X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Fadpcm.c;h=d7f76e80a9b883cc926db3211f7a565bed6742a1;hb=1472b7dd2824513894f779125c298f0ad991ad04;hp=1cb788109fbfa9b031b606127ddd91ab750e92fa;hpb=bb270c0896b39e1ae9277355e3c120ed3feb64a3;p=ffmpeg diff --git a/libavcodec/adpcm.c b/libavcodec/adpcm.c index 1cb788109fb..d7f76e80a9b 100644 --- a/libavcodec/adpcm.c +++ b/libavcodec/adpcm.c @@ -2,22 +2,25 @@ * ADPCM codecs * Copyright (c) 2001-2003 The ffmpeg Project * - * This library is free software; you can redistribute it and/or + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. + * version 2.1 of the License, or (at your option) any later version. * - * This library is distributed in the hope that it will be useful, + * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "avcodec.h" #include "bitstream.h" +#include "bytestream.h" /** * @file adpcm.c @@ -27,6 +30,12 @@ * by Mike Melanson (melanson@pcisys.net) * CD-ROM XA ADPCM codec by BERO * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com) + * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org) + * EA IMA EACS decoder by Peter Ross (pross@xvid.org) + * EA IMA SEAD decoder by Peter Ross (pross@xvid.org) + * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org) + * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com) + * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl) * * Features and limitations: * @@ -46,12 +55,6 @@ #define BLKSIZE 1024 -#define CLAMP_TO_SHORT(value) \ -if (value > 32767) \ - value = 32767; \ -else if (value < -32768) \ - value = -32768; \ - /* step_table[] and index_table[] are from the ADPCM reference source */ /* This is the index table: */ static const int index_table[16] = { @@ -145,13 +148,7 @@ typedef struct ADPCMChannelStatus { } ADPCMChannelStatus; typedef struct ADPCMContext { - int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */ - ADPCMChannelStatus status[2]; - short sample_buffer[32]; /* hold left samples while waiting for right samples */ - - /* SWF only */ - int nb_bits; - int nb_samples; + ADPCMChannelStatus status[6]; } ADPCMContext; /* XXX: implement encoding */ @@ -162,17 +159,16 @@ static int adpcm_encode_init(AVCodecContext *avctx) if (avctx->channels > 2) return -1; /* only stereo or mono =) */ switch(avctx->codec->id) { - case CODEC_ID_ADPCM_IMA_QT: - av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n"); - avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */ - return -1; - break; case CODEC_ID_ADPCM_IMA_WAV: avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */ /* and we have 4 bytes per channel overhead */ avctx->block_align = BLKSIZE; /* seems frame_size isn't taken into account... have to buffer the samples :-( */ break; + case CODEC_ID_ADPCM_IMA_QT: + avctx->frame_size = 64; + avctx->block_align = 34 * avctx->channels; + break; case CODEC_ID_ADPCM_MS: avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */ /* and we have 7 bytes per channel overhead */ @@ -182,6 +178,15 @@ static int adpcm_encode_init(AVCodecContext *avctx) avctx->frame_size = BLKSIZE * avctx->channels; avctx->block_align = BLKSIZE; break; + case CODEC_ID_ADPCM_SWF: + if (avctx->sample_rate != 11025 && + avctx->sample_rate != 22050 && + avctx->sample_rate != 44100) { + av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n"); + return -1; + } + avctx->frame_size = 512 * (avctx->sample_rate / 11025); + break; default: return -1; break; @@ -203,49 +208,11 @@ static int adpcm_encode_close(AVCodecContext *avctx) static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample) { - int step_index; - unsigned char nibble; - - int sign = 0; /* sign bit of the nibble (MSB) */ - int delta, predicted_delta; - - delta = sample - c->prev_sample; - - if (delta < 0) { - sign = 1; - delta = -delta; - } - - step_index = c->step_index; - - /* nibble = 4 * delta / step_table[step_index]; */ - nibble = (delta << 2) / step_table[step_index]; - - if (nibble > 7) - nibble = 7; - - step_index += index_table[nibble]; - if (step_index < 0) - step_index = 0; - if (step_index > 88) - step_index = 88; - - /* what the decoder will find */ - predicted_delta = ((step_table[step_index] * nibble) / 4) + (step_table[step_index] / 8); - - if (sign) - c->prev_sample -= predicted_delta; - else - c->prev_sample += predicted_delta; - - CLAMP_TO_SHORT(c->prev_sample); - - - nibble += sign << 3; /* sign * 8 */ - - /* save back */ - c->step_index = step_index; - + int delta = sample - c->prev_sample; + int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8; + c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8); + c->prev_sample = av_clip_int16(c->prev_sample); + c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88); return nibble; } @@ -260,13 +227,12 @@ static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, shor else bias=-c->idelta/2; nibble= (nibble + bias) / c->idelta; - nibble= clip(nibble, -8, 7)&0x0F; + nibble= av_clip(nibble, -8, 7)&0x0F; predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; - CLAMP_TO_SHORT(predictor); c->sample2 = c->sample1; - c->sample1 = predictor; + c->sample1 = av_clip_int16(predictor); c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; if (c->idelta < 16) c->idelta = 16; @@ -276,27 +242,194 @@ static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, shor static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample) { - int i1 = 0, j1; + int nibble, delta; if(!c->step) { c->predictor = 0; c->step = 127; } - j1 = sample - c->predictor; - j1 = (j1 * 8) / c->step; - i1 = abs(j1) / 2; - if (i1 > 7) - i1 = 7; - if (j1 < 0) - i1 += 8; + delta = sample - c->predictor; + + nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8; + + c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8); + c->predictor = av_clip_int16(c->predictor); + c->step = (c->step * yamaha_indexscale[nibble]) >> 8; + c->step = av_clip(c->step, 127, 24567); + + return nibble; +} + +typedef struct TrellisPath { + int nibble; + int prev; +} TrellisPath; + +typedef struct TrellisNode { + uint32_t ssd; + int path; + int sample1; + int sample2; + int step; +} TrellisNode; + +static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples, + uint8_t *dst, ADPCMChannelStatus *c, int n) +{ +#define FREEZE_INTERVAL 128 + //FIXME 6% faster if frontier is a compile-time constant + const int frontier = 1 << avctx->trellis; + const int stride = avctx->channels; + const int version = avctx->codec->id; + const int max_paths = frontier*FREEZE_INTERVAL; + TrellisPath paths[max_paths], *p; + TrellisNode node_buf[2][frontier]; + TrellisNode *nodep_buf[2][frontier]; + TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd + TrellisNode **nodes_next = nodep_buf[1]; + int pathn = 0, froze = -1, i, j, k; + + assert(!(max_paths&(max_paths-1))); + + memset(nodep_buf, 0, sizeof(nodep_buf)); + nodes[0] = &node_buf[1][0]; + nodes[0]->ssd = 0; + nodes[0]->path = 0; + nodes[0]->step = c->step_index; + nodes[0]->sample1 = c->sample1; + nodes[0]->sample2 = c->sample2; + if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF)) + nodes[0]->sample1 = c->prev_sample; + if(version == CODEC_ID_ADPCM_MS) + nodes[0]->step = c->idelta; + if(version == CODEC_ID_ADPCM_YAMAHA) { + if(c->step == 0) { + nodes[0]->step = 127; + nodes[0]->sample1 = 0; + } else { + nodes[0]->step = c->step; + nodes[0]->sample1 = c->predictor; + } + } + + for(i=0; istep; + int nidx; + if(version == CODEC_ID_ADPCM_MS) { + const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256; + const int div = (sample - predictor) / step; + const int nmin = av_clip(div-range, -8, 6); + const int nmax = av_clip(div+range, -7, 7); + for(nidx=nmin; nidx<=nmax; nidx++) { + const int nibble = nidx & 0xf; + int dec_sample = predictor + nidx * step; +#define STORE_NODE(NAME, STEP_INDEX)\ + int d;\ + uint32_t ssd;\ + dec_sample = av_clip_int16(dec_sample);\ + d = sample - dec_sample;\ + ssd = nodes[j]->ssd + d*d;\ + if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\ + continue;\ + /* Collapse any two states with the same previous sample value. \ + * One could also distinguish states by step and by 2nd to last + * sample, but the effects of that are negligible. */\ + for(k=0; ksample1) {\ + assert(ssd >= nodes_next[k]->ssd);\ + goto next_##NAME;\ + }\ + }\ + for(k=0; kssd) {\ + TrellisNode *u = nodes_next[frontier-1];\ + if(!u) {\ + assert(pathn < max_paths);\ + u = t++;\ + u->path = pathn++;\ + }\ + u->ssd = ssd;\ + u->step = STEP_INDEX;\ + u->sample2 = nodes[j]->sample1;\ + u->sample1 = dec_sample;\ + paths[u->path].nibble = nibble;\ + paths[u->path].prev = nodes[j]->path;\ + memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\ + nodes_next[k] = u;\ + break;\ + }\ + }\ + next_##NAME:; + STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8)); + } + } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) { +#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\ + const int predictor = nodes[j]->sample1;\ + const int div = (sample - predictor) * 4 / STEP_TABLE;\ + int nmin = av_clip(div-range, -7, 6);\ + int nmax = av_clip(div+range, -6, 7);\ + if(nmin<=0) nmin--; /* distinguish -0 from +0 */\ + if(nmax<0) nmax--;\ + for(nidx=nmin; nidx<=nmax; nidx++) {\ + const int nibble = nidx<0 ? 7-nidx : nidx;\ + int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\ + STORE_NODE(NAME, STEP_INDEX);\ + } + LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88)); + } else { //CODEC_ID_ADPCM_YAMAHA + LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567)); +#undef LOOP_NODES +#undef STORE_NODE + } + } + + u = nodes; + nodes = nodes_next; + nodes_next = u; + + // prevent overflow + if(nodes[0]->ssd > (1<<28)) { + for(j=1; jssd -= nodes[0]->ssd; + nodes[0]->ssd = 0; + } + + // merge old paths to save memory + if(i == froze + FREEZE_INTERVAL) { + p = &paths[nodes[0]->path]; + for(k=i; k>froze; k--) { + dst[k] = p->nibble; + p = &paths[p->prev]; + } + froze = i; + pathn = 0; + // other nodes might use paths that don't coincide with the frozen one. + // checking which nodes do so is too slow, so just kill them all. + // this also slightly improves quality, but I don't know why. + memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*)); + } + } - c->predictor = c->predictor + ((c->step * yamaha_difflookup[i1]) / 8); - CLAMP_TO_SHORT(c->predictor); - c->step = (c->step * yamaha_indexscale[i1]) >> 8; - c->step = clip(c->step, 127, 24567); + p = &paths[nodes[0]->path]; + for(i=n-1; i>froze; i--) { + dst[i] = p->nibble; + p = &paths[p->prev]; + } - return i1; + c->predictor = nodes[0]->sample1; + c->sample1 = nodes[0]->sample1; + c->sample2 = nodes[0]->sample2; + c->step_index = nodes[0]->step; + c->step = nodes[0]->step; + c->idelta = nodes[0]->step; } static int adpcm_encode_frame(AVCodecContext *avctx, @@ -313,40 +446,54 @@ static int adpcm_encode_frame(AVCodecContext *avctx, /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */ switch(avctx->codec->id) { - case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */ - break; case CODEC_ID_ADPCM_IMA_WAV: n = avctx->frame_size / 8; c->status[0].prev_sample = (signed short)samples[0]; /* XXX */ /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */ - *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */ - *dst++ = (c->status[0].prev_sample >> 8) & 0xFF; + bytestream_put_le16(&dst, c->status[0].prev_sample); *dst++ = (unsigned char)c->status[0].step_index; *dst++ = 0; /* unknown */ samples++; if (avctx->channels == 2) { - c->status[1].prev_sample = (signed short)samples[1]; + c->status[1].prev_sample = (signed short)samples[0]; /* c->status[1].step_index = 0; */ - *dst++ = (c->status[1].prev_sample) & 0xFF; - *dst++ = (c->status[1].prev_sample >> 8) & 0xFF; + bytestream_put_le16(&dst, c->status[1].prev_sample); *dst++ = (unsigned char)c->status[1].step_index; *dst++ = 0; samples++; } /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */ + if(avctx->trellis > 0) { + uint8_t buf[2][n*8]; + adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8); + if(avctx->channels == 2) + adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8); + for(i=0; ichannels == 2) { + *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4); + *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4); + *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4); + *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4); + } + } + } else for (; n>0; n--) { - *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F; - *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0; + *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]); + *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4; dst++; - *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F; - *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0; + *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]); + *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4; dst++; - *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F; - *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0; + *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]); + *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4; dst++; - *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F; - *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0; + *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]); + *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4; dst++; /* right channel */ if (avctx->channels == 2) { @@ -366,6 +513,76 @@ static int adpcm_encode_frame(AVCodecContext *avctx, samples += 8 * avctx->channels; } break; + case CODEC_ID_ADPCM_IMA_QT: + { + int ch, i; + PutBitContext pb; + init_put_bits(&pb, dst, buf_size*8); + + for(ch=0; chchannels; ch++){ + put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7); + put_bits(&pb, 7, c->status[ch].step_index); + if(avctx->trellis > 0) { + uint8_t buf[64]; + adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64); + for(i=0; i<64; i++) + put_bits(&pb, 4, buf[i^1]); + c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F; + } else { + for (i=0; i<64; i+=2){ + int t1, t2; + t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]); + t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]); + put_bits(&pb, 4, t2); + put_bits(&pb, 4, t1); + } + c->status[ch].prev_sample &= ~0x7F; + } + } + + dst += put_bits_count(&pb)>>3; + break; + } + case CODEC_ID_ADPCM_SWF: + { + int i; + PutBitContext pb; + init_put_bits(&pb, dst, buf_size*8); + + n = avctx->frame_size-1; + + //Store AdpcmCodeSize + put_bits(&pb, 2, 2); //Set 4bits flash adpcm format + + //Init the encoder state + for(i=0; ichannels; i++){ + c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits + put_bits(&pb, 16, samples[i] & 0xFFFF); + put_bits(&pb, 6, c->status[i].step_index); + c->status[i].prev_sample = (signed short)samples[i]; + } + + if(avctx->trellis > 0) { + uint8_t buf[2][n]; + adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n); + if (avctx->channels == 2) + adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n); + for(i=0; ichannels == 2) + put_bits(&pb, 4, buf[1][i]); + } + } else { + for (i=1; iframe_size; i++) { + put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i])); + if (avctx->channels == 2) + put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1])); + } + } + flush_put_bits(&pb); + dst += put_bits_count(&pb)>>3; + break; + } case CODEC_ID_ADPCM_MS: for(i=0; ichannels; i++){ int predictor=0; @@ -378,22 +595,34 @@ static int adpcm_encode_frame(AVCodecContext *avctx, if (c->status[i].idelta < 16) c->status[i].idelta = 16; - *dst++ = c->status[i].idelta & 0xFF; - *dst++ = c->status[i].idelta >> 8; + bytestream_put_le16(&dst, c->status[i].idelta); } for(i=0; ichannels; i++){ c->status[i].sample1= *samples++; - *dst++ = c->status[i].sample1 & 0xFF; - *dst++ = c->status[i].sample1 >> 8; + bytestream_put_le16(&dst, c->status[i].sample1); } for(i=0; ichannels; i++){ c->status[i].sample2= *samples++; - *dst++ = c->status[i].sample2 & 0xFF; - *dst++ = c->status[i].sample2 >> 8; + bytestream_put_le16(&dst, c->status[i].sample2); } + if(avctx->trellis > 0) { + int n = avctx->block_align - 7*avctx->channels; + uint8_t buf[2][n]; + if(avctx->channels == 1) { + n *= 2; + adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); + for(i=0; istatus[0], n); + adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n); + for(i=0; ichannels; iblock_align; i++) { int nibble; nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4; @@ -403,6 +632,20 @@ static int adpcm_encode_frame(AVCodecContext *avctx, break; case CODEC_ID_ADPCM_YAMAHA: n = avctx->frame_size / 2; + if(avctx->trellis > 0) { + uint8_t buf[2][n*2]; + n *= 2; + if(avctx->channels == 1) { + adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n); + for(i=0; istatus[0], n); + adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n); + for(i=0; i0; n--) { for(i = 0; i < avctx->channels; i++) { int nibble; @@ -420,19 +663,32 @@ static int adpcm_encode_frame(AVCodecContext *avctx, } #endif //CONFIG_ENCODERS -static int adpcm_decode_init(AVCodecContext * avctx) +static av_cold int adpcm_decode_init(AVCodecContext * avctx) { ADPCMContext *c = avctx->priv_data; + unsigned int max_channels = 2; - c->channel = 0; - c->status[0].predictor = c->status[1].predictor = 0; - c->status[0].step_index = c->status[1].step_index = 0; - c->status[0].step = c->status[1].step = 