X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Faptx.c;h=3aeee1907c9df922b99acbb531d0d322090d5ae3;hb=f34521266ec5816eefa4c10db6098cb91e03c695;hp=8750d8421fb4e1dfa5cec8cee0bf3be7cfde66bd;hpb=22219a3ac46ac18f797c94e4619a34728556786c;p=ffmpeg diff --git a/libavcodec/aptx.c b/libavcodec/aptx.c index 8750d8421fb..3aeee1907c9 100644 --- a/libavcodec/aptx.c +++ b/libavcodec/aptx.c @@ -20,81 +20,7 @@ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#include "libavutil/intreadwrite.h" -#include "avcodec.h" -#include "internal.h" -#include "mathops.h" -#include "audio_frame_queue.h" - - -enum channels { - LEFT, - RIGHT, - NB_CHANNELS -}; - -enum subbands { - LF, // Low Frequency (0-5.5 kHz) - MLF, // Medium-Low Frequency (5.5-11kHz) - MHF, // Medium-High Frequency (11-16.5kHz) - HF, // High Frequency (16.5-22kHz) - NB_SUBBANDS -}; - -#define NB_FILTERS 2 -#define FILTER_TAPS 16 - -typedef struct { - int pos; - int32_t buffer[2*FILTER_TAPS]; -} FilterSignal; - -typedef struct { - FilterSignal outer_filter_signal[NB_FILTERS]; - FilterSignal inner_filter_signal[NB_FILTERS][NB_FILTERS]; -} QMFAnalysis; - -typedef struct { - int32_t quantized_sample; - int32_t quantized_sample_parity_change; - int32_t error; -} Quantize; - -typedef struct { - int32_t quantization_factor; - int32_t factor_select; - int32_t reconstructed_difference; -} InvertQuantize; - -typedef struct { - int32_t prev_sign[2]; - int32_t s_weight[2]; - int32_t d_weight[24]; - int32_t pos; - int32_t reconstructed_differences[48]; - int32_t previous_reconstructed_sample; - int32_t predicted_difference; - int32_t predicted_sample; -} Prediction; - -typedef struct { - int32_t codeword_history; - int32_t dither_parity; - int32_t dither[NB_SUBBANDS]; - - QMFAnalysis qmf; - Quantize quantize[NB_SUBBANDS]; - InvertQuantize invert_quantize[NB_SUBBANDS]; - Prediction prediction[NB_SUBBANDS]; -} Channel; - -typedef struct { - int hd; - int block_size; - int32_t sync_idx; - Channel channels[NB_CHANNELS]; - AudioFrameQueue afq; -} AptXContext; +#include "aptx.h" static const int32_t quantize_intervals_LF[65] = { @@ -383,17 +309,7 @@ static const int16_t hd_quantize_factor_select_offset_HF[17] = { 70, 90, 115, 147, 192, 264, 398, 521, 521, }; -typedef const struct { - const int32_t *quantize_intervals; - const int32_t *invert_quantize_dither_factors; - const int32_t *quantize_dither_factors; - const int16_t *quantize_factor_select_offset; - int tables_size; - int32_t factor_max; - int32_t prediction_order; -} ConstTables; - -static ConstTables tables[2][NB_SUBBANDS] = { +ConstTables ff_aptx_quant_tables[2][NB_SUBBANDS] = { { [LF] = { quantize_intervals_LF, invert_quantize_dither_factors_LF, @@ -456,34 +372,16 @@ static const int16_t quantization_factors[32] = { }; -/* Rounded right shift with optionnal clipping */ -#define RSHIFT_SIZE(size) \ -av_always_inline \ -static int##size##_t rshift##size(int##size##_t value, int shift) \ -{ \ - int##size##_t rounding = (int##size##_t)1 << (shift - 1); \ - int##size##_t mask = ((int##size##_t)1 << (shift + 1)) - 1; \ - return ((value + rounding) >> shift) - ((value & mask) == rounding); \ -} \ -av_always_inline \ -static int##size##_t rshift##size##_clip24(int##size##_t value, int shift) \ -{ \ - return av_clip_intp2(rshift##size(value, shift), 23); \ -} -RSHIFT_SIZE(32) -RSHIFT_SIZE(64) - - av_always_inline static void aptx_update_codeword_history(Channel *channel) { int32_t cw = ((channel->quantize[0].quantized_sample & 3) << 0) + ((channel->quantize[1].quantized_sample & 2) << 1) + ((channel->quantize[2].quantized_sample & 1) << 3); - channel->codeword_history = (cw << 8) + (channel->codeword_history << 4); + channel->codeword_history = (cw << 8) + ((unsigned)channel->codeword_history << 4); } -static void aptx_generate_dither(Channel *channel) +void ff_aptx_generate_dither(Channel *channel) { int subband; int64_t m; @@ -492,262 +390,12 @@ static void aptx_generate_dither(Channel *channel) aptx_update_codeword_history(channel); m = (int64_t)5184443 * (channel->codeword_history >> 