, -1 }, + { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } }, +}; + + /** * Adjust the frame size to make the average bit rate match the target bit rate. - * This is only needed for 11025, 22050, and 44100 sample rates. + * This is only needed for 11025, 22050, and 44100 sample rates or any E-AC-3. + * + * @param s AC-3 encoder private context */ -static void adjust_frame_size(AC3EncodeContext *s) +void ff_ac3_adjust_frame_size(AC3EncodeContext *s) { while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) { s->bits_written -= s->bit_rate; @@ -200,107 +188,149 @@ static void adjust_frame_size(AC3EncodeContext *s) s->frame_size = s->frame_size_min + 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate); s->bits_written += s->frame_size * 8; - s->samples_written += AC3_FRAME_SIZE; + s->samples_written += AC3_BLOCK_SIZE * s->num_blocks; } /** - * Deinterleave input samples. - * Channels are reordered from FFmpeg's default order to AC-3 order. + * Set the initial coupling strategy parameters prior to coupling analysis. + * + * @param s AC-3 encoder private context */ -static void deinterleave_input_samples(AC3EncodeContext *s, - const SampleType *samples) +void ff_ac3_compute_coupling_strategy(AC3EncodeContext *s) { - int ch, i; + int blk, ch; + int got_cpl_snr; + int num_cpl_blocks; - /* deinterleave and remap input samples */ - for (ch = 0; ch < s->channels; ch++) { - const SampleType *sptr; - int sinc; + /* set coupling use flags for each block/channel */ + /* TODO: turn coupling on/off and adjust start band based on bit usage */ + for (blk = 0; blk < s->num_blocks; blk++) { + AC3Block *block = &s->blocks[blk]; + for (ch = 1; ch <= s->fbw_channels; ch++) + block->channel_in_cpl[ch] = s->cpl_on; + } - /* copy last 256 samples of previous frame to the start of the current frame */ - memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE], - AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0])); + /* enable coupling for each block if at least 2 channels have coupling + enabled for that block */ + got_cpl_snr = 0; + num_cpl_blocks = 0; + for (blk = 0; blk < s->num_blocks; blk++) { + AC3Block *block = &s->blocks[blk]; + block->num_cpl_channels = 0; + for (ch = 1; ch <= s->fbw_channels; ch++) + block->num_cpl_channels += block->channel_in_cpl[ch]; + block->cpl_in_use = block->num_cpl_channels > 1; + num_cpl_blocks += block->cpl_in_use; + if (!block->cpl_in_use) { + block->num_cpl_channels = 0; + for (ch = 1; ch <= s->fbw_channels; ch++) + block->channel_in_cpl[ch] = 0; + } - /* deinterleave */ - sinc = s->channels; - sptr = samples + s->channel_map[ch]; - for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) { - s->planar_samples[ch][i] = *sptr; - sptr += sinc; + block->new_cpl_strategy = !blk; + if (blk) { + for (ch = 1; ch <= s->fbw_channels; ch++) { + if (block->channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) { + block->new_cpl_strategy = 1; + break; + } + } + } + block->new_cpl_leak = block->new_cpl_strategy; + + if (!blk || (block->cpl_in_use && !got_cpl_snr)) { + block->new_snr_offsets = 1; + if (block->cpl_in_use) + got_cpl_snr = 1; + } else { + block->new_snr_offsets = 0; + } + } + if (!num_cpl_blocks) + s->cpl_on = 0; + + /* set bandwidth for each channel */ + for (blk = 0; blk < s->num_blocks; blk++) { + AC3Block *block = &s->blocks[blk]; + for (ch = 1; ch <= s->fbw_channels; ch++) { + if (block->channel_in_cpl[ch]) + block->end_freq[ch] = s->start_freq[CPL_CH]; + else + block->end_freq[ch] = s->bandwidth_code * 3 + 73; } } } /** - * Apply the MDCT to input samples to generate frequency coefficients. - * This applies the KBD window and normalizes the input to reduce precision - * loss due to fixed-point calculations. + * Apply stereo rematrixing to coefficients based on rematrixing flags. + * + * @param s AC-3 encoder private context */ -static void apply_mdct(AC3EncodeContext *s) +void ff_ac3_apply_rematrixing(AC3EncodeContext *s) { - int blk, ch; + int nb_coefs; + int blk, bnd, i; + int start, end; + uint8_t *flags; - for (ch = 0; ch < s->channels; ch++) { - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { - AC3Block *block = &s->blocks[blk]; - const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE]; - - apply_window(s->windowed_samples, input_samples, s->mdct.window, AC3_WINDOW_SIZE); - - block->exp_shift[ch] = normalize_samples(s); + if (!s->rematrixing_enabled) + return; - mdct512(&s->mdct, block->mdct_coef[ch], s->windowed_samples); + for (blk = 0; blk < s->num_blocks; blk++) { + AC3Block *block = &s->blocks[blk]; + if (block->new_rematrixing_strategy) + flags = block->rematrixing_flags; + nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]); + for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) { + if (flags[bnd]) { + start = ff_ac3_rematrix_band_tab[bnd]; + end = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]); + for (i = start; i < end; i++) { + int32_t lt = block->fixed_coef[1][i]; + int32_t rt = block->fixed_coef[2][i]; + block->fixed_coef[1][i] = (lt + rt) >> 1; + block->fixed_coef[2][i] = (lt - rt) >> 1; + } + } } } } -/** +/* * Initialize exponent tables. */ static av_cold void exponent_init(AC3EncodeContext *s) { - int i; - for (i = 73; i < 256; i++) { - exponent_group_tab[0][i] = (i - 1) / 3; - exponent_group_tab[1][i] = (i + 2) / 6; - exponent_group_tab[2][i] = (i + 8) / 12; + int expstr, i, grpsize; + + for (expstr = EXP_D15-1; expstr <= EXP_D45-1; expstr++) { + grpsize = 3 << expstr; + for (i = 12; i < 256; i++) { + exponent_group_tab[0][expstr][i] = (i + grpsize - 4) / grpsize; + exponent_group_tab[1][expstr][i] = (i ) / grpsize; + } } /* LFE */ - exponent_group_tab[0][7] = 2; + exponent_group_tab[0][0][7] = 2; + + if (CONFIG_EAC3_ENCODER && s->eac3) + ff_eac3_exponent_init(); } -/** +/* * Extract exponents from the MDCT coefficients. - * This takes into account the normalization that was done to the input samples - * by adjusting the exponents by the exponent shift values. */ static void extract_exponents(AC3EncodeContext *s) { - int blk, ch, i; + int ch = !s->cpl_on; + int chan_size = AC3_MAX_COEFS * s->num_blocks * (s->channels - ch + 1); + AC3Block *block = &s->blocks[0]; - for (ch = 0; ch < s->channels; ch++) { - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { - AC3Block *block = &s->blocks[blk]; - for (i = 0; i < AC3_MAX_COEFS; i++) { - int e; - int v = abs(SCALE_COEF(block->mdct_coef[ch][i])); - if (v == 0) - e = 24; - else { - e = 23 - av_log2(v) + block->exp_shift[ch]; - if (e >= 24) { - e = 24; - block->mdct_coef[ch][i] = 0; - } - } - block->exp[ch][i] = e; - } - } - } + s->ac3dsp.extract_exponents(block->exp[ch], block->fixed_coef[ch], chan_size); } @@ -308,115 +338,108 @@ static void extract_exponents(AC3EncodeContext *s) * Exponent Difference Threshold. * New exponents are sent if their SAD exceed this number. */ -#define EXP_DIFF_THRESHOLD 1000 - +#define EXP_DIFF_THRESHOLD 500 /** - * Calculate exponent strategies for all blocks in a single channel. + * Table used to select exponent strategy based on exponent reuse block interval. */ -static void compute_exp_strategy_ch(AC3EncodeContext *s, uint8_t *exp_strategy, - uint8_t **exp) -{ - int blk, blk1; - int exp_diff; - - /* estimate if the exponent variation & decide if they should be - reused in the next frame */ - exp_strategy[0] = EXP_NEW; - for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) { - exp_diff = s->dsp.sad[0](NULL, exp[blk], exp[blk-1], 16, 16); - if (exp_diff > EXP_DIFF_THRESHOLD) - exp_strategy[blk] = EXP_NEW; - else - exp_strategy[blk] = EXP_REUSE; - } - emms_c(); - - /* now select the encoding strategy type : if exponents are often - recoded, we use a coarse encoding */ - blk = 0; - while (blk < AC3_MAX_BLOCKS) { - blk1 = blk + 1; - while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE) - blk1++; - switch (blk1 - blk) { - case 1: exp_strategy[blk] = EXP_D45; break; - case 2: - case 3: exp_strategy[blk] = EXP_D25; break; - default: exp_strategy[blk] = EXP_D15; break; - } - blk = blk1; - } -} - +static const uint8_t exp_strategy_reuse_tab[4][6] = { + { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 }, + { EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15, EXP_D15 }, + { EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15, EXP_D15 }, + { EXP_D45, EXP_D25, EXP_D25, EXP_D15, EXP_D15, EXP_D15 } +}; -/** +/* * Calculate exponent strategies for all channels. * Array arrangement is reversed to simplify the per-channel calculation. */ static void compute_exp_strategy(AC3EncodeContext *s) { - uint8_t *exp1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]; - uint8_t exp_str1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]; - int ch, blk; - - for (ch = 0; ch < s->fbw_channels; ch++) { - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { - exp1[ch][blk] = s->blocks[blk].exp[ch]; - exp_str1[ch][blk] = s->blocks[blk].exp_strategy[ch]; + int ch, blk, blk1; + + for (ch = !s->cpl_on; ch <= s->fbw_channels; ch++) { + uint8_t *exp_strategy = s->exp_strategy[ch]; + uint8_t *exp = s->blocks[0].exp[ch]; + int exp_diff; + + /* estimate if the exponent variation & decide if they should be + reused in the next frame */ + exp_strategy[0] = EXP_NEW; + exp += AC3_MAX_COEFS; + for (blk = 1; blk < s->num_blocks; blk++, exp += AC3_MAX_COEFS) { + if (ch == CPL_CH) { + if (!s->blocks[blk-1].cpl_in_use) { + exp_strategy[blk] = EXP_NEW; + continue; + } else if (!s->blocks[blk].cpl_in_use) { + exp_strategy[blk] = EXP_REUSE; + continue; + } + } else if (s->blocks[blk].channel_in_cpl[ch] != s->blocks[blk-1].channel_in_cpl[ch]) { + exp_strategy[blk] = EXP_NEW; + continue; + } + exp_diff = s->dsp.sad[0](NULL, exp, exp - AC3_MAX_COEFS, 16, 16); + exp_strategy[blk] = EXP_REUSE; + if (ch == CPL_CH && exp_diff > (EXP_DIFF_THRESHOLD * (s->blocks[blk].end_freq[ch] - s->start_freq[ch]) / AC3_MAX_COEFS)) + exp_strategy[blk] = EXP_NEW; + else if (ch > CPL_CH && exp_diff > EXP_DIFF_THRESHOLD) + exp_strategy[blk] = EXP_NEW; } - compute_exp_strategy_ch(s, exp_str1[ch], exp1[ch]); - - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) - s->blocks[blk].exp_strategy[ch] = exp_str1[ch][blk]; + /* now select the encoding strategy type : if exponents are often + recoded, we use a coarse encoding */ + blk = 0; + while (blk < s->num_blocks) { + blk1 = blk + 1; + while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) + blk1++; + exp_strategy[blk] = exp_strategy_reuse_tab[s->num_blks_code][blk1-blk-1]; + blk = blk1; + } } if (s->lfe_on) { ch = s->lfe_channel; - s->blocks[0].exp_strategy[ch] = EXP_D15; - for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) - s->blocks[blk].exp_strategy[ch] = EXP_REUSE; + s->exp_strategy[ch][0] = EXP_D15; + for (blk = 1; blk < s->num_blocks; blk++) + s->exp_strategy[ch][blk] = EXP_REUSE; } -} - -/** - * Set each encoded exponent in a block to the minimum of itself and the - * exponent in the same frequency bin of a following block. - * exp[i] = min(exp[i], exp1[i] - */ -static void exponent_min(uint8_t *exp, uint8_t *exp1, int n) -{ - int i; - for (i = 0; i < n; i++) { - if (exp1[i] < exp[i]) - exp[i] = exp1[i]; - } + /* for E-AC-3, determine frame exponent strategy */ + if (CONFIG_EAC3_ENCODER && s->eac3) + ff_eac3_get_frame_exp_strategy(s); } /** * Update the exponents so that they are the ones the decoder will decode. + * + * @param[in,out] exp array of exponents for 1 block in 1 channel + * @param nb_exps number of exponents in active bandwidth + * @param exp_strategy exponent strategy for the block + * @param cpl indicates if the block is in the coupling channel */ -static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy) +static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy, + int cpl) { int nb_groups, i, k; - nb_groups = exponent_group_tab[exp_strategy-1][nb_exps] * 3; + nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_exps] * 3; /* for each group, compute the minimum exponent */ switch(exp_strategy) { case EXP_D25: - for (i = 1, k = 1; i <= nb_groups; i++) { + for (i = 1, k = 1-cpl; i <= nb_groups; i++) { uint8_t exp_min = exp[k]; if (exp[k+1] < exp_min) exp_min = exp[k+1]; - exp[i] = exp_min; + exp[i-cpl] = exp_min; k += 2; } break; case EXP_D45: - for (i = 1, k = 1; i <= nb_groups; i++) { + for (i = 1, k = 1-cpl; i <= nb_groups; i++) { uint8_t exp_min = exp[k]; if (exp[k+1] < exp_min) exp_min = exp[k+1]; @@ -424,14 +447,14 @@ static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy) exp_min = exp[k+2]; if (exp[k+3] < exp_min) exp_min = exp[k+3]; - exp[i] = exp_min; + exp[i-cpl] = exp_min; k += 4; } break; } /* constraint for DC exponent */ - if (exp[0] > 15) + if (!cpl && exp[0] > 15) exp[0] = 15; /* decrease the delta between each groups to within 2 so that they can be @@ -442,18 +465,21 @@ static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy) while (--i >= 0) exp[i] = FFMIN(exp[i], exp[i+1] + 2); + if (cpl) + exp[-1] = exp[0] & ~1; + /* now we have the exponent values the decoder will see */ switch (exp_strategy) { case EXP_D25: - for (i = nb_groups, k = nb_groups * 2; i > 0; i--) { - uint8_t exp1 = exp[i]; + for (i = nb_groups, k = (nb_groups * 2)-cpl; i > 0; i--) { + uint8_t exp1 = exp[i-cpl]; exp[k--] = exp1; exp[k--] = exp1; } break; case EXP_D45: - for (i = nb_groups, k = nb_groups * 4; i > 0; i--) { - exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i]; + for (i = nb_groups, k = (nb_groups * 4)-cpl; i > 0; i--) { + exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i-cpl]; k -= 4; } break; @@ -461,7 +487,7 @@ static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy) } -/** +/* * Encode exponents from original extracted form to what the decoder will see. * This copies and groups exponents based on exponent strategy and reduces * deltas between adjacent exponent groups so that they can be differentially @@ -469,33 +495,76 @@ static void encode_exponents_blk_ch(uint8_t *exp, int nb_exps, int exp_strategy) */ static void encode_exponents(AC3EncodeContext *s) { - int blk, blk1, blk2, ch; - AC3Block *block, *block1, *block2; + int blk, blk1, ch, cpl; + uint8_t *exp, *exp_strategy; + int nb_coefs, num_reuse_blocks; - for (ch = 0; ch < s->channels; ch++) { + for (ch = !s->cpl_on; ch <= s->channels; ch++) { + exp = s->blocks[0].exp[ch] + s->start_freq[ch]; + exp_strategy = s->exp_strategy[ch]; + + cpl = (ch == CPL_CH); blk = 0; - block = &s->blocks[0]; - while (blk < AC3_MAX_BLOCKS) { + while (blk < s->num_blocks) { + AC3Block *block = &s->blocks[blk]; + if (cpl && !block->cpl_in_use) { + exp += AC3_MAX_COEFS; + blk++; + continue; + } + nb_coefs = block->end_freq[ch] - s->start_freq[ch]; blk1 = blk + 1; - block1 = block + 1; - /* for the EXP_REUSE case we select the min of the exponents */ - while (blk1 < AC3_MAX_BLOCKS && block1->exp_strategy[ch] == EXP_REUSE) { - exponent_min(block->exp[ch], block1->exp[ch], s->nb_coefs[ch]); + + /* count the number of EXP_REUSE blocks after the current block + and set exponent reference block numbers */ + s->exp_ref_block[ch][blk] = blk; + while (blk1 < s->num_blocks && exp_strategy[blk1] == EXP_REUSE) { + s->exp_ref_block[ch][blk1] = blk; blk1++; - block1++; - } - encode_exponents_blk_ch(block->exp[ch], s->nb_coefs[ch], - block->exp_strategy[ch]); - /* copy encoded exponents for reuse case */ - block2 = block + 1; - for (blk2 = blk+1; blk2 < blk1; blk2++, block2++) { - memcpy(block2->exp[ch], block->exp[ch], - s->nb_coefs[ch] * sizeof(uint8_t)); } + num_reuse_blocks = blk1 - blk - 1; + + /* for the EXP_REUSE case we select the min of the exponents */ + s->ac3dsp.ac3_exponent_min(exp-s->start_freq[ch], num_reuse_blocks, + AC3_MAX_COEFS); + + encode_exponents_blk_ch(exp, nb_coefs, exp_strategy[blk], cpl); + + exp += AC3_MAX_COEFS * (num_reuse_blocks + 1); blk = blk1; - block = block1; } } + + /* reference block numbers have been changed, so reset ref_bap_set */ + s->ref_bap_set = 0; +} + + +/* + * Count exponent bits based on bandwidth, coupling, and exponent strategies. + */ +static int count_exponent_bits(AC3EncodeContext *s) +{ + int blk, ch; + int nb_groups, bit_count; + + bit_count = 0; + for (blk = 0; blk < s->num_blocks; blk++) { + AC3Block *block = &s->blocks[blk]; + for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { + int exp_strategy = s->exp_strategy[ch][blk]; + int cpl = (ch == CPL_CH); + int nb_coefs = block->end_freq[ch] - s->start_freq[ch]; + + if (exp_strategy == EXP_REUSE) + continue; + + nb_groups = exponent_group_tab[cpl][exp_strategy-1][nb_coefs]; + bit_count += 4 + (nb_groups * 7); + } + } + + return bit_count; } @@ -503,26 +572,27 @@ static void encode_exponents(AC3EncodeContext *s) * Group exponents. * 3 delta-encoded exponents are in each 7-bit group. The number of groups * varies depending on exponent strategy and bandwidth. + * + * @param s AC-3 encoder private context */ -static void group_exponents(AC3EncodeContext *s) +void ff_ac3_group_exponents(AC3EncodeContext *s) { - int blk, ch, i; - int group_size, nb_groups, bit_count; + int blk, ch, i, cpl; + int group_size, nb_groups; uint8_t *p; int delta0, delta1, delta2; int exp0, exp1; - bit_count = 0; - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { + for (blk = 0; blk < s->num_blocks; blk++) { AC3Block *block = &s->blocks[blk]; - for (ch = 0; ch < s->channels; ch++) { - if (block->exp_strategy[ch] == EXP_REUSE) { + for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { + int exp_strategy = s->exp_strategy[ch][blk]; + if (exp_strategy == EXP_REUSE) continue; - } - group_size = block->exp_strategy[ch] + (block->exp_strategy[ch] == EXP_D45); - nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]]; - bit_count += 4 + (nb_groups * 7); - p = block->exp[ch]; + cpl = (ch == CPL_CH); + group_size = exp_strategy + (exp_strategy == EXP_D45); + nb_groups = exponent_group_tab[cpl][exp_strategy-1][block->end_freq[ch]-s->start_freq[ch]]; + p = block->exp[ch] + s->start_freq[ch] - cpl; /* DC exponent */ exp1 = *p++; @@ -535,23 +605,24 @@ static void group_exponents(AC3EncodeContext *s) exp1 = p[0]; p += group_size; delta0 = exp1 - exp0 + 2; + av_assert2(delta0 >= 0 && delta0 <= 4); exp0 = exp1; exp1 = p[0]; p += group_size; delta1 = exp1 - exp0 + 2; + av_assert2(delta1 >= 0 && delta1 <= 4); exp0 = exp1; exp1 = p[0]; p += group_size; delta2 = exp1 - exp0 + 2; + av_assert2(delta2 >= 0 && delta2 <= 4); block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2; } } } - - s->exponent_bits = bit_count; } @@ -559,8 +630,10 @@ static void group_exponents(AC3EncodeContext *s) * Calculate final exponents from the supplied MDCT coefficients and exponent shift. * Extract exponents from MDCT coefficients, calculate exponent strategies, * and encode final exponents. + * + * @param s AC-3 encoder private context */ -static void process_exponents(AC3EncodeContext *s) +void ff_ac3_process_exponents(AC3EncodeContext *s) { extract_exponents(s); @@ -568,11 +641,11 @@ static void process_exponents(AC3EncodeContext *s) encode_exponents(s); - group_exponents(s); + emms_c(); } -/** +/* * Count frame bits that are based solely on fixed parameters. * This only has to be run once when the encoder is initialized. */ @@ -584,52 +657,101 @@ static void count_frame_bits_fixed(AC3EncodeContext *s) /* assumptions: * no dynamic range codes - * no channel coupling - * no rematrixing * bit allocation parameters do not change between blocks - * SNR offsets do not change between blocks * no delta bit allocation * no skipped data * no auxilliary data + * no E-AC-3 metadata */ - /* header size */ - frame_bits = 65; - frame_bits += frame_bits_inc[s->channel_mode]; + /* header */ + frame_bits = 16; /* sync info */ + if (s->eac3) { + /* bitstream info header */ + frame_bits += 35; + frame_bits += 1 + 1; + if (s->num_blocks != 0x6) + frame_bits++; + frame_bits++; + /* audio frame header */ + if (s->num_blocks == 6) + frame_bits += 2; + frame_bits += 10; + /* exponent strategy */ + if (s->use_frame_exp_strategy) + frame_bits += 5 * s->fbw_channels; + else + frame_bits += s->num_blocks * 2 * s->fbw_channels; + if (s->lfe_on) + frame_bits += s->num_blocks; + /* converter exponent strategy */ + if (s->num_blks_code != 0x3) + frame_bits++; + else + frame_bits += s->fbw_channels * 5; + /* snr offsets */ + frame_bits += 10; + /* block start info */ + if (s->num_blocks != 1) + frame_bits++; + } else { + frame_bits += 49; + frame_bits += frame_bits_inc[s->channel_mode]; + } /* audio blocks */ - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { - frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */ - if (s->channel_mode == AC3_CHMODE_STEREO) { - frame_bits++; /* rematstr */ + for (blk = 0; blk < s->num_blocks; blk++) { + if (!s->eac3) { + /* block switch flags */ + frame_bits += s->fbw_channels; + + /* dither flags */ + frame_bits += s->fbw_channels; + } + + /* dynamic range */ + frame_bits++; + + /* spectral extension */ + if (s->eac3) + frame_bits++; + + if (!s->eac3) { + /* exponent strategy */ + frame_bits += 2 * s->fbw_channels; + if (s->lfe_on) + frame_bits++; + + /* bit allocation params */ + frame_bits++; if (!blk) - frame_bits += 4; + frame_bits += 2 + 2 + 2 + 2 + 3; + } + + /* converter snr offset */ + if (s->eac3) + frame_bits++; + + if (!s->eac3) { + /* delta bit allocation */ + frame_bits++; + + /* skipped data */ + frame_bits++; } - frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */ - if (s->lfe_on) - frame_bits++; /* lfeexpstr */ - frame_bits++; /* baie */ - frame_bits++; /* snr */ - frame_bits += 2; /* delta / skip */ } - frame_bits++; /* cplinu for block 0 */ - /* bit alloc info */ - /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */ - /* csnroffset[6] */ - /* (fsnoffset[4] + fgaincod[4]) * c */ - frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3); - /* auxdatae, crcrsv */ - frame_bits += 2; + /* auxiliary data */ + frame_bits++; /* CRC */ - frame_bits += 16; + frame_bits += 1 + 16; s->frame_bits_fixed = frame_bits; } -/** +/* * Initialize bit allocation. * Set default parameter codes and calculate parameter values. */ @@ -641,9 +763,9 @@ static void bit_alloc_init(AC3EncodeContext *s) s->slow_decay_code = 2; s->fast_decay_code = 1; s->slow_gain_code = 1; - s->db_per_bit_code = 3; - s->floor_code = 4; - for (ch = 0; ch < s->channels; ch++) + s->db_per_bit_code = s->eac3 ? 