0; + switch(avctx->codec->id) { + case CODEC_ID_ADPCM_EA_R1: + case CODEC_ID_ADPCM_EA_R2: + case CODEC_ID_ADPCM_EA_R3: + max_channels = 6; + break; + } + if(avctx->channels > max_channels){ + return -1; + } switch(avctx->codec->id) { case CODEC_ID_ADPCM_CT: c->status[0].step = c->status[1].step = 511; break; + case CODEC_ID_ADPCM_IMA_WS: + if (avctx->extradata && avctx->extradata_size == 2 * 4) { + c->status[0].predictor = AV_RL32(avctx->extradata); + c->status[1].predictor = AV_RL32(avctx->extradata + 4); + } + break; default: break; } @@ -460,11 +716,10 @@ static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, if (sign) predictor -= diff; else predictor += diff; - CLAMP_TO_SHORT(predictor); - c->predictor = predictor; + c->predictor = av_clip_int16(predictor); c->step_index = step_index; - return (short)predictor; + return (short)c->predictor; } static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble) @@ -473,19 +728,17 @@ static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble) predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256; predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta; - CLAMP_TO_SHORT(predictor); c->sample2 = c->sample1; - c->sample1 = predictor; + c->sample1 = av_clip_int16(predictor); c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8; if (c->idelta < 16) c->idelta = 16; - return (short)predictor; + return c->sample1; } static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) { - int predictor; int sign, delta, diff; int new_step; @@ -495,23 +748,34 @@ static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble) * the reference ADPCM implementation since modern CPUs can do the mults * quickly enough */ diff = ((2 * delta + 1) * c->step) >> 3; - predictor = c->predictor; /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */ - if(sign) - predictor = ((predictor * 254) >> 8) - diff; - else - predictor = ((predictor * 254) >> 8) + diff; + c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff); + c->predictor = av_clip_int16(c->predictor); /* calculate new step and clamp it to range 511..32767 */ new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8; - c->step = new_step; - if(c->step < 511) - c->step = 511; - if(c->step > 32767) - c->step = 32767; - - CLAMP_TO_SHORT(predictor); - c->predictor = predictor; - return (short)predictor; + c->step = av_clip(new_step, 511, 32767); + + return (short)c->predictor; +} + +static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift) +{ + int sign, delta, diff; + + sign = nibble & (1<<(size-1)); + delta = nibble & ((1<<(size-1))-1); + diff = delta << (7 + c->step + shift); + + /* clamp result */ + c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256); + + /* calculate new step */ + if (delta >= (2*size - 3) && c->step < 3) + c->step++; + else if (delta == 0 && c->step > 0) + c->step--; + + return (short) c->predictor; } static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble) @@ -522,9 +786,9 @@ static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned c } c->predictor += (c->step * yamaha_difflookup[nibble]) / 8; - CLAMP_TO_SHORT(c->predictor); + c->predictor = av_clip_int16(c->predictor); c->step = (c->step * yamaha_indexscale[nibble]) >> 8; - c->step = clip(c->step, 127, 24567); + c->step = av_clip(c->step, 127, 24567); return c->predictor; } @@ -551,11 +815,10 @@ static void xa_decode(short *out, const unsigned char *in, t = (signed char)(d<<4)>>4; s = ( t<>6); - CLAMP_TO_SHORT(s); - *out = s; - out += inc; s_2 = s_1; - s_1 = s; + s_1 = av_clip_int16(s); + *out = s_1; + out += inc; } if (inc==2) { /* stereo */ @@ -577,11 +840,10 @@ static void xa_decode(short *out, const unsigned char *in, t = (signed char)d >> 4; s = ( t<>6); - CLAMP_TO_SHORT(s); - *out = s; - out += inc; s_2 = s_1; - s_1 = s; + s_1 = av_clip_int16(s); + *out = s_1; + out += inc; } if (inc==2) { /* stereo */ @@ -600,7 +862,7 @@ static void xa_decode(short *out, const unsigned char *in, #define DK3_GET_NEXT_NIBBLE() \ if (decode_top_nibble_next) \ { \ - nibble = (last_byte >> 4) & 0x0F; \ + nibble = last_byte >> 4; \ decode_top_nibble_next = 0; \ } \ else \ @@ -613,14 +875,15 @@ static void xa_decode(short *out, const unsigned char *in, static int adpcm_decode_frame(AVCodecContext *avctx, void *data, int *data_size, - uint8_t *buf, int buf_size) + const uint8_t *buf, int buf_size) { ADPCMContext *c = avctx->priv_data; ADPCMChannelStatus *cs; int n, m, channel, i; int block_predictor[2]; short *samples; - uint8_t *src; + short *samples_end; + const uint8_t *src; int st; /* stereo */ /* DK3 ADPCM accounting variables */ @@ -637,91 +900,92 @@ static int adpcm_decode_frame(AVCodecContext *avctx, int32_t coeff1l, coeff2l, coeff1r, coeff2r; uint8_t shift_left, shift_right; int count1, count2; + int coeff[2][2], shift[2];//used in EA MAXIS ADPCM if (!buf_size) return 0; + //should protect all 4bit ADPCM variants + //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels + // + if(*data_size/4 < buf_size + 8) + return -1; + samples = data; + samples_end= samples + *data_size/2; + *data_size= 0; src = buf; - st = avctx->channels == 2; + st = avctx->channels == 2 ? 