7); - d = (m << 2) + (m >> 22); + d = (m * 4) + (m >> 22); for (subband = 0; subband < NB_SUBBANDS; subband++) - channel->dither[subband] = d << (23 - 5*subband); + channel->dither[subband] = (unsigned)d << (23 - 5*subband); channel->dither_parity = (d >> 25) & 1; } -/* - * Convolution filter coefficients for the outer QMF of the QMF tree. - * The 2 sets are a mirror of each other. - */ -static const int32_t aptx_qmf_outer_coeffs[NB_FILTERS][FILTER_TAPS] = { - { - 730, -413, -9611, 43626, -121026, 269973, -585547, 2801966, - 697128, -160481, 27611, 8478, -10043, 3511, 688, -897, - }, - { - -897, 688, 3511, -10043, 8478, 27611, -160481, 697128, - 2801966, -585547, 269973, -121026, 43626, -9611, -413, 730, - }, -}; - -/* - * Convolution filter coefficients for the inner QMF of the QMF tree. - * The 2 sets are a mirror of each other. - */ -static const int32_t aptx_qmf_inner_coeffs[NB_FILTERS][FILTER_TAPS] = { - { - 1033, -584, -13592, 61697, -171156, 381799, -828088, 3962579, - 985888, -226954, 39048, 11990, -14203, 4966, 973, -1268, - }, - { - -1268, 973, 4966, -14203, 11990, 39048, -226954, 985888, - 3962579, -828088, 381799, -171156, 61697, -13592, -584, 1033, - }, -}; - -/* - * Push one sample into a circular signal buffer. - */ -av_always_inline -static void aptx_qmf_filter_signal_push(FilterSignal *signal, int32_t sample) -{ - signal->buffer[signal->pos ] = sample; - signal->buffer[signal->pos+FILTER_TAPS] = sample; - signal->pos = (signal->pos + 1) & (FILTER_TAPS - 1); -} - -/* - * Compute the convolution of the signal with the coefficients, and reduce - * to 24 bits by applying the specified right shifting. - */ -av_always_inline -static int32_t aptx_qmf_convolution(FilterSignal *signal, - const int32_t coeffs[FILTER_TAPS], - int shift) -{ - int32_t *sig = &signal->buffer[signal->pos]; - int64_t e = 0; - int i; - - for (i = 0; i < FILTER_TAPS; i++) - e += MUL64(sig[i], coeffs[i]); - - return rshift64_clip24(e, shift); -} - -/* - * Half-band QMF analysis filter realized with a polyphase FIR filter. - * Split into 2 subbands and downsample by 2. - * So for each pair of samples that goes in, one sample goes out, - * split into 2 separate subbands. - */ -av_always_inline -static void aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS], - const int32_t coeffs[NB_FILTERS][FILTER_TAPS], - int shift, - int32_t samples[NB_FILTERS], - int32_t *low_subband_output, - int32_t *high_subband_output) -{ - int32_t subbands[NB_FILTERS]; - int i; - - for (i = 0; i < NB_FILTERS; i++) { - aptx_qmf_filter_signal_push(&signal[i], samples[NB_FILTERS-1-i]); - subbands[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift); - } - - *low_subband_output = av_clip_intp2(subbands[0] + subbands[1], 23); - *high_subband_output = av_clip_intp2(subbands[0] - subbands[1], 23); -} - -/* - * Two stage QMF analysis tree. - * Split 4 input samples into 4 subbands and downsample by 4. - * So for each group of 4 samples that goes in, one sample goes out, - * split into 4 separate subbands. - */ -static void aptx_qmf_tree_analysis(QMFAnalysis *qmf, - int32_t samples[4], - int32_t subband_samples[4]) -{ - int32_t intermediate_samples[4]; - int i; - - /* Split 4 input samples into 2 intermediate subbands downsampled to 2 samples */ - for (i = 0; i < 2; i++) - aptx_qmf_polyphase_analysis(qmf->outer_filter_signal, - aptx_qmf_outer_coeffs, 23, - &samples[2*i], - &intermediate_samples[0+i], - &intermediate_samples[2+i]); - - /* Split 2 intermediate subband samples into 4 final subbands downsampled to 1 sample */ - for (i = 0; i < 2; i++) - aptx_qmf_polyphase_analysis(qmf->inner_filter_signal[i], - aptx_qmf_inner_coeffs, 23, - &intermediate_samples[2*i], - &subband_samples[2*i+0], - &subband_samples[2*i+1]); -} - -/* - * Half-band QMF synthesis filter realized with a polyphase FIR filter. - * Join 2 subbands and upsample by 2. - * So for each 2 subbands sample that goes in, a pair of samples goes out. - */ -av_always_inline -static void aptx_qmf_polyphase_synthesis(FilterSignal signal[NB_FILTERS], - const