2 : 3; + s->floor_code = 7; + for (ch = 0; ch <= s->channels; ch++) s->fast_gain_code[ch] = 4; /* initial snr offset */ @@ -657,74 +779,161 @@ static void bit_alloc_init(AC3EncodeContext *s) s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code]; s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code]; s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code]; + s->bit_alloc.cpl_fast_leak = 0; + s->bit_alloc.cpl_slow_leak = 0; count_frame_bits_fixed(s); } -/** +/* * Count the bits used to encode the frame, minus exponents and mantissas. * Bits based on fixed parameters have already been counted, so now we just * have to add the bits based on parameters that change during encoding. */ static void count_frame_bits(AC3EncodeContext *s) { + AC3EncOptions *opt = &s->options; int blk, ch; int frame_bits = 0; - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { - uint8_t *exp_strategy = s->blocks[blk].exp_strategy; - for (ch = 0; ch < s->fbw_channels; ch++) { - if (exp_strategy[ch] != EXP_REUSE) - frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */ + /* header */ + if (s->eac3) { + if (opt->eac3_mixing_metadata) { + if (s->channel_mode > AC3_CHMODE_STEREO) + frame_bits += 2; + if (s->has_center) + frame_bits += 6; + if (s->has_surround) + frame_bits += 6; + frame_bits += s->lfe_on; + frame_bits += 1 + 1 + 2; + if (s->channel_mode < AC3_CHMODE_STEREO) + frame_bits++; + frame_bits++; + } + if (opt->eac3_info_metadata) { + frame_bits += 3 + 1 + 1; + if (s->channel_mode == AC3_CHMODE_STEREO) + frame_bits += 2 + 2; + if (s->channel_mode >= AC3_CHMODE_2F2R) + frame_bits += 2; + frame_bits++; + if (opt->audio_production_info) + frame_bits += 5 + 2 + 1; + frame_bits++; + } + /* coupling */ + if (s->channel_mode > AC3_CHMODE_MONO) { + frame_bits++; + for (blk = 1; blk < s->num_blocks; blk++) { + AC3Block *block = &s->blocks[blk]; + frame_bits++; + if (block->new_cpl_strategy) + frame_bits++; + } + } + /* coupling exponent strategy */ + if (s->cpl_on) { + if (s->use_frame_exp_strategy) { + frame_bits += 5 * s->cpl_on; + } else { + for (blk = 0; blk < s->num_blocks; blk++) + frame_bits += 2 * s->blocks[blk].cpl_in_use; + } + } + } else { + if (opt->audio_production_info) + frame_bits += 7; + if (s->bitstream_id == 6) { + if (opt->extended_bsi_1) + frame_bits += 14; + if (opt->extended_bsi_2) + frame_bits += 14; } } - s->frame_bits = s->frame_bits_fixed + frame_bits; -} + /* audio blocks */ + for (blk = 0; blk < s->num_blocks; blk++) { + AC3Block *block = &s->blocks[blk]; -/** - * Calculate the number of bits needed to encode a set of mantissas. - */ -static int compute_mantissa_size(int mant_cnt[5], uint8_t *bap, int nb_coefs) -{ - int bits, b, i; - - bits = 0; - for (i = 0; i < nb_coefs; i++) { - b = bap[i]; - if (b <= 4) { - // bap=1 to bap=4 will be counted in compute_mantissa_size_final - mant_cnt[b]++; - } else if (b <= 13) { - // bap=5 to bap=13 use (bap-1) bits - bits += b - 1; - } else { - // bap=14 uses 14 bits and bap=15 uses 16 bits - bits += (b == 14) ? 14 : 16; + /* coupling strategy */ + if (!s->eac3) + frame_bits++; + if (block->new_cpl_strategy) { + if (!s->eac3) + frame_bits++; + if (block->cpl_in_use) { + if (s->eac3) + frame_bits++; + if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) + frame_bits += s->fbw_channels; + if (s->channel_mode == AC3_CHMODE_STEREO) + frame_bits++; + frame_bits += 4 + 4; + if (s->eac3) + frame_bits++; + else + frame_bits += s->num_cpl_subbands - 1; + } } - } - return bits; -} + /* coupling coordinates */ + if (block->cpl_in_use) { + for (ch = 1; ch <= s->fbw_channels; ch++) { + if (block->channel_in_cpl[ch]) { + if (!s->eac3 || block->new_cpl_coords[ch] != 2) + frame_bits++; + if (block->new_cpl_coords[ch]) { + frame_bits += 2; + frame_bits += (4 + 4) * s->num_cpl_bands; + } + } + } + } -/** - * Finalize the mantissa bit count by adding in the grouped mantissas. - */ -static int compute_mantissa_size_final(int mant_cnt[5]) -{ - // bap=1 : 3 mantissas in 5 bits - int bits = (mant_cnt[1] / 3) * 5; - // bap=2 : 3 mantissas in 7 bits - // bap=4 : 2 mantissas in 7 bits - bits += ((mant_cnt[2] / 3) + (mant_cnt[4] >> 1)) * 7; - // bap=3 : each mantissa is 3 bits - bits += mant_cnt[3] * 3; - return bits; + /* stereo rematrixing */ + if (s->channel_mode == AC3_CHMODE_STEREO) { + if (!s->eac3 || blk > 0) + frame_bits++; + if (s->blocks[blk].new_rematrixing_strategy) + frame_bits += block->num_rematrixing_bands; + } + + /* bandwidth codes & gain range */ + for (ch = 1; ch <= s->fbw_channels; ch++) { + if (s->exp_strategy[ch][blk] != EXP_REUSE) { + if (!block->channel_in_cpl[ch]) + frame_bits += 6; + frame_bits += 2; + } + } + + /* coupling exponent strategy */ + if (!s->eac3 && block->cpl_in_use) + frame_bits += 2; + + /* snr offsets and fast gain codes */ + if (!s->eac3) { + frame_bits++; + if (block->new_snr_offsets) + frame_bits += 6 + (s->channels + block->cpl_in_use) * (4 + 3); + } + + /* coupling leak info */ + if (block->cpl_in_use) { + if (!s->eac3 || block->new_cpl_leak != 2) + frame_bits++; + if (block->new_cpl_leak) + frame_bits += 3 + 3; + } + } + + s->frame_bits = s->frame_bits_fixed + frame_bits; } -/** +/* * Calculate masking curve based on the final exponents. * Also calculate the power spectral densities to use in future calculations. */ @@ -732,18 +941,18 @@ static void bit_alloc_masking(AC3EncodeContext *s) { int blk, ch; - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { + for (blk = 0; blk < s->num_blocks; blk++) { AC3Block *block = &s->blocks[blk]; - for (ch = 0; ch < s->channels; ch++) { + for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { /* We only need psd and mask for calculating bap. Since we currently do not calculate bap when exponent strategy is EXP_REUSE we do not need to calculate psd or mask. */ - if (block->exp_strategy[ch] != EXP_REUSE) { - ff_ac3_bit_alloc_calc_psd(block->exp[ch], 0, - s->nb_coefs[ch], - block->psd[ch], block->band_psd[ch]); + if (s->exp_strategy[ch][blk] != EXP_REUSE) { + ff_ac3_bit_alloc_calc_psd(block->exp[ch], s->start_freq[ch], + block->end_freq[ch], block->psd[ch], + block->band_psd[ch]); ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch], - 0, s->nb_coefs[ch], + s->start_freq[ch], block->end_freq[ch], ff_ac3_fast_gain_tab[s->fast_gain_code[ch]], ch == s->lfe_channel, DBA_NONE, 0, NULL, NULL, NULL, @@ -754,70 +963,131 @@ static void bit_alloc_masking(AC3EncodeContext *s) } -/** +/* * Ensure that bap for each block and channel point to the current bap_buffer. * They may have been switched during the bit allocation search. */ static void reset_block_bap(AC3EncodeContext *s) { int blk, ch; - if (s->blocks[0].bap[0] == s->bap_buffer) + uint8_t *ref_bap; + + if (s->ref_bap[0][0] == s->bap_buffer && s->ref_bap_set) return; + + ref_bap = s->bap_buffer; + for (ch = 0; ch <= s->channels; ch++) { + for (blk = 0; blk < s->num_blocks; blk++) + s->ref_bap[ch][blk] = ref_bap + AC3_MAX_COEFS * s->exp_ref_block[ch][blk]; + ref_bap += AC3_MAX_COEFS * s->num_blocks; + } + s->ref_bap_set = 1; +} + + +/** + * Initialize mantissa counts. + * These are set so that they are padded to the next whole group size when bits + * are counted in compute_mantissa_size. + * + * @param[in,out] mant_cnt running counts for each bap value for each block + */ +static void count_mantissa_bits_init(uint16_t mant_cnt[AC3_MAX_BLOCKS][16]) +{ + int blk; + for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { - for (ch = 0; ch < s->channels; ch++) { - s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)]; - } + memset(mant_cnt[blk], 0, sizeof(mant_cnt[blk])); + mant_cnt[blk][1] = mant_cnt[blk][2] = 2; + mant_cnt[blk][4] = 1; } } +/** + * Update mantissa bit counts for all blocks in 1 channel in a given bandwidth + * range. + * + * @param s AC-3 encoder private context + * @param ch channel index + * @param[in,out] mant_cnt running counts for each bap value for each block + * @param start starting coefficient bin + * @param end ending coefficient bin + */ +static void count_mantissa_bits_update_ch(AC3EncodeContext *s, int ch, + uint16_t mant_cnt[AC3_MAX_BLOCKS][16], + int start, int end) +{ + int blk; + + for (blk = 0; blk < s->num_blocks; blk++) { + AC3Block *block = &s->blocks[blk]; + if (ch == CPL_CH && !block->cpl_in_use) + continue; + s->ac3dsp.update_bap_counts(mant_cnt[blk], + s->ref_bap[ch][blk] + start, + FFMIN(end, block->end_freq[ch]) - start); + } +} + + +/* + * Count the number of mantissa bits in the frame based on the bap values. + */ +static int count_mantissa_bits(AC3EncodeContext *s) +{ + int ch, max_end_freq; + LOCAL_ALIGNED_16(uint16_t, mant_cnt, [AC3_MAX_BLOCKS], [16]); + + count_mantissa_bits_init(mant_cnt); + + max_end_freq = s->bandwidth_code * 3 + 73; + for (ch = !s->cpl_enabled; ch <= s->channels; ch++) + count_mantissa_bits_update_ch(s, ch, mant_cnt, s->start_freq[ch], + max_end_freq); + + return s->ac3dsp.compute_mantissa_size(mant_cnt); +} + + /** * Run the bit allocation with a given SNR offset. * This calculates the bit allocation pointers that will be used to determine * the quantization of each