1 : 0; switch(avctx->codec->id) { case CODEC_ID_ADPCM_IMA_QT: - n = (buf_size - 2);/* >> 2*avctx->channels;*/ - channel = c->channel; - cs = &(c->status[channel]); - /* (pppppp) (piiiiiii) */ - - /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ - cs->predictor = (*src++) << 8; - cs->predictor |= (*src & 0x80); - cs->predictor &= 0xFF80; + n = buf_size - 2*avctx->channels; + for (channel = 0; channel < avctx->channels; channel++) { + cs = &(c->status[channel]); + /* (pppppp) (piiiiiii) */ - /* sign extension */ - if(cs->predictor & 0x8000) - cs->predictor -= 0x10000; + /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */ + cs->predictor = (*src++) << 8; + cs->predictor |= (*src & 0x80); + cs->predictor &= 0xFF80; - CLAMP_TO_SHORT(cs->predictor); + /* sign extension */ + if(cs->predictor & 0x8000) + cs->predictor -= 0x10000; - cs->step_index = (*src++) & 0x7F; + cs->predictor = av_clip_int16(cs->predictor); - if (cs->step_index > 88) av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); - if (cs->step_index > 88) cs->step_index = 88; + cs->step_index = (*src++) & 0x7F; - cs->step = step_table[cs->step_index]; + if (cs->step_index > 88){ + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); + cs->step_index = 88; + } - if (st && channel) - samples++; + cs->step = step_table[cs->step_index]; - for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */ - *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3); - samples += avctx->channels; - *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3); - samples += avctx->channels; - src ++; - } + samples = (short*)data + channel; - if(st) { /* handle stereo interlacing */ - c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */ - if(channel == 1) { /* wait for the other packet before outputing anything */ - return src - buf; + for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */ + *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3); + samples += avctx->channels; + *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3); + samples += avctx->channels; + src ++; } } + if (st) + samples--; break; case CODEC_ID_ADPCM_IMA_WAV: if (avctx->block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align; +// samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1; + for(i=0; ichannels; i++){ cs = &(c->status[i]); - cs->predictor = *src++; - cs->predictor |= (*src++) << 8; - if(cs->predictor & 0x8000) - cs->predictor -= 0x10000; - CLAMP_TO_SHORT(cs->predictor); - - // XXX: is this correct ??: *samples++ = cs->predictor; + cs->predictor = *samples++ = (int16_t)(src[0] + (src[1]<<8)); + src+=2; cs->step_index = *src++; - if (cs->step_index < 0) cs->step_index = 0; - if (cs->step_index > 88) cs->step_index = 88; - if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null !!\n"); /* unused */ + if (cs->step_index > 88){ + av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index); + cs->step_index = 88; + } + if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */ } - for(m=4; src < (buf + buf_size);) { - *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F, 3); - if (st) - *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[4] & 0x0F, 3); - *samples++ = adpcm_ima_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F, 3); - if (st) { - *samples++ = adpcm_ima_expand_nibble(&c->status[1], (src[4] >> 4) & 0x0F, 3); - if (!--m) { - m=4; - src+=4; - } + while(src < buf + buf_size){ + for(m=0; m<4; m++){ + for(i=0; i<=st; i++) + *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3); + for(i=0; i<=st; i++) + *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3); + src++; } - src++; + src += 4*st; } break; case CODEC_ID_ADPCM_4XM: @@ -756,10 +1020,10 @@ static int adpcm_decode_frame(AVCodecContext *avctx, n = buf_size - 7 * avctx->channels; if (n < 0) return -1; - block_predictor[0] = clip(*src++, 0, 7); + block_predictor[0] = av_clip(*src++, 0, 7); block_predictor[1] = 0; if (st) - block_predictor[1] = clip(*src++, 0, 7); + block_predictor[1] = av_clip(*src++, 0, 7); c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00)); src+=2; if (st){ @@ -785,7 +1049,7 @@ static int adpcm_decode_frame(AVCodecContext *avctx, *samples++ = c->status[0].sample2; if (st) *samples++ = c->status[1].sample2; for(;n>0;n--) { - *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F); + *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 ); *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F); src ++; } @@ -808,7 +1072,7 @@ static int adpcm_decode_frame(AVCodecContext *avctx, /* take care of the top nibble (always left or mono channel) */ *samples++ = adpcm_ima_expand_nibble(&c->status[0], - (src[0] >> 4) & 0x0F, 3); + src[0] >> 4, 3); /* take care of the bottom nibble, which is right sample for * stereo, or another mono sample */ @@ -826,6 +1090,9 @@ static int adpcm_decode_frame(AVCodecContext *avctx, if (avctx->block_align != 0 && buf_size > avctx->block_align) buf_size = avctx->block_align; + if(buf_size + 16 > (samples_end - samples)*3/8) + return -1; + c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8)); c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8)); c->status[0].step_index = src[14]; @@ -870,12 +1137,12 @@ static int adpcm_decode_frame(AVCodecContext *avctx, if (st) { *samples++ = adpcm_ima_expand_nibble(&c->status[0], - (src[0] >> 4) & 0x0F, 3); + src[0] >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[0] & 0x0F, 3); } else { *samples++ = adpcm_ima_expand_nibble(&c->status[0], - (src[0] >> 4) & 0x0F, 3); + src[0] >> 4 , 3); *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F, 3); } @@ -884,8 +1151,6 @@ static int adpcm_decode_frame(AVCodecContext *avctx, } break; case CODEC_ID_ADPCM_XA: - c->status[0].sample1 = c->status[0].sample2 = - c->status[1].sample1 = c->status[1].sample2 = 0; while (buf_size >= 128) { xa_decode(samples, src, &c->status[0], &c->status[1], avctx->channels); @@ -894,36 +1159,60 @@ static int adpcm_decode_frame(AVCodecContext *avctx, buf_size -= 128; } break; + case CODEC_ID_ADPCM_IMA_EA_EACS: + samples_in_chunk = bytestream_get_le32(&src) >> (1-st); + + if (samples_in_chunk > buf_size-4-(8<status[i].step_index = bytestream_get_le32(&src); + for (i=0; i<=st; i++) + c->status[i].predictor = bytestream_get_le32(&src); + + for (; samples_in_chunk; samples_in_chunk--, src++) { + *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3); + *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3); + } + break; + case