mantissa. + * + * @param s AC-3 encoder private context + * @param snr_offset SNR offset, 0 to 1023 * @return the number of bits needed for mantissas if the given SNR offset is * is used. */ static int bit_alloc(AC3EncodeContext *s, int snr_offset) { int blk, ch; - int mantissa_bits; - int mant_cnt[5]; snr_offset = (snr_offset - 240) << 2; reset_block_bap(s); - mantissa_bits = 0; - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { + for (blk = 0; blk < s->num_blocks; blk++) { AC3Block *block = &s->blocks[blk]; - // initialize grouped mantissa counts. these are set so that they are - // padded to the next whole group size when bits are counted in - // compute_mantissa_size_final - mant_cnt[0] = mant_cnt[3] = 0; - mant_cnt[1] = mant_cnt[2] = 2; - mant_cnt[4] = 1; - for (ch = 0; ch < s->channels; ch++) { + + for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { /* Currently the only bit allocation parameters which vary across blocks within a frame are the exponent values. We can take advantage of that by reusing the bit allocation pointers whenever we reuse exponents. */ - if (block->exp_strategy[ch] == EXP_REUSE) { - memcpy(block->bap[ch], s->blocks[blk-1].bap[ch], AC3_MAX_COEFS); - } else { - ff_ac3_bit_alloc_calc_bap(block->mask[ch], block->psd[ch], 0, - s->nb_coefs[ch], snr_offset, - s->bit_alloc.floor, ff_ac3_bap_tab, - block->bap[ch]); + if (s->exp_strategy[ch][blk] != EXP_REUSE) { + s->ac3dsp.bit_alloc_calc_bap(block->mask[ch], block->psd[ch], + s->start_freq[ch], block->end_freq[ch], + snr_offset, s->bit_alloc.floor, + ff_ac3_bap_tab, s->ref_bap[ch][blk]); } - mantissa_bits += compute_mantissa_size(mant_cnt, block->bap[ch], s->nb_coefs[ch]); } - mantissa_bits += compute_mantissa_size_final(mant_cnt); } - return mantissa_bits; + return count_mantissa_bits(s); } -/** +/* * Constant bitrate bit allocation search. * Find the largest SNR offset that will allow data to fit in the frame. */ @@ -828,12 +1098,14 @@ static int cbr_bit_allocation(AC3EncodeContext *s) int snr_offset, snr_incr; bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits); + if (bits_left < 0) + return AVERROR(EINVAL); snr_offset = s->coarse_snr_offset << 4; /* if previous frame SNR offset was 1023, check if current frame can also use SNR offset of 1023. if so, skip the search. */ - if ((snr_offset | s->fine_snr_offset[0]) == 1023) { + if ((snr_offset | s->fine_snr_offset[1]) == 1023) { if (bit_alloc(s, 1023) <= bits_left) return 0; } @@ -857,173 +1129,90 @@ static int cbr_bit_allocation(AC3EncodeContext *s) reset_block_bap(s); s->coarse_snr_offset = snr_offset >> 4; - for (ch = 0; ch < s->channels; ch++) + for (ch = !s->cpl_on; ch <= s->channels; ch++) s->fine_snr_offset[ch] = snr_offset & 0xF; return 0; } -/** - * Downgrade exponent strategies to reduce the bits used by the exponents. - * This is a fallback for when bit allocation fails with the normal exponent - * strategies. Each time this function is run it only downgrades the - * strategy in 1 channel of 1 block. - * @return non-zero if downgrade was unsuccessful - */ -static int downgrade_exponents(AC3EncodeContext *s) -{ - int ch, blk; - - for (ch = 0; ch < s->fbw_channels; ch++) { - for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) { - if (s->blocks[blk].exp_strategy[ch] == EXP_D15) { - s->blocks[blk].exp_strategy[ch] = EXP_D25; - return 0; - } - } - } - for (ch = 0; ch < s->fbw_channels; ch++) { - for (blk = AC3_MAX_BLOCKS-1; blk >= 0; blk--) { - if (s->blocks[blk].exp_strategy[ch] == EXP_D25) { - s->blocks[blk].exp_strategy[ch] = EXP_D45; - return 0; - } - } - } - for (ch = 0; ch < s->fbw_channels; ch++) { - /* block 0 cannot reuse exponents, so only downgrade D45 to REUSE if - the block number > 0 */ - for (blk = AC3_MAX_BLOCKS-1; blk > 0; blk--) { - if (s->blocks[blk].exp_strategy[ch] > EXP_REUSE) { - s->blocks[blk].exp_strategy[ch] = EXP_REUSE; - return 0; - } - } - } - return -1; -} - - -/** - * Reduce the bandwidth to reduce the number of bits used for a given SNR offset. - * This is a second fallback for when bit allocation still fails after exponents - * have been downgraded. - * @return non-zero if bandwidth reduction was unsuccessful - */ -static int reduce_bandwidth(AC3EncodeContext *s, int min_bw_code) -{ - int ch; - - if (s->bandwidth_code[0] > min_bw_code) { - for (ch = 0; ch < s->fbw_channels; ch++) { - s->bandwidth_code[ch]--; - s->nb_coefs[ch] = s->bandwidth_code[ch] * 3 + 73; - } - return 0; - } - return -1; -} - - -/** +/* * Perform bit allocation search. * Finds the SNR offset value that maximizes quality and fits in the specified * frame size. Output is the SNR offset and a set of bit allocation pointers * used to quantize the mantissas. */ -static int compute_bit_allocation(AC3EncodeContext *s) +int ff_ac3_compute_bit_allocation(AC3EncodeContext *s) { - int ret; - count_frame_bits(s); - bit_alloc_masking(s); - - ret = cbr_bit_allocation(s); - while (ret) { - /* fallback 1: downgrade exponents */ - if (!downgrade_exponents(s)) { - extract_exponents(s); - encode_exponents(s); - group_exponents(s); - ret = compute_bit_allocation(s); - continue; - } + s->exponent_bits = count_exponent_bits(s); - /* fallback 2: reduce bandwidth */ - /* only do this if the user has not specified a specific cutoff - frequency */ - if (!s->cutoff && !reduce_bandwidth(s, 0)) { - process_exponents(s); - ret = compute_bit_allocation(s); - continue; - } - - /* fallbacks were not enough... */ - break; - } + bit_alloc_masking(s); - return ret; + return cbr_bit_allocation(s); } /** * Symmetric quantization on 'levels' levels. + * + * @param c unquantized coefficient + * @param e exponent + * @param levels number of quantization levels + * @return quantized coefficient */ static inline int sym_quant(int c, int e, int levels) { - int v; - - if (c >= 0) { - v = (levels * (c << e)) >> 24; - v = (v + 1) >> 1; - v = (levels >> 1) + v; - } else { - v = (levels * ((-c) << e)) >> 24; - v = (v + 1) >> 1; - v = (levels >> 1) - v; - } - assert(v >= 0 && v < levels); + int v = (((levels * c) >> (24 - e)) + levels) >> 1; + av_assert2(v >= 0 && v < levels); return v; } /** * Asymmetric quantization on 2^qbits levels. + * + * @param c unquantized coefficient + * @param e exponent + * @param qbits number of quantization bits + * @return quantized coefficient */ static inline int asym_quant(int c, int e, int qbits) { - int lshift, m, v; + int m; - lshift = e + qbits - 24; - if (lshift >= 0) - v = c << lshift; - else - v = c >> (-lshift); - /* rounding */ - v = (v + 1) >> 1; + c = (((c << e) >> (24 - qbits)) + 1) >> 1; m = (1 << (qbits-1)); - if (v >= m) - v = m - 1; - assert(v >= -m); - return v & ((1 << qbits)-1); + if (c >= m) + c = m - 1; + av_assert2(c >= -m); + return c; } /** * Quantize a set of mantissas for a single channel in a single block. + * + * @param s Mantissa count context + * @param fixed_coef unquantized fixed-point coefficients + * @param exp exponents + * @param bap bit allocation pointer indices + * @param[out] qmant quantized coefficients + * @param start_freq starting coefficient bin + * @param end_freq ending coefficient bin */ -static void quantize_mantissas_blk_ch(AC3EncodeContext *s, CoefType *mdct_coef, - int8_t exp_shift, uint8_t *exp, - uint8_t *bap, uint16_t *qmant, int n) +static void quantize_mantissas_blk_ch(AC3Mant *s, int32_t *fixed_coef, + uint8_t *exp, uint8_t *bap, + int16_t *qmant, int start_freq, + int end_freq) { int i; - for (i = 0; i < n; i++) { + for (i = start_freq; i < end_freq; i++) { int v; - int c = SCALE_COEF(mdct_coef[i]); - int e = exp[i] - exp_shift; + int c = fixed_coef[i]; + int e = exp[i]; int b = bap[i]; switch (b) { case 0: @@ -1107,31 +1296,42 @@ static void quantize_mantissas_blk_ch(AC3EncodeContext *s, CoefType *mdct_coef, /** * Quantize mantissas using coefficients, exponents, and bit allocation pointers. + * + * @param s AC-3 encoder private context */ -static void quantize_mantissas(AC3EncodeContext *s) +void ff_ac3_quantize_mantissas(AC3EncodeContext *s) { - int blk, ch; - + int blk, ch, ch0=0, got_cpl; - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { + for (blk = 0; blk < s->num_blocks; blk++) { AC3Block *block = &s->blocks[blk]; - s->mant1_cnt = s->mant2_cnt = s->mant4_cnt = 0; - s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL; - - for (ch = 0; ch < s->channels; ch++) { - quantize_mantissas_blk_ch(s, block->mdct_coef[ch], block->exp_shift[ch], - block->exp[ch], block->bap[ch], - block->qmant[ch], s->nb_coefs[ch]); + AC3Mant m = { 0 }; + + got_cpl = !block->cpl_in_use; + for (ch = 1; ch <= s->channels; ch++) { + if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) { + ch0 = ch - 1; + ch = CPL_CH; + got_cpl = 1; + } + quantize_mantissas_blk_ch(&m, block->fixed_coef[ch], + s->blocks[s->exp_ref_block[ch][blk]].exp[ch], + s->ref_bap[ch][blk], block->qmant[ch], + s->start_freq[ch], block->end_freq[ch]); + if (ch == CPL_CH) + ch = ch0; } } } -/** +/* * Write the AC-3 frame header to the output bitstream. */ -static void output_frame_header(AC3EncodeContext *s) +static void ac3_output_frame_header(AC3EncodeContext *s) { + AC3EncOptions *opt = &s->options; + put_bits(&s->pb, 16, 0x0b77); /* frame header */ put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ put_bits(&s->pb, 2, s->bit_alloc.sr_code); @@ -1140,139 +1340,235 @@ static void output_frame_header(AC3EncodeContext *s) put_bits(&s->pb, 3, s->bitstream_mode); put_bits(&s->pb, 3, s->channel_mode); if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO) - put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */ + put_bits(&s->pb, 2, s->center_mix_level); if (s->channel_mode & 0x04) - put_bits(&s->pb, 2, 1); /* XXX -6 dB */ + put_bits(&s->pb, 2, s->surround_mix_level); if (s->channel_mode == AC3_CHMODE_STEREO) - put_bits(&s->pb, 2, 0); /* surround not indicated */ + put_bits(&s->pb, 2, opt->dolby_surround_mode); put_bits(&s->pb, 1, s->lfe_on); /* LFE */ - put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */ + put_bits(&s->pb, 5, -opt->dialogue_level); put_bits(&s->pb, 1, 0); /* no compression control word */ put_bits(&s->pb, 1, 0); /* no lang code */ - put_bits(&s->pb, 1, 0); /* no audio production info */ - put_bits(&s->pb, 1, 0); /* no copyright */ - put_bits(&s->pb, 1, 1); /* original bitstream */ + put_bits(&s->pb, 1, opt->audio_production_info); + if (opt->audio_production_info) { + put_bits(&s->pb, 5, opt->mixing_level - 80); + put_bits(&s->pb, 2, opt->room_type); + } + put_bits(&s->pb, 1, opt->copyright); + put_bits(&s->pb, 1, opt->original); + if (s->bitstream_id == 6) { + /* alternate bit stream syntax */ + put_bits(&s->pb, 1, opt->extended_bsi_1); + if (opt->extended_bsi_1) { + put_bits(&s->pb, 2, opt->preferred_stereo_downmix); + put_bits(&s->pb, 3, s->ltrt_center_mix_level); + put_bits(&s->pb, 3, s->ltrt_surround_mix_level); + put_bits(&s->pb, 3, s->loro_center_mix_level); + put_bits(&s->pb, 3, s->loro_surround_mix_level); + } + put_bits(&s->pb, 1, opt->extended_bsi_2); + if (opt->extended_bsi_2) { + put_bits(&s->pb, 2, opt->dolby_surround_ex_mode); + put_bits(&s->pb, 2, opt->dolby_headphone_mode); + put_bits(&s->pb, 1, opt->ad_converter_type); + put_bits(&s->pb, 9, 0); /* xbsi2 and encinfo : reserved */ + } + } else { put_bits(&s->pb, 1, 0); /* no time code 1 */ put_bits(&s->pb, 1, 0); /* no time code 2 */ + } put_bits(&s->pb, 1, 0); /* no additional bit stream info */ } -/** +/* * Write one audio block to the output bitstream. */ -static void output_audio_block(AC3EncodeContext *s, int block_num) +static void output_audio_block(AC3EncodeContext *s, int blk) { - int ch, i, baie, rbnd; - AC3Block *block = &s->blocks[block_num]; + int ch, i, baie, bnd, got_cpl, ch0; + AC3Block *block = &s->blocks[blk]; /* block switching */ - for (ch = 0; ch < s->fbw_channels; ch++) - put_bits(&s->pb, 1, 0); + if (!s->eac3) { + for (ch = 0; ch < s->fbw_channels; ch++) + put_bits(&s->pb, 1, 0); + } /* dither flags */ - for (ch = 0; ch < s->fbw_channels; ch++) - put_bits(&s->pb, 1, 1); + if (!s->eac3) { + for (ch = 0; ch < s->fbw_channels; ch++) + put_bits(&s->pb, 1, 1); + } /* dynamic range codes */ put_bits(&s->pb, 1, 0); + /* spectral extension */ + if (s->eac3) + put_bits(&s->pb, 1, 0); + /* channel coupling */ - if (!block_num) { - put_bits(&s->pb, 1, 1); /* coupling strategy present */ - put_bits(&s->pb, 1, 0); /* no coupling strategy */ - } else { - put_bits(&s->pb, 1, 0); /* no new coupling strategy */ + if (!s->eac3) + put_bits(&s->pb, 1, block->new_cpl_strategy); + if (block->new_cpl_strategy) { + if (!s->eac3) + put_bits(&s->pb, 1, block->cpl_in_use); + if (block->cpl_in_use) { + int start_sub, end_sub; + if (s->eac3) + put_bits(&s->pb, 1, 0); /* enhanced coupling */ + if (!s->eac3 || s->channel_mode != AC3_CHMODE_STEREO) { + for (ch = 1; ch <= s->fbw_channels; ch++) + put_bits(&s->pb, 1, block->channel_in_cpl[ch]); + } + if (s->channel_mode == AC3_CHMODE_STEREO) + put_bits(&s->pb, 1, 0); /* phase flags in use */ + start_sub = (s->start_freq[CPL_CH] - 37) / 12; + end_sub = (s->cpl_end_freq - 37) / 12; + put_bits(&s->pb, 4, start_sub); + put_bits(&s->pb, 4, end_sub - 3); + /* coupling band structure */ + if (s->eac3) { + put_bits(&s->pb, 1, 0); /* use default */ + } else { + for (bnd = start_sub+1; bnd < end_sub; bnd++) + put_bits(&s->pb, 1, ff_eac3_default_cpl_band_struct[bnd]); + } + } + } + + /* coupling coordinates */ + if (block->cpl_in_use) { + for (ch = 1; ch <= s->fbw_channels; ch++) { + if (block->channel_in_cpl[ch]) { + if (!s->eac3 || block->new_cpl_coords[ch] != 2) + put_bits(&s->pb, 1, block->new_cpl_coords[ch]); + if (block->new_cpl_coords[ch]) { + put_bits(&s->pb, 2, block->cpl_master_exp[ch]); + for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { + put_bits(&s->pb, 4, block->cpl_coord_exp [ch][bnd]); + put_bits(&s->pb, 4, block->cpl_coord_mant[ch][bnd]); + } + } + } + } } /* stereo rematrixing */ if (s->channel_mode == AC3_CHMODE_STEREO) { - if (!block_num) { - /* first block must define rematrixing (rematstr) */ - put_bits(&s->pb, 1, 1); - - /* dummy rematrixing rematflg(1:4)=0 */ - for (rbnd = 0; rbnd < 4; rbnd++) - put_bits(&s->pb, 1, 0); - } else { - /* no matrixing (but should be used in the future) */ - put_bits(&s->pb, 1, 0); + if (!s->eac3 || blk > 0) + put_bits(&s->pb, 1, block->new_rematrixing_strategy); + if (block->new_rematrixing_strategy) { + /* rematrixing flags */ + for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) + put_bits(&s->pb, 1, block->rematrixing_flags[bnd]); } } /* exponent strategy */ - for (ch = 0; ch < s->fbw_channels; ch++) - put_bits(&s->pb, 2, block->exp_strategy[ch]); - if (s->lfe_on) - put_bits(&s->pb, 1, block->exp_strategy[s->lfe_channel]); + if (!s->eac3) { + for (ch = !block->cpl_in_use; ch <= s->fbw_channels; ch++) + put_bits(&s->pb, 2, s->exp_strategy[ch][blk]); + if (s->lfe_on) + put_bits(&s->pb, 1, s->exp_strategy[s->lfe_channel][blk]); + } /* bandwidth */ - for (ch = 0; ch < s->fbw_channels; ch++) { - if (block->exp_strategy[ch] != EXP_REUSE) - put_bits(&s->pb, 6, s->bandwidth_code[ch]); + for (ch = 1; ch <= s->fbw_channels; ch++) { + if (s->exp_strategy[ch][blk] != EXP_REUSE && !block->channel_in_cpl[ch]) + put_bits(&s->pb, 6, s->bandwidth_code); } /* exponents */ - for (ch = 0; ch < s->channels; ch++) { + for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { int nb_groups; + int cpl = (ch == CPL_CH); - if (block->exp_strategy[ch] == EXP_REUSE) + if (s->exp_strategy[ch][blk] == EXP_REUSE) continue; /* DC exponent */ - put_bits(&s->pb, 4, block->grouped_exp[ch][0]); + put_bits(&s->pb, 4, block->grouped_exp[ch][0] >> cpl); /* exponent groups */ - nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]]; + nb_groups = exponent_group_tab[cpl][s->exp_strategy[ch][blk]-1][block->end_freq[ch]-s->start_freq[ch]]; for (i = 1; i <= nb_groups; i++) put_bits(&s->pb, 7, block->grouped_exp[ch][i]); /* gain range info */ - if (ch != s->lfe_channel) + if (ch != s->lfe_channel && !cpl) put_bits(&s->pb, 2, 0); } /* bit allocation info */ - baie = (block_num == 0); - put_bits(&s->pb, 1, baie); - if (baie) { - put_bits(&s->pb, 2, s->slow_decay_code); - put_bits(&s->pb, 2, s->fast_decay_code); - put_bits(&s->pb, 2, s->slow_gain_code); - put_bits(&s->pb, 2, s->db_per_bit_code); - put_bits(&s->pb, 3, s->floor_code); + if (!s->eac3) { + baie = (blk == 0); + put_bits(&s->pb, 1, baie); + if (baie) { + put_bits(&s->pb, 2, s->slow_decay_code); + put_bits(&s->pb, 2, s->fast_decay_code); + put_bits(&s->pb, 2, s->slow_gain_code); + put_bits(&s->pb, 2, s->db_per_bit_code); + put_bits(&s->pb, 3, s->floor_code); + } } /* snr offset */ - put_bits(&s->pb, 1, baie); - if (baie) { - put_bits(&s->pb, 6, s->coarse_snr_offset); - for (ch = 0; ch < s->channels; ch++) { - put_bits(&s->pb, 4, s->fine_snr_offset[ch]); - put_bits(&s->pb, 3, s->fast_gain_code[ch]); + if (!s->eac3) { + put_bits(&s->pb, 1, block->new_snr_offsets); + if (block->new_snr_offsets) { + put_bits(&s->pb, 6, s->coarse_snr_offset); + for (ch = !block->cpl_in_use; ch <= s->channels; ch++) { + put_bits(&s->pb, 4, s->fine_snr_offset[ch]); + put_bits(&s->pb, 3, s->fast_gain_code[ch]); + } + } + } else { + put_bits(&s->pb, 1, 0); /* no converter snr offset */ + } + + /* coupling leak */ + if (block->cpl_in_use) { + if (!s->eac3 || block->new_cpl_leak != 2) + put_bits(&s->pb, 1, block->new_cpl_leak); + if (block->new_cpl_leak) { + put_bits(&s->pb, 3, s->bit_alloc.cpl_fast_leak); + put_bits(&s->pb, 3, s->bit_alloc.cpl_slow_leak); } } - put_bits(&s->pb, 1, 0); /* no delta bit allocation */ - put_bits(&s->pb, 1, 0); /* no data to skip */ + if (!s->eac3) { + put_bits(&s->pb, 1, 0); /* no delta bit allocation */ + put_bits(&s->pb, 1, 0); /* no data to skip */ + } /* mantissas */ - for (ch = 0; ch < s->channels; ch++) { + got_cpl = !block->cpl_in_use; + for (ch = 1; ch <= s->channels; ch++) { int b, q; - for (i = 0; i < s->nb_coefs[ch]; i++) { + + if (!got_cpl && ch > 1 && block->channel_in_cpl[ch-1]) { + ch0 = ch - 1; + ch = CPL_CH; + got_cpl = 1; + } + for (i = s->start_freq[ch]; i < block->end_freq[ch]; i++) { q = block->qmant[ch][i]; - b = block->bap[ch][i]; + b = s->ref_bap[ch][blk][i]; switch (b) { - case 0: break; - case 1: if (q != 128) put_bits(&s->pb, 5, q); break; - case 2: if (q != 128) put_bits(&s->pb, 7, q); break; - case 3: put_bits(&s->pb, 3, q); break; - case 4: if (q != 128) put_bits(&s->pb, 7, q); break; - case 14: put_bits(&s->pb, 14, q); break; - case 15: put_bits(&s->pb, 16, q); break; - default: put_bits(&s->pb, b-1, q); break; + case 0: break; + case 1: if (q != 128) put_bits (&s->pb, 5, q); break; + case 2: if (q != 128) put_bits (&s->pb, 7, q); break; + case 3: put_sbits(&s->pb, 3, q); break; + case 4: if (q != 128) put_bits (&s->pb, 7, q); break; + case 14: put_sbits(&s->pb, 14, q); break; + case 15: put_sbits(&s->pb, 16, q); break; + default: put_sbits(&s->pb, b-1, q); break; } } + if (ch == CPL_CH) + ch = ch0; } } @@ -1312,7 +1608,7 @@ static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) } -/** +/* * Fill the end of the frame with 0's and compute the two CRCs. */ static void output_frame_end(AC3EncodeContext *s) @@ -1324,13 +1620,18 @@ static void output_frame_end(AC3EncodeContext *s) frame_size_58 = ((s->frame_size >> 2) + (s->frame_size >> 4)) << 1; /* pad the remainder of the frame with zeros */ + av_assert2(s->frame_size * 8 - put_bits_count(&s->pb) >= 18); flush_put_bits(&s->pb); frame = s->pb.buf; pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2; - assert(pad_bytes >= 0); + av_assert2(pad_bytes >= 0); if (pad_bytes > 0) memset(put_bits_ptr(&s->pb), 0, pad_bytes); + if (s->eac3) { + /* compute crc2 */ + crc2_partial = av_crc(crc_ctx, 0, frame + 2, s->frame_size - 5); + } else { /* compute crc1 */ /* this is not so easy because it is at the beginning of the data... */ crc1 = av_bswap16(av_crc(crc_ctx, 0, frame + 4, frame_size_58 - 4)); @@ -1341,6 +1642,7 @@ static void output_frame_end(AC3EncodeContext *s) /* compute crc2 */ crc2_partial = av_crc(crc_ctx, 0, frame + frame_size_58, s->frame_size - frame_size_58 - 3); + } crc2 = av_crc(crc_ctx, crc2_partial, frame + s->frame_size - 3, 1); /* ensure crc2 does not match sync word by flipping crcrsv bit if needed */ if (crc2 == 0x770B) { @@ -1354,116 +1656,428 @@ static void output_frame_end(AC3EncodeContext *s) /** * Write the frame to the output bitstream. + * + * @param s AC-3 encoder private context + * @param frame output data buffer */ -static void output_frame(AC3EncodeContext *s, unsigned char *frame) +void ff_ac3_output_frame(AC3EncodeContext *s, unsigned char *frame) { int blk; init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); - output_frame_header(s); + s->output_frame_header(s); - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) + for (blk = 0; blk < s->num_blocks; blk++) output_audio_block(s, blk); output_frame_end(s); } +static void dprint_options(AC3EncodeContext *s) +{ +#ifdef DEBUG + AVCodecContext *avctx = s->avctx; + AC3EncOptions *opt = &s->options; + char strbuf[32]; + + switch (s->bitstream_id) { + case 6: av_strlcpy(strbuf, "AC-3 (alt syntax)", 32); break; + case 8: av_strlcpy(strbuf, "AC-3 (standard)", 32); break; + case 9: av_strlcpy(strbuf, "AC-3 (dnet half-rate)", 32); break; + case 10: av_strlcpy(strbuf, "AC-3 (dnet quater-rate)", 32); break; + case 16: av_strlcpy(strbuf, "E-AC-3 (enhanced)", 32); break; + default: snprintf(strbuf, 32, "ERROR"); + } + av_dlog(avctx, "bitstream_id: %s (%d)\n", strbuf, s->bitstream_id); + av_dlog(avctx, "sample_fmt: %s\n", av_get_sample_fmt_name(avctx->sample_fmt)); + av_get_channel_layout_string(strbuf, 32, s->channels, avctx->channel_layout); + av_dlog(avctx, "channel_layout: %s\n", strbuf); + av_dlog(avctx, "sample_rate: %d\n", s->sample_rate); + av_dlog(avctx, "bit_rate: %d\n", s->bit_rate); + av_dlog(avctx, "blocks/frame: %d (code=%d)\n", s->num_blocks, s->num_blks_code); + if (s->cutoff) + av_dlog(avctx, "cutoff: %d\n", s->cutoff); + + av_dlog(avctx, "per_frame_metadata: %s\n", + opt->allow_per_frame_metadata?"on":"off"); + if (s->has_center) + av_dlog(avctx, "center_mixlev: %0.3f (%d)\n", opt->center_mix_level, + s->center_mix_level); + else + av_dlog(avctx, "center_mixlev: {not written}\n"); + if (s->has_surround) + av_dlog(avctx, "surround_mixlev: %0.3f (%d)\n", opt->surround_mix_level, + s->surround_mix_level); + else + av_dlog(avctx, "surround_mixlev: {not written}\n"); + if (opt->audio_production_info) { + av_dlog(avctx, "mixing_level: %ddB\n", opt->mixing_level); + switch (opt->room_type) { + case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break; + case AC3ENC_OPT_LARGE_ROOM: av_strlcpy(strbuf, "large", 32); break; + case AC3ENC_OPT_SMALL_ROOM: av_strlcpy(strbuf, "small", 32); break; + default: snprintf(strbuf, 32, "ERROR (%d)", opt->room_type); + } + av_dlog(avctx, "room_type: %s\n", strbuf); + } else { + av_dlog(avctx, "mixing_level: {not written}\n"); + av_dlog(avctx, "room_type: {not written}\n"); + } + av_dlog(avctx, "copyright: %s\n", opt->copyright?"on":"off"); + av_dlog(avctx, "dialnorm: %ddB\n", opt->dialogue_level); + if (s->channel_mode == AC3_CHMODE_STEREO) { + switch (opt->dolby_surround_mode) { + case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break; + case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break; + case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break; + default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_mode); + } + av_dlog(avctx, "dsur_mode: %s\n", strbuf); + } else { + av_dlog(avctx, "dsur_mode: {not written}\n"); + } + av_dlog(avctx, "original: %s\n", opt->original?"on":"off"); + + if (s->bitstream_id == 6) { + if (opt->extended_bsi_1) { + switch (opt->preferred_stereo_downmix) { + case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break; + case AC3ENC_OPT_DOWNMIX_LTRT: av_strlcpy(strbuf, "ltrt", 32); break; + case AC3ENC_OPT_DOWNMIX_LORO: av_strlcpy(strbuf, "loro", 32); break; + default: snprintf(strbuf, 32, "ERROR (%d)", opt->preferred_stereo_downmix); + } + av_dlog(avctx, "dmix_mode: %s\n", strbuf); + av_dlog(avctx, "ltrt_cmixlev: %0.3f (%d)\n", + opt->ltrt_center_mix_level, s->ltrt_center_mix_level); + av_dlog(avctx, "ltrt_surmixlev: %0.3f (%d)\n", + opt->ltrt_surround_mix_level, s->ltrt_surround_mix_level); + av_dlog(avctx, "loro_cmixlev: %0.3f (%d)\n", + opt->loro_center_mix_level, s->loro_center_mix_level); + av_dlog(avctx, "loro_surmixlev: %0.3f (%d)\n", + opt->loro_surround_mix_level, s->loro_surround_mix_level); + } else { + av_dlog(avctx, "extended bitstream info 1: {not written}\n"); + } + if (opt->extended_bsi_2) { + switch (opt->dolby_surround_ex_mode) { + case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break; + case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break; + case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break; + default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_surround_ex_mode); + } + av_dlog(avctx, "dsurex_mode: %s\n", strbuf); + switch (opt->dolby_headphone_mode) { + case AC3ENC_OPT_NOT_INDICATED: av_strlcpy(strbuf, "notindicated", 32); break; + case AC3ENC_OPT_MODE_ON: av_strlcpy(strbuf, "on", 32); break; + case AC3ENC_OPT_MODE_OFF: av_strlcpy(strbuf, "off", 32); break; + default: snprintf(strbuf, 32, "ERROR (%d)", opt->dolby_headphone_mode); + } + av_dlog(avctx, "dheadphone_mode: %s\n", strbuf); + + switch (opt->ad_converter_type) { + case AC3ENC_OPT_ADCONV_STANDARD: av_strlcpy(strbuf, "standard", 32); break; + case AC3ENC_OPT_ADCONV_HDCD: av_strlcpy(strbuf, "hdcd", 32); break; + default: snprintf(strbuf, 32, "ERROR (%d)", opt->ad_converter_type); + } + av_dlog(avctx, "ad_conv_type: %s\n", strbuf); + } else { + av_dlog(avctx, "extended bitstream info 2: {not written}\n"); + } + } +#endif +} + + +#define FLT_OPTION_THRESHOLD 0.01 + +static int validate_float_option(float v, const float *v_list, int v_list_size) +{ + int i; + + for (i = 0; i < v_list_size; i++) { + if (v < (v_list[i] + FLT_OPTION_THRESHOLD) && + v > (v_list[i] - FLT_OPTION_THRESHOLD)) + break; + } + if (i == v_list_size) + return -1; + + return i; +} + + +static void validate_mix_level(void *log_ctx, const char *opt_name, + float *opt_param, const float *list, + int list_size, int default_value, int min_value, + int *ctx_param) +{ + int mixlev = validate_float_option(*opt_param, list, list_size); + if (mixlev < min_value) { + mixlev = default_value; + if (*opt_param >= 0.0) { + av_log(log_ctx, AV_LOG_WARNING, "requested %s is not valid. using " + "default value: %0.3f\n", opt_name, list[mixlev]); + } + } + *opt_param = list[mixlev]; + *ctx_param = mixlev; +} + + /** - * Encode a single AC-3 frame. + * Validate metadata options as set by AVOption system. + * These values can optionally be changed per-frame. + * + * @param s AC-3 encoder private context */ -static int ac3_encode_frame(AVCodecContext *avctx, unsigned char *frame, - int buf_size, void *data) +int ff_ac3_validate_metadata(AC3EncodeContext *s) { - AC3EncodeContext *s = avctx->priv_data; - const SampleType *samples = data; - int ret; + AVCodecContext *avctx = s->avctx; + AC3EncOptions *opt = &s->options; + + opt->audio_production_info = 0; + opt->extended_bsi_1 = 0; + opt->extended_bsi_2 = 0; + opt->eac3_mixing_metadata = 0; + opt->eac3_info_metadata = 0; + + /* determine mixing metadata / xbsi1 use */ + if (s->channel_mode > AC3_CHMODE_STEREO && opt->preferred_stereo_downmix != AC3ENC_OPT_NONE) { + opt->extended_bsi_1 = 1; + opt->eac3_mixing_metadata = 1; + } + if (s->has_center && + (opt->ltrt_center_mix_level >= 0 || opt->loro_center_mix_level >= 0)) { + opt->extended_bsi_1 = 1; + opt->eac3_mixing_metadata = 1; + } + if (s->has_surround && + (opt->ltrt_surround_mix_level >= 0 || opt->loro_surround_mix_level >= 0)) { + opt->extended_bsi_1 = 1; + opt->eac3_mixing_metadata = 1; + } - if (s->bit_alloc.sr_code == 1) - adjust_frame_size(s); + if (s->eac3) { + /* determine info metadata use */ + if (avctx->audio_service_type != AV_AUDIO_SERVICE_TYPE_MAIN) + opt->eac3_info_metadata = 1; + if (opt->copyright != AC3ENC_OPT_NONE || opt->original != AC3ENC_OPT_NONE) + opt->eac3_info_metadata = 1; + if (s->channel_mode == AC3_CHMODE_STEREO && + (opt->dolby_headphone_mode != AC3ENC_OPT_NONE || opt->dolby_surround_mode != AC3ENC_OPT_NONE)) + opt->eac3_info_metadata = 1; + if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE) + opt->eac3_info_metadata = 1; + if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE || + opt->ad_converter_type != AC3ENC_OPT_NONE) { + opt->audio_production_info = 1; + opt->eac3_info_metadata = 1; + } + } else { + /* determine audio production info use */ + if (opt->mixing_level != AC3ENC_OPT_NONE || opt->room_type != AC3ENC_OPT_NONE) + opt->audio_production_info = 1; + + /* determine xbsi2 use */ + if (s->channel_mode >= AC3_CHMODE_2F2R && opt->dolby_surround_ex_mode != AC3ENC_OPT_NONE) + opt->extended_bsi_2 = 1; + if (s->channel_mode == AC3_CHMODE_STEREO && opt->dolby_headphone_mode != AC3ENC_OPT_NONE) + opt->extended_bsi_2 = 1; + if (opt->ad_converter_type != AC3ENC_OPT_NONE) + opt->extended_bsi_2 = 1; + } - deinterleave_input_samples(s, samples); + /* validate AC-3 mixing levels */ + if (!s->eac3) { + if (s->has_center) { + validate_mix_level(avctx, "center_mix_level", &opt->center_mix_level, + cmixlev_options, CMIXLEV_NUM_OPTIONS, 1, 0, + &s->center_mix_level); + } + if (s->has_surround) { + validate_mix_level(avctx, "surround_mix_level", &opt->surround_mix_level, + surmixlev_options, SURMIXLEV_NUM_OPTIONS, 1, 0, + &s->surround_mix_level); + } + } - apply_mdct(s); + /* validate extended bsi 1 / mixing metadata */ + if (opt->extended_bsi_1 || opt->eac3_mixing_metadata) { + /* default preferred stereo downmix */ + if (opt->preferred_stereo_downmix == AC3ENC_OPT_NONE) + opt->preferred_stereo_downmix = AC3ENC_OPT_NOT_INDICATED; + if (!s->eac3 || s->has_center) { + /* validate Lt/Rt center mix level */ + validate_mix_level(avctx, "ltrt_center_mix_level", + &opt->ltrt_center_mix_level, extmixlev_options, + EXTMIXLEV_NUM_OPTIONS, 5, 0, + &s->ltrt_center_mix_level); + /* validate Lo/Ro center mix level */ + validate_mix_level(avctx, "loro_center_mix_level", + &opt->loro_center_mix_level, extmixlev_options, + EXTMIXLEV_NUM_OPTIONS, 5, 0, + &s->loro_center_mix_level); + } + if (!s->eac3 || s->has_surround) { + /* validate Lt/Rt surround mix level */ + validate_mix_level(avctx, "ltrt_surround_mix_level", + &opt->ltrt_surround_mix_level, extmixlev_options, + EXTMIXLEV_NUM_OPTIONS, 6, 3, + &s->ltrt_surround_mix_level); + /* validate Lo/Ro surround mix level */ + validate_mix_level(avctx, "loro_surround_mix_level", + &opt->loro_surround_mix_level, extmixlev_options, + EXTMIXLEV_NUM_OPTIONS, 6, 3, + &s->loro_surround_mix_level); + } + } - process_exponents(s); + /* validate audio service type / channels combination */ + if ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_KARAOKE && + avctx->channels == 1) || + ((avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_COMMENTARY || + avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_EMERGENCY || + avctx->audio_service_type == AV_AUDIO_SERVICE_TYPE_VOICE_OVER) + && avctx->channels > 1)) { + av_log(avctx, AV_LOG_ERROR, "invalid audio service type for the " + "specified number of channels\n"); + return AVERROR(EINVAL); + } - ret = compute_bit_allocation(s); - if (ret) { - av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n"); - return ret; + /* validate extended bsi 2 / info