CODEC_ID_ADPCM_IMA_EA_SEAD: + for (; src < buf+buf_size; src++) { + *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6); + *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6); + } + break; case CODEC_ID_ADPCM_EA: - samples_in_chunk = LE_32(src); + samples_in_chunk = AV_RL32(src); if (samples_in_chunk >= ((buf_size - 12) * 2)) { src += buf_size; break; } src += 4; - current_left_sample = (int16_t)LE_16(src); + current_left_sample = (int16_t)AV_RL16(src); src += 2; - previous_left_sample = (int16_t)LE_16(src); + previous_left_sample = (int16_t)AV_RL16(src); src += 2; - current_right_sample = (int16_t)LE_16(src); + current_right_sample = (int16_t)AV_RL16(src); src += 2; - previous_right_sample = (int16_t)LE_16(src); + previous_right_sample = (int16_t)AV_RL16(src); src += 2; for (count1 = 0; count1 < samples_in_chunk/28;count1++) { - coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F]; - coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4]; + coeff1l = ea_adpcm_table[ *src >> 4 ]; + coeff2l = ea_adpcm_table[(*src >> 4 ) + 4]; coeff1r = ea_adpcm_table[*src & 0x0F]; coeff2r = ea_adpcm_table[(*src & 0x0F) + 4]; src++; - shift_left = ((*src >> 4) & 0x0F) + 8; + shift_left = (*src >> 4 ) + 8; shift_right = (*src & 0x0F) + 8; src++; for (count2 = 0; count2 < 28; count2++) { - next_left_sample = (((*src & 0xF0) << 24) >> shift_left); - next_right_sample = (((*src & 0x0F) << 28) >> shift_right); + next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left; + next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right; src++; next_left_sample = (next_left_sample + @@ -932,28 +1221,169 @@ static int adpcm_decode_frame(AVCodecContext *avctx, next_right_sample = (next_right_sample + (current_right_sample * coeff1r) + (previous_right_sample * coeff2r) + 0x80) >> 8; - CLAMP_TO_SHORT(next_left_sample); - CLAMP_TO_SHORT(next_right_sample); previous_left_sample = current_left_sample; - current_left_sample = next_left_sample; + current_left_sample = av_clip_int16(next_left_sample); previous_right_sample = current_right_sample; - current_right_sample = next_right_sample; + current_right_sample = av_clip_int16(next_right_sample); *samples++ = (unsigned short)current_left_sample; *samples++ = (unsigned short)current_right_sample; } } break; + case CODEC_ID_ADPCM_EA_MAXIS_XA: + for(channel = 0; channel < avctx->channels; channel++) { + for (i=0; i<2; i++) + coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i]; + shift[channel] = (*src & 0x0F) + 8; + src++; + } + for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) { + for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */ + for(channel = 0; channel < avctx->channels; channel++) { + int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel]; + sample = (sample + + c->status[channel].sample1 * coeff[channel][0] + + c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8; + c->status[channel].sample2 = c->status[channel].sample1; + c->status[channel].sample1 = av_clip_int16(sample); + *samples++ = c->status[channel].sample1; + } + } + src+=avctx->channels; + } + break; + case CODEC_ID_ADPCM_EA_R1: + case CODEC_ID_ADPCM_EA_R2: + case CODEC_ID_ADPCM_EA_R3: { + /* channel numbering + 2chan: 0=fl, 1=fr + 4chan: 0=fl, 1=rl, 2=fr, 3=rr + 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */ + const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3; + int32_t previous_sample, current_sample, next_sample; + int32_t coeff1, coeff2; + uint8_t shift; + unsigned int channel; + uint16_t *samplesC; + const uint8_t *srcC; + + samples_in_chunk = (big_endian ? bytestream_get_be32(&src) + : bytestream_get_le32(&src)) / 28; + if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) || + 28*samples_in_chunk*avctx->channels > samples_end-samples) { + src += buf_size - 4; + break; + } + + for (channel=0; channelchannels; channel++) { + srcC = src + (big_endian ? bytestream_get_be32(&src) + : bytestream_get_le32(&src)) + + (avctx->channels-channel-1) * 4; + samplesC = samples + channel; + + if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) { + current_sample = (int16_t)bytestream_get_le16(&srcC); + previous_sample = (int16_t)bytestream_get_le16(&srcC); + } else { + current_sample = c->status[channel].predictor; + previous_sample = c->status[channel].prev_sample; + } + + for (count1=0; count1channels; + } + } else { + coeff1 = ea_adpcm_table[ *srcC>>4 ]; + coeff2 = ea_adpcm_table[(*srcC>>4) + 4]; + shift = (*srcC++ & 0x0F) + 8; + + for (count2=0; count2<28; count2++) { + if (count2 & 1) + next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift; + else + next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift; + + next_sample += (current_sample * coeff1) + + (previous_sample * coeff2); + next_sample = av_clip_int16(next_sample >> 8); + + previous_sample = current_sample; + current_sample = next_sample; + *samplesC = current_sample; + samplesC += avctx->channels; + } + } + } + + if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) { + c->status[channel].predictor = current_sample; + c->status[channel].prev_sample = previous_sample; + } + } + + src = src + buf_size - (4 + 4*avctx->channels); + samples += 28 * samples_in_chunk * avctx->channels; + break; + } + case CODEC_ID_ADPCM_EA_XAS: + if (samples_end-samples < 32*4*avctx->channels + || buf_size < (4+15)*4*avctx->channels) { + src += buf_size; + break; + } + for (channel=0; channelchannels; channel++) { + int coeff[2][4], shift[4]; + short *s2, *s = &samples[channel]; + for (n=0; n<4; n++, s+=32*avctx->channels) { + for (i=0; i<2; i++) + coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i]; + shift[n] = (src[2]&0x0F) + 8; + for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels) + s2[0] = (src[0]&0xF0) + (src[1]<<8); + } + + for (m=2; m<32; m+=2) { + s = &samples[m*avctx->channels + channel]; + for (n=0; n<4; n++, src++, s+=32*avctx->channels) { + for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) { + int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n]; + int pred = s2[-1*avctx->channels] * coeff[0][n] + + s2[-2*avctx->channels] * coeff[1][n]; + s2[0] = av_clip_int16((level + pred + 0x80) >> 8); + } + } + } + } + samples += 32*4*avctx->channels; + break; + case CODEC_ID_ADPCM_IMA_AMV: case CODEC_ID_ADPCM_IMA_SMJPEG: - c->status[0].predictor = *src; - src += 2; - c->status[0].step_index = *src++; - src++; /* skip another byte before getting to the meat */ + c->status[0].predictor = (int16_t)bytestream_get_le16(&src); + c->status[0].step_index = bytestream_get_le16(&src); + + if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) + src+=4; + while (src < buf + buf_size) { + char hi, lo; + lo = *src & 0x0F; + hi = *src >> 4; + + if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) + FFSWAP(char, hi, lo); + *samples++ = adpcm_ima_expand_nibble(&c->status[0], - *src & 0x0F, 3); + lo, 3); *samples++ = adpcm_ima_expand_nibble(&c->status[0], - (*src >> 4) & 0x0F, 3); + hi, 3); src++; } break; @@ -961,86 +1391,119 @@ static int adpcm_decode_frame(AVCodecContext *avctx, while (src < buf + buf_size) { if (st) { *samples++ = adpcm_ct_expand_nibble(&c->status[0], - (src[0] >> 4) & 0x0F); + src[0] >> 4); *samples++ = adpcm_ct_expand_nibble(&c->status[1], src[0] & 0x0F); } else { *samples++ = adpcm_ct_expand_nibble(&c->status[0], - (src[0] >> 4) & 0x0F); + src[0] >> 4); *samples++ = adpcm_ct_expand_nibble(&c->status[0], src[0] & 0x0F); } src++; } break; + case CODEC_ID_ADPCM_SBPRO_4: + case CODEC_ID_ADPCM_SBPRO_3: + case CODEC_ID_ADPCM_SBPRO_2: + if (!c->status[0].step_index) { + /* the first byte is a raw sample */ + *samples++ = 128 * (*src++ - 0x80); + if (st) + *samples++ = 128 * (*src++ - 0x80); + c->status[0].step_index = 1; + } + if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) { + while (src < buf + buf_size) { + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + src[0] >> 4, 4, 0); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], + src[0] & 0x0F, 4, 0); + src++; + } + } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) { + while (src < buf + buf_size && samples + 2 < samples_end) { + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + src[0] >> 5 , 3, 0); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + (src[0] >> 2) & 0x07, 3, 0); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + src[0] & 0x03, 2, 0); + src++; + } + } else { + while (src < buf + buf_size && samples + 3 < samples_end) { + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + src[0] >> 6 , 2, 2); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], + (src[0] >> 4) & 0x03, 2, 2); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[0], + (src[0] >> 2) & 0x03, 2, 2); + *samples++ = adpcm_sbpro_expand_nibble(&c->status[st], + src[0] & 0x03, 2, 2); + src++; + } + } + break; case CODEC_ID_ADPCM_SWF: { GetBitContext gb; const int *table; - int k0, signmask; + int k0, signmask, nb_bits, count; int size = buf_size*8; init_get_bits(&gb, buf, size); - // first frame, read bits & inital values - if (!c->nb_bits) - { - c->nb_bits = get_bits(&gb, 2)+2; -// av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", c->nb_bits); - } - - table = swf_index_tables[c->nb_bits-2]; - k0 = 1 << (c->nb_bits-2); - signmask = 1 << (c->nb_bits-1); - - while (get_bits_count(&gb) <= size) - { - int i; - - c->nb_samples++; - // wrap around at every 4096 samples... - if ((c->nb_samples & 0xfff) == 1) - { - for (i = 0; i <= st; i++) - { - *samples++ = c->status[i].predictor = get_sbits(&gb, 16); - c->status[i].step_index = get_bits(&gb, 6); - } + //read bits & initial values + nb_bits = get_bits(&gb, 2)+2; + //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits); + table = swf_index_tables[nb_bits-2]; + k0 = 1 << (nb_bits-2); + signmask = 1 << (nb_bits-1); + + while (get_bits_count(&gb) <= size - 22*avctx->channels) { + for (i = 0; i < avctx->channels; i++) { + *samples++ = c->status[i].predictor = get_sbits(&gb, 16); + c->status[i].step_index = get_bits(&gb, 6); } - // similar to IMA adpcm - for (i = 0; i <= st; i++) - { - int delta = get_bits(&gb, c->nb_bits); - int step = step_table[c->status[i].step_index]; - long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 - int k = k0; - - do { - if (delta & k) - vpdiff += step; - step >>= 1; - k >>= 1; - } while(k); - vpdiff += step; - - if (delta & signmask) - c->status[i].predictor -= vpdiff; - else - c->status[i].predictor += vpdiff; - - c->status[i].step_index += table[delta & (~signmask)]; - - c->status[i].step_index = clip(c->status[i].step_index, 0, 88); - c->status[i].predictor = clip(c->status[i].predictor, -32768, 32767); - - *samples++ = c->status[i].predictor; + for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) { + int i; + + for (i = 0; i < avctx->channels; i++) { + // similar to IMA adpcm + int delta = get_bits(&gb, nb_bits); + int step = step_table[c->status[i].step_index]; + long vpdiff = 0; // vpdiff = (delta+0.5)*step/4 + int k = k0; + + do { + if (delta & k) + vpdiff += step; + step >>= 1; + k >>= 1; + } while(k); + vpdiff += step; + + if (delta & signmask) + c->status[i].predictor -= vpdiff; + else + c->status[i].predictor += vpdiff; + + c->status[i].step_index += table[delta & (~signmask)]; + + c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88); + c->status[i].predictor = av_clip_int16(c->status[i].predictor); + + *samples++ = c->status[i].predictor; + if (samples >= samples_end) { + av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); + return -1; + } + } } } - -// src += get_bits_count(&gb)*8; - src += size; - + src += buf_size; break; } case CODEC_ID_ADPCM_YAMAHA: @@ -1049,16 +1512,78 @@ static int adpcm_decode_frame(AVCodecContext *avctx, *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], src[0] & 0x0F); *samples++ = adpcm_yamaha_expand_nibble(&c->status[1], - (src[0] >> 4) & 0x0F); + src[0] >> 4 ); } else { *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], src[0] & 0x0F); *samples++ = adpcm_yamaha_expand_nibble(&c->status[0], - (src[0] >> 4) & 0x0F); + src[0] >> 4 ); } src++; } break; + case CODEC_ID_ADPCM_THP: + { + int table[2][16]; + unsigned int samplecnt; + int prev[2][2]; + int ch; + + if (buf_size < 80) { + av_log(avctx, AV_LOG_ERROR, "frame too small\n"); + return -1; + } + + src+=4; + samplecnt = bytestream_get_be32(&src); + + for (i = 0; i < 32; i++) + table[0][i] = (int16_t)bytestream_get_be16(&src); + + /* Initialize the previous sample. */ + for (i = 0; i < 4; i++) + prev[0][i] = (int16_t)bytestream_get_be16(&src); + + if (samplecnt >= (samples_end - samples) / (st + 1)) { + av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n"); + return -1; + } + + for (ch = 0; ch <= st; ch++) { + samples = (unsigned short *) data + ch; + + /* Read in every sample for this channel. */ + for (i = 0; i < samplecnt / 14; i++) { + int index = (*src >> 4) & 7; + unsigned int exp = 28 - (*src++ & 15); + int factor1 = table[ch][index * 2]; + int factor2 = table[ch][index * 2 + 1]; + + /* Decode 14 samples. */ + for (n = 0; n < 14; n++) { + int32_t sampledat; + if(n&1) sampledat= *src++ <<28; + else sampledat= (*src&0xF0)<<24; + + sampledat = ((prev[ch][0]*factor1 + + prev[ch][1]*factor2) >> 11) + (sampledat>>exp); + *samples = av_clip_int16(sampledat); + prev[ch][1] = prev[ch][0]; + prev[ch][0] = *samples++; + + /* In case of stereo, skip one sample, this sample + is for the other channel. */ + samples += st; + } + } + } + + /* In the previous loop, in case stereo is used, samples is + increased exactly one time too often. */ + samples -= st; + break; + } + default: return -1; } @@ -1069,7 +1594,7 @@ static int adpcm_decode_frame(AVCodecContext *avctx, #ifdef CONFIG_ENCODERS -#define ADPCM_ENCODER(id,name) \ +#define ADPCM_ENCODER(id,name,long_name_) \ AVCodec name ## _encoder = { \ #name, \ CODEC_TYPE_AUDIO, \ @@ -1079,13 +1604,14 @@ AVCodec name ## _encoder = { \ adpcm_encode_frame, \ adpcm_encode_close, \ NULL, \ + .long_name = long_name_, \ }; #else -#define ADPCM_ENCODER(id,name) +#define ADPCM_ENCODER(id,name,long_name_) #endif #ifdef CONFIG_DECODERS -#define ADPCM_DECODER(id,name) \ +#define ADPCM_DECODER(id,name,long_name_) \ AVCodec name ## _decoder = { \ #name, \ CODEC_TYPE_AUDIO, \ @@ -1095,27 +1621,37 @@ AVCodec name ## _decoder = { \ NULL, \ NULL, \ adpcm_decode_frame, \ + .long_name = long_name_, \ }; #else -#define ADPCM_DECODER(id,name) +#define ADPCM_DECODER(id,name,long_name_) #endif -#define ADPCM_CODEC(id, name) \ -ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name) - -ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt); -ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav); -ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3); -ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4); -ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws); -ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg); -ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms); -ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm); -ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa); -ADPCM_CODEC(CODEC_ID_ADPCM_ADX, adpcm_adx); -ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea); -ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct); -ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf); -ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha); - -#undef ADPCM_CODEC +#define ADPCM_CODEC(id,name,long_name_) \ + ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_) + +ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "4X Movie ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "Creative Technology ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "Electronic Arts ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "Electronic Arts Maxis CDROM XA ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "Electronic Arts R1 ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "Electronic Arts R2 ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "Electronic Arts R3 ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "Electronic Arts XAS ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "IMA AMV ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "IMA Duck DK3 ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "IMA Duck DK4 ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "IMA Electronic Arts EACS ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "IMA Electronic Arts SEAD ADPCM"); +ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "IMA QuickTime ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "IMA Loki SDL MJPEG ADPCM"); +ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "IMA Wav ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "IMA Westwood ADPCM"); +ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "Microsoft ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "Sound Blaster Pro 2-bit ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "Sound Blaster Pro 2.6-bit ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "Sound Blaster Pro 4-bit ADPCM"); +ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "Shockwave Flash ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "Nintendo Gamecube THP ADPCM"); +ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "CDROM XA ADPCM"); +ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "Yamaha ADPCM");