metadata */ + if (opt->extended_bsi_2 || opt->eac3_info_metadata) { + /* default dolby headphone mode */ + if (opt->dolby_headphone_mode == AC3ENC_OPT_NONE) + opt->dolby_headphone_mode = AC3ENC_OPT_NOT_INDICATED; + /* default dolby surround ex mode */ + if (opt->dolby_surround_ex_mode == AC3ENC_OPT_NONE) + opt->dolby_surround_ex_mode = AC3ENC_OPT_NOT_INDICATED; + /* default A/D converter type */ + if (opt->ad_converter_type == AC3ENC_OPT_NONE) + opt->ad_converter_type = AC3ENC_OPT_ADCONV_STANDARD; + } + + /* copyright & original defaults */ + if (!s->eac3 || opt->eac3_info_metadata) { + /* default copyright */ + if (opt->copyright == AC3ENC_OPT_NONE) + opt->copyright = AC3ENC_OPT_OFF; + /* default original */ + if (opt->original == AC3ENC_OPT_NONE) + opt->original = AC3ENC_OPT_ON; } - quantize_mantissas(s); + /* dolby surround mode default */ + if (!s->eac3 || opt->eac3_info_metadata) { + if (opt->dolby_surround_mode == AC3ENC_OPT_NONE) + opt->dolby_surround_mode = AC3ENC_OPT_NOT_INDICATED; + } - output_frame(s, frame); + /* validate audio production info */ + if (opt->audio_production_info) { + if (opt->mixing_level == AC3ENC_OPT_NONE) { + av_log(avctx, AV_LOG_ERROR, "mixing_level must be set if " + "room_type is set\n"); + return AVERROR(EINVAL); + } + if (opt->mixing_level < 80) { + av_log(avctx, AV_LOG_ERROR, "invalid mixing level. must be between " + "80dB and 111dB\n"); + return AVERROR(EINVAL); + } + /* default room type */ + if (opt->room_type == AC3ENC_OPT_NONE) + opt->room_type = AC3ENC_OPT_NOT_INDICATED; + } - return s->frame_size; + /* set bitstream id for alternate bitstream syntax */ + if (!s->eac3 && (opt->extended_bsi_1 || opt->extended_bsi_2)) { + if (s->bitstream_id > 8 && s->bitstream_id < 11) { + static int warn_once = 1; + if (warn_once) { + av_log(avctx, AV_LOG_WARNING, "alternate bitstream syntax is " + "not compatible with reduced samplerates. writing of " + "extended bitstream information will be disabled.\n"); + warn_once = 0; + } + } else { + s->bitstream_id = 6; + } + } + + return 0; } /** * Finalize encoding and free any memory allocated by the encoder. + * + * @param avctx Codec context */ -static av_cold int ac3_encode_close(AVCodecContext *avctx) +av_cold int ff_ac3_encode_close(AVCodecContext *avctx) { int blk, ch; AC3EncodeContext *s = avctx->priv_data; + av_freep(&s->windowed_samples); for (ch = 0; ch < s->channels; ch++) av_freep(&s->planar_samples[ch]); av_freep(&s->planar_samples); av_freep(&s->bap_buffer); av_freep(&s->bap1_buffer); av_freep(&s->mdct_coef_buffer); + av_freep(&s->fixed_coef_buffer); av_freep(&s->exp_buffer); av_freep(&s->grouped_exp_buffer); av_freep(&s->psd_buffer); av_freep(&s->band_psd_buffer); av_freep(&s->mask_buffer); av_freep(&s->qmant_buffer); - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { + av_freep(&s->cpl_coord_exp_buffer); + av_freep(&s->cpl_coord_mant_buffer); + for (blk = 0; blk < s->num_blocks; blk++) { AC3Block *block = &s->blocks[blk]; - av_freep(&block->bap); av_freep(&block->mdct_coef); + av_freep(&block->fixed_coef); av_freep(&block->exp); av_freep(&block->grouped_exp); av_freep(&block->psd); av_freep(&block->band_psd); av_freep(&block->mask); av_freep(&block->qmant); + av_freep(&block->cpl_coord_exp); + av_freep(&block->cpl_coord_mant); } - mdct_end(&s->mdct); + s->mdct_end(s); av_freep(&avctx->coded_frame); return 0; } -/** +/* * Set channel information during initialization. */ static av_cold int set_channel_info(AC3EncodeContext *s, int channels, - int64_t *channel_layout) + uint64_t *channel_layout) { int ch_layout; if (channels < 1 || channels > AC3_MAX_CHANNELS) return AVERROR(EINVAL); - if ((uint64_t)*channel_layout > 0x7FF) + if (*channel_layout > 0x7FF) return AVERROR(EINVAL); ch_layout = *channel_layout; if (!ch_layout) ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL); - if (av_get_channel_layout_nb_channels(ch_layout) != channels) - return AVERROR(EINVAL); s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY); s->channels = channels; s->fbw_channels = channels - s->lfe_on; - s->lfe_channel = s->lfe_on ? s->fbw_channels : -1; + s->lfe_channel = s->lfe_on ? s->fbw_channels + 1 : -1; if (s->lfe_on) ch_layout -= AV_CH_LOW_FREQUENCY; @@ -1480,6 +2094,8 @@ static av_cold int set_channel_info(AC3EncodeContext *s, int channels, default: return AVERROR(EINVAL); } + s->has_center = (s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO; + s->has_surround = s->channel_mode & 0x04; s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on]; *channel_layout = ch_layout; @@ -1490,9 +2106,10 @@ static av_cold int set_channel_info(AC3EncodeContext *s, int channels, } -static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s) +static av_cold int validate_options(AC3EncodeContext *s) { - int i, ret; + AVCodecContext *avctx = s->avctx; + int i, ret, max_sr; /* validate channel layout */ if (!avctx->channel_layout) { @@ -1507,29 +2124,86 @@ static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s) } /* validate sample rate */ - for (i = 0; i < 9; i++) { - if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate) + /* note: max_sr could be changed from 2 to 5 for E-AC-3 once we find a + decoder that supports half sample rate so we can validate that + the generated files are correct. */ + max_sr = s->eac3 ? 2 : 8; + for (i = 0; i <= max_sr; i++) { + if ((ff_ac3_sample_rate_tab[i % 3] >> (i / 3)) == avctx->sample_rate) break; } - if (i == 9) { + if (i > max_sr) { av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n"); return AVERROR(EINVAL); } s->sample_rate = avctx->sample_rate; - s->bit_alloc.sr_shift = i % 3; - s->bit_alloc.sr_code = i / 3; + s->bit_alloc.sr_shift = i / 3; + s->bit_alloc.sr_code = i % 3; + s->bitstream_id = s->eac3 ? 16 : 8 + s->bit_alloc.sr_shift; /* validate bit rate */ - for (i = 0; i < 19; i++) { - if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate) - break; - } - if (i == 19) { - av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n"); - return AVERROR(EINVAL); + if (s->eac3) { + int max_br, min_br, wpf, min_br_dist, min_br_code; + int num_blks_code, num_blocks, frame_samples; + + /* calculate min/max bitrate */ + /* TODO: More testing with 3 and 2 blocks. All E-AC-3 samples I've + found use either 6 blocks or 1 block, even though 2 or 3 blocks + would work as far as the bit rate is concerned. */ + for (num_blks_code = 3; num_blks_code >= 0; num_blks_code--) { + num_blocks = ((int[]){ 1, 2, 3, 6 })[num_blks_code]; + frame_samples = AC3_BLOCK_SIZE * num_blocks; + max_br = 2048 * s->sample_rate / frame_samples * 16; + min_br = ((s->sample_rate + (frame_samples-1)) / frame_samples) * 16; + if (avctx->bit_rate <= max_br) + break; + } + if (avctx->bit_rate < min_br || avctx->bit_rate > max_br) { + av_log(avctx, AV_LOG_ERROR, "invalid bit rate. must be %d to %d " + "for this sample rate\n", min_br, max_br); + return AVERROR(EINVAL); + } + s->num_blks_code = num_blks_code; + s->num_blocks = num_blocks; + + /* calculate words-per-frame for the selected bitrate */ + wpf = (avctx->bit_rate / 16) * frame_samples / s->sample_rate; + av_assert1(wpf > 0 && wpf <= 2048); + + /* find the closest AC-3 bitrate code to the selected bitrate. + this is needed for lookup tables for bandwidth and coupling + parameter selection */ + min_br_code = -1; + min_br_dist = INT_MAX; + for (i = 0; i < 19; i++) { + int br_dist = abs(ff_ac3_bitrate_tab[i] * 1000 - avctx->bit_rate); + if (br_dist < min_br_dist) { + min_br_dist = br_dist; + min_br_code = i; + } + } + + /* make sure the minimum frame size is below the average frame size */ + s->frame_size_code = min_br_code << 1; + while (wpf > 1 && wpf * s->sample_rate / AC3_FRAME_SIZE * 16 > avctx->bit_rate) + wpf--; + s->frame_size_min = 2 * wpf; + } else { + for (i = 0; i < 19; i++) { + if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate) + break; + } + if (i == 19) { + av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n"); + return AVERROR(EINVAL); + } + s->frame_size_code = i << 1; + s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code]; + s->num_blks_code = 0x3; + s->num_blocks = 6; } - s->bit_rate = avctx->bit_rate; - s->frame_size_code = i << 1; + s->bit_rate = avctx->bit_rate; + s->frame_size = s->frame_size_min; /* validate cutoff */ if (avctx->cutoff < 0) { @@ -1540,99 +2214,188 @@ static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s) if (s->cutoff > (s->sample_rate >> 1)) s->cutoff = s->sample_rate >> 1; + ret = ff_ac3_validate_metadata(s); + if (ret) + return ret; + + s->rematrixing_enabled = s->options.stereo_rematrixing && + (s->channel_mode == AC3_CHMODE_STEREO); + + s->cpl_enabled = s->options.channel_coupling && + s->channel_mode >= AC3_CHMODE_STEREO; + return 0; } -/** +/* * Set bandwidth for all channels. * The user can optionally supply a cutoff frequency. Otherwise an appropriate * default value will be used. */ static av_cold void set_bandwidth(AC3EncodeContext *s) { - int ch, bw_code; + int blk, ch, cpl_start; if (s->cutoff) { /* calculate bandwidth based on user-specified cutoff frequency */ int fbw_coeffs; fbw_coeffs = s->cutoff * 2 * AC3_MAX_COEFS / s->sample_rate; - bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60); + s->bandwidth_code = av_clip((fbw_coeffs - 73) / 3, 0, 60); } else { /* use default bandwidth setting */ - /* XXX: should compute the bandwidth according to the frame - size, so that we avoid annoying high frequency artifacts */ - bw_code = 50; + s->bandwidth_code = ac3_bandwidth_tab[s->fbw_channels-1][s->bit_alloc.sr_code][s->frame_size_code/2]; } /* set number of coefficients for each channel */ - for (ch = 0; ch < s->fbw_channels; ch++) { - s->bandwidth_code[ch] = bw_code; - s->nb_coefs[ch] = bw_code * 3 + 73; + for (ch = 1; ch <= s->fbw_channels; ch++) { + s->start_freq[ch] = 0; + for (blk = 0; blk < s->num_blocks; blk++) + s->blocks[blk].end_freq[ch] = s->bandwidth_code * 3 + 73; + } + /* LFE channel always has 7 coefs */ + if (s->lfe_on) { + s->start_freq[s->lfe_channel] = 0; + for (blk = 0; blk < s->num_blocks; blk++) + s->blocks[blk].end_freq[ch] = 7; + } + + /* initialize coupling strategy */ + if (s->cpl_enabled) { + if (s->options.cpl_start != AC3ENC_OPT_AUTO) { + cpl_start = s->options.cpl_start; + } else { + cpl_start = ac3_coupling_start_tab[s->channel_mode-2][s->bit_alloc.sr_code][s->frame_size_code/2]; + if (cpl_start < 0) { + if (s->options.channel_coupling == AC3ENC_OPT_AUTO) + s->cpl_enabled = 0; + else + cpl_start = 15; + } + } + } + if (s->cpl_enabled) { + int i, cpl_start_band, cpl_end_band; + uint8_t *cpl_band_sizes = s->cpl_band_sizes; + + cpl_end_band = s->bandwidth_code / 4 + 3; + cpl_start_band = av_clip(cpl_start, 0, FFMIN(cpl_end_band-1, 15)); + + s->num_cpl_subbands = cpl_end_band - cpl_start_band; + + s->num_cpl_bands = 1; + *cpl_band_sizes = 12; + for (i = cpl_start_band + 1; i < cpl_end_band; i++) { + if (ff_eac3_default_cpl_band_struct[i]) { + *cpl_band_sizes += 12; + } else { + s->num_cpl_bands++; + cpl_band_sizes++; + *cpl_band_sizes = 12; + } + } + + s->start_freq[CPL_CH] = cpl_start_band * 12 + 37; + s->cpl_end_freq = cpl_end_band * 12 + 37; + for (blk = 0; blk < s->num_blocks; blk++) + s->blocks[blk].end_freq[CPL_CH] = s->cpl_end_freq; } - if (s->lfe_on) - s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */ } -static av_cold int allocate_buffers(AVCodecContext *avctx) +static av_cold int allocate_buffers(AC3EncodeContext *s) { + AVCodecContext *avctx = s->avctx; int blk, ch; - AC3EncodeContext *s = avctx->priv_data; - - FF_ALLOC_OR_GOTO(avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples), - alloc_fail); - for (ch = 0; ch < s->channels; ch++) { - FF_ALLOCZ_OR_GOTO(avctx, s->planar_samples[ch], - (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples), - alloc_fail); + int channels = s->channels + 1; /* includes coupling channel */ + int channel_blocks = channels * s->num_blocks; + int total_coefs = AC3_MAX_COEFS * channel_blocks; + + if (s->allocate_sample_buffers(s)) + goto alloc_fail; + + FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, total_coefs * + sizeof(*s->bap_buffer), alloc_fail); + FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, total_coefs * + sizeof(*s->bap1_buffer), alloc_fail); + FF_ALLOCZ_OR_GOTO(avctx, s->mdct_coef_buffer, total_coefs * + sizeof(*s->mdct_coef_buffer), alloc_fail); + FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, total_coefs * + sizeof(*s->exp_buffer), alloc_fail); + FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, channel_blocks * 128 * + sizeof(*s->grouped_exp_buffer), alloc_fail); + FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, total_coefs * + sizeof(*s->psd_buffer), alloc_fail); + FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, channel_blocks * 64 * + sizeof(*s->band_psd_buffer), alloc_fail); + FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, channel_blocks * 64 * + sizeof(*s->mask_buffer), alloc_fail); + FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, total_coefs * + sizeof(*s->qmant_buffer), alloc_fail); + if (s->cpl_enabled) { + FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_exp_buffer, channel_blocks * 16 * + sizeof(*s->cpl_coord_exp_buffer), alloc_fail); + FF_ALLOC_OR_GOTO(avctx, s->cpl_coord_mant_buffer, channel_blocks * 16 * + sizeof(*s->cpl_coord_mant_buffer), alloc_fail); } - FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, AC3_MAX_BLOCKS * s->channels * - AC3_MAX_COEFS * sizeof(*s->bap_buffer), alloc_fail); - FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, AC3_MAX_BLOCKS * s->channels * - AC3_MAX_COEFS * sizeof(*s->bap1_buffer), alloc_fail); - FF_ALLOC_OR_GOTO(avctx, s->mdct_coef_buffer, AC3_MAX_BLOCKS * s->channels * - AC3_MAX_COEFS * sizeof(*s->mdct_coef_buffer), alloc_fail); - FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, AC3_MAX_BLOCKS * s->channels * - AC3_MAX_COEFS * sizeof(*s->exp_buffer), alloc_fail); - FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, AC3_MAX_BLOCKS * s->channels * - 128 * sizeof(*s->grouped_exp_buffer), alloc_fail); - FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, AC3_MAX_BLOCKS * s->channels * - AC3_MAX_COEFS * sizeof(*s->psd_buffer), alloc_fail); - FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, AC3_MAX_BLOCKS * s->channels * - 64 * sizeof(*s->band_psd_buffer), alloc_fail); - FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, AC3_MAX_BLOCKS * s->channels * - 64 * sizeof(*s->mask_buffer), alloc_fail); - FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, AC3_MAX_BLOCKS * s->channels * - AC3_MAX_COEFS * sizeof(*s->qmant_buffer), alloc_fail); - for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { + for (blk = 0; blk < s->num_blocks; blk++) { AC3Block *block = &s->blocks[blk]; - FF_ALLOC_OR_GOTO(avctx, block->bap, s->channels * sizeof(*block->bap), - alloc_fail); - FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, s->channels * sizeof(*block->mdct_coef), + FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, channels * sizeof(*block->mdct_coef), alloc_fail); - FF_ALLOCZ_OR_GOTO(avctx, block->exp, s->channels * sizeof(*block->exp), + FF_ALLOCZ_OR_GOTO(avctx, block->exp, channels * sizeof(*block->exp), alloc_fail); - FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, s->channels * sizeof(*block->grouped_exp), + FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, channels * sizeof(*block->grouped_exp), alloc_fail); - FF_ALLOCZ_OR_GOTO(avctx, block->psd, s->channels * sizeof(*block->psd), + FF_ALLOCZ_OR_GOTO(avctx, block->psd, channels * sizeof(*block->psd), alloc_fail); - FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, s->channels * sizeof(*block->band_psd), + FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, channels * sizeof(*block->band_psd), alloc_fail); - FF_ALLOCZ_OR_GOTO(avctx, block->mask, s->channels * sizeof(*block->mask), + FF_ALLOCZ_OR_GOTO(avctx, block->mask, channels * sizeof(*block->mask), alloc_fail); - FF_ALLOCZ_OR_GOTO(avctx, block->qmant, s->channels * sizeof(*block->qmant), + FF_ALLOCZ_OR_GOTO(avctx, block->qmant, channels * sizeof(*block->qmant), alloc_fail); + if (s->cpl_enabled) { + FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_exp, channels * sizeof(*block->cpl_coord_exp), + alloc_fail); + FF_ALLOCZ_OR_GOTO(avctx, block->cpl_coord_mant, channels * sizeof(*block->cpl_coord_mant), + alloc_fail); + } + + for (ch = 0; ch < channels; ch++) { + /* arrangement: block, channel, coeff */ + block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * channels + ch)]; + block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * channels + ch)]; + block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * channels + ch)]; + block->mask[ch] = &s->mask_buffer [64 * (blk * channels + ch)]; + block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * channels + ch)]; + if (s->cpl_enabled) { + block->cpl_coord_exp[ch] = &s->cpl_coord_exp_buffer [16 * (blk * channels + ch)]; + block->cpl_coord_mant[ch] = &s->cpl_coord_mant_buffer[16 * (blk * channels + ch)]; + } - for (ch = 0; ch < s->channels; ch++) { - block->bap[ch] = &s->bap_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; - block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; - block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; - block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * s->channels + ch)]; - block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; - block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * s->channels + ch)]; - block->mask[ch] = &s->mask_buffer [64 * (blk * s->channels + ch)]; - block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; + /* arrangement: channel, block, coeff */ + block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)]; + block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (s->num_blocks * ch + blk)]; + } + } + + if (!s->fixed_point) { + FF_ALLOCZ_OR_GOTO(avctx, s->fixed_coef_buffer, total_coefs * + sizeof(*s->fixed_coef_buffer), alloc_fail); + for (blk = 0; blk < s->num_blocks; blk++) { + AC3Block *block = &s->blocks[blk]; + FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels * + sizeof(*block->fixed_coef), alloc_fail); + for (ch = 0; ch < channels; ch++) + block->fixed_coef[ch] = &s->fixed_coef_buffer[AC3_MAX_COEFS * (s->num_blocks * ch + blk)]; + } + } else { + for (blk = 0; blk < s->num_blocks; blk++) { + AC3Block *block = &s->blocks[blk]; + FF_ALLOCZ_OR_GOTO(avctx, block->fixed_coef, channels * + sizeof(*block->fixed_coef), alloc_fail); + for (ch = 0; ch < channels; ch++) + block->fixed_coef[ch] = (int32_t *)block->mdct_coef[ch]; } } @@ -1642,29 +2405,29 @@ alloc_fail: } -/** - * Initialize the encoder. - */ -static av_cold int ac3_encode_init(AVCodecContext *avctx) +av_cold int ff_ac3_encode_init(AVCodecContext *avctx) { AC3EncodeContext *s = avctx->priv_data; int ret, frame_size_58; - avctx->frame_size = AC3_FRAME_SIZE; + s->avctx = avctx; + + s->eac3 = avctx->codec_id == CODEC_ID_EAC3; - ac3_common_init(); + ff_ac3_common_init(); - ret = validate_options(avctx, s); + ret = validate_options(s); if (ret) return ret; - s->bitstream_id = 8 + s->bit_alloc.sr_shift; - s->bitstream_mode = 0; /* complete main audio service */ + avctx->frame_size = AC3_BLOCK_SIZE * s->num_blocks; + + s->bitstream_mode = avctx->audio_service_type; + if (s->bitstream_mode == AV_AUDIO_SERVICE_TYPE_KARAOKE) + s->bitstream_mode = 0x7; - s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code]; s->bits_written = 0; s->samples_written = 0; - s->frame_size = s->frame_size_min; /* calculate crc_inv for both possible frame sizes */ frame_size_58 = (( s->frame_size >> 2) + ( s->frame_size >> 4)) << 1; @@ -1674,26 +2437,44 @@ static av_cold int ac3_encode_init(AVCodecContext *avctx) s->crc_inv[1] = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY); } + /* set function pointers */ + if (CONFIG_AC3_FIXED_ENCODER && s->fixed_point) { + s->mdct_end = ff_ac3_fixed_mdct_end; + s->mdct_init = ff_ac3_fixed_mdct_init; + s->allocate_sample_buffers = ff_ac3_fixed_allocate_sample_buffers; + } else if (CONFIG_AC3_ENCODER || CONFIG_EAC3_ENCODER) { + s->mdct_end = ff_ac3_float_mdct_end; + s->mdct_init = ff_ac3_float_mdct_init; + s->allocate_sample_buffers = ff_ac3_float_allocate_sample_buffers; + } + if (CONFIG_EAC3_ENCODER && s->eac3) + s->output_frame_header = ff_eac3_output_frame_header; + else + s->output_frame_header = ac3_output_frame_header; + set_bandwidth(s); exponent_init(s); bit_alloc_init(s); - ret = mdct_init(avctx, &s->mdct, 9); + ret = s->mdct_init(s); if (ret) goto init_fail; - ret = allocate_buffers(avctx); + ret = allocate_buffers(s); if (ret) goto init_fail; avctx->coded_frame= avcodec_alloc_frame(); - dsputil_init(&s->dsp, avctx); + ff_dsputil_init(&s->dsp, avctx); + ff_ac3dsp_init(&s->ac3dsp, avctx->flags & CODEC_FLAG_BITEXACT); + + dprint_options(s); return 0; init_fail: - ac3_encode_close(avctx); + ff_ac3_encode_close(avctx); return ret; }