int32_t coeffs[NB_FILTERS][FILTER_TAPS], - int shift, - int32_t low_subband_input, - int32_t high_subband_input, - int32_t samples[NB_FILTERS]) -{ - int32_t subbands[NB_FILTERS]; - int i; - - subbands[0] = low_subband_input + high_subband_input; - subbands[1] = low_subband_input - high_subband_input; - - for (i = 0; i < NB_FILTERS; i++) { - aptx_qmf_filter_signal_push(&signal[i], subbands[1-i]); - samples[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift); - } -} - -/* - * Two stage QMF synthesis tree. - * Join 4 subbands and upsample by 4. - * So for each 4 subbands sample that goes in, a group of 4 samples goes out. - */ -static void aptx_qmf_tree_synthesis(QMFAnalysis *qmf, - int32_t subband_samples[4], - int32_t samples[4]) -{ - int32_t intermediate_samples[4]; - int i; - - /* Join 4 subbands into 2 intermediate subbands upsampled to 2 samples. */ - for (i = 0; i < 2; i++) - aptx_qmf_polyphase_synthesis(qmf->inner_filter_signal[i], - aptx_qmf_inner_coeffs, 22, - subband_samples[2*i+0], - subband_samples[2*i+1], - &intermediate_samples[2*i]); - - /* Join 2 samples from intermediate subbands upsampled to 4 samples. */ - for (i = 0; i < 2; i++) - aptx_qmf_polyphase_synthesis(qmf->outer_filter_signal, - aptx_qmf_outer_coeffs, 21, - intermediate_samples[0+i], - intermediate_samples[2+i], - &samples[2*i]); -} - - -av_always_inline -static int32_t aptx_bin_search(int32_t value, int32_t factor, - const int32_t *intervals, int32_t nb_intervals) -{ - int32_t idx = 0; - int i; - - for (i = nb_intervals >> 1; i > 0; i >>= 1) - if (MUL64(factor, intervals[idx + i]) <= ((int64_t)value << 24)) - idx += i; - - return idx; -} - -static void aptx_quantize_difference(Quantize *quantize, - int32_t sample_difference, - int32_t dither, - int32_t quantization_factor, - ConstTables *tables) -{ - const int32_t *intervals = tables->quantize_intervals; - int32_t quantized_sample, dithered_sample, parity_change; - int32_t d, mean, interval, inv, sample_difference_abs; - int64_t error; - - sample_difference_abs = FFABS(sample_difference); - sample_difference_abs = FFMIN(sample_difference_abs, (1 << 23) - 1); - - quantized_sample = aptx_bin_search(sample_difference_abs >> 4, - quantization_factor, - intervals, tables->tables_size); - - d = rshift32_clip24(MULH(dither, dither), 7) - (1 << 23); - d = rshift64(MUL64(d, tables->quantize_dither_factors[quantized_sample]), 23); - - intervals += quantized_sample; - mean = (intervals[1] + intervals[0]) / 2; - interval = (intervals[1] - intervals[0]) * (-(sample_difference < 0) | 1); - - dithered_sample = rshift64_clip24(MUL64(dither, interval) + ((int64_t)av_clip_intp2(mean + d, 23) << 32), 32); - error = ((int64_t)sample_difference_abs << 20) - MUL64(dithered_sample, quantization_factor); - quantize->error = FFABS(rshift64(error, 23)); - - parity_change = quantized_sample; - if (error < 0) - quantized_sample--; - else - parity_change--; - - inv = -(sample_difference < 0); - quantize->quantized_sample = quantized_sample ^ inv; - quantize->quantized_sample_parity_change = parity_change ^ inv; -} - -static void aptx_encode_channel(Channel *channel, int32_t samples[4], int hd) -{ - int32_t subband_samples[4]; - int subband; - aptx_qmf_tree_analysis(&channel->qmf, samples, subband_samples); - aptx_generate_dither(channel); - for (subband = 0; subband < NB_SUBBANDS; subband++) { - int32_t diff = av_clip_intp2(subband_samples[subband] - channel->prediction[subband].predicted_sample, 23); - aptx_quantize_difference(&channel->quantize[subband], diff, - channel->dither[subband], - channel->invert_quantize[subband].quantization_factor, - &tables[hd][subband]); - } -} - -static void aptx_decode_channel(Channel *channel, int32_t samples[4]) -{ - int32_t subband_samples[4]; - int subband; - for (subband = 0; subband < NB_SUBBANDS; subband++) - subband_samples[subband] = channel->prediction[subband].previous_reconstructed_sample; - aptx_qmf_tree_synthesis(&channel->qmf, subband_samples, samples); -} - - static void aptx_invert_quantization(InvertQuantize *invert_quantize, int32_t quantized_sample, int32_t dither, ConstTables *tables) @@ -759,12 +407,12 @@ static void aptx_invert_quantization(InvertQuantize *invert_quantize, if (quantized_sample < 0) qr = -qr; - qr = rshift64_clip24(((int64_t)qr<<32) + MUL64(dither, tables->invert_quantize_dither_factors[idx]), 32); + qr = rshift64_clip24((qr * (1LL<<32)) + MUL64(dither, tables->invert_quantize_dither_factors[idx]), 32); invert_quantize->reconstructed_difference = MUL64(invert_quantize->quantization_factor, qr) >> 19; /* update factor_select */ factor_select = 32620 * invert_quantize->factor_select; - factor_select = rshift32(factor_select + (tables->quantize_factor_select_offset[idx] << 15), 15); + factor_select = rshift32(factor_select + (tables->quantize_factor_select_offset[idx] * (1 << 15)), 15); invert_quantize->factor_select = av_clip(factor_select, 0, tables->factor_max); /* update quantization factor */ @@ -801,7 +449,7 @@ static void aptx_prediction_filtering(Prediction *prediction, prediction->previous_reconstructed_sample = reconstructed_sample; reconstructed_differences = aptx_reconstructed_differences_update(prediction, reconstructed_difference, order); - srd0 = FFDIFFSIGN(reconstructed_difference, 0) << 23; + srd0 = FFDIFFSIGN(reconstructed_difference, 0) * (1 << 23); for (i = 0; i < order; i++) { int32_t srd = FF_SIGNBIT(reconstructed_differences[-i-1]) | 1; prediction->d_weight[i] -= rshift32(prediction->d_weight[i] - srd*srd0, 8); @@ -830,7 +478,7 @@ static void aptx_process_subband(InvertQuantize *invert_quantize, range = 0x100000; sw1 = rshift32(-same_sign[1] * prediction->s_weight[1], 1); - sw1 = (av_clip(sw1, -range, range) & ~0xF) << 4; + sw1 = (av_clip(sw1, -range, range) & ~0xF) * 16; range = 0x300000; weight[0] = 254 * prediction->s_weight[0] + 0x800000*same_sign[0] + sw1; @@ -845,7 +493,7 @@ static void aptx_process_subband(InvertQuantize *invert_quantize, tables->prediction_order); } -static void aptx_invert_quantize_and_prediction(Channel *channel, int hd) +void ff_aptx_invert_quantize_and_prediction(Channel *channel, int hd) { int subband; for (subband = 0; subband < NB_SUBBANDS; subband++) @@ -853,142 +501,17 @@ static void aptx_invert_quantize_and_prediction(Channel *channel, int hd) &channel->prediction[subband], channel->quantize[subband].quantized_sample, channel->dither[subband], - &tables[hd][subband]); -} - -static int32_t aptx_quantized_parity(Channel *channel) -{ - int32_t parity = channel->dither_parity; - int subband; - - for (subband = 0; subband < NB_SUBBANDS; subband++) - parity ^= channel->quantize[subband].quantized_sample; - - return parity & 1; -} - -/* For each sample, ensure that the parity of all subbands of all channels - * is 0 except once every 8 samples where the parity is forced to 1. */ -static int aptx_check_parity(Channel channels[NB_CHANNELS], int32_t *idx) -{ - int32_t parity = aptx_quantized_parity(&channels[LEFT]) - ^ aptx_quantized_parity(&channels[RIGHT]); - - int eighth = *idx == 7; - *idx = (*idx + 1) & 7; - - return parity ^ eighth; + &ff_aptx_quant_tables[hd][subband]); } -static void aptx_insert_sync(Channel channels[NB_CHANNELS], int32_t *idx) -{ - if (aptx_check_parity(channels, idx)) { - int i; - Channel *c; - static const int map[] = { 1, 2, 0, 3 }; - Quantize *min = &channels[NB_CHANNELS-1].quantize[map[0]]; - for (c = &channels[NB_CHANNELS-1]; c >= channels; c--) - for (i = 0; i < NB_SUBBANDS; i++) - if (c->quantize[map[i]].error < min->error) - min = &c->quantize[map[i]]; - - /* Forcing the desired parity is done by offsetting by 1 the quantized - * sample from the subband featuring the smallest quantization error. */ - min->quantized_sample = min->quantized_sample_parity_change; - } -} - -static uint16_t aptx_pack_codeword(Channel *channel) -{ - int32_t parity = aptx_quantized_parity(channel); - return (((channel->quantize[3].quantized_sample & 0x06) | parity) << 13) - | (((channel->quantize[2].quantized_sample & 0x03) ) << 11) - | (((channel->quantize[1].quantized_sample & 0x0F) ) << 7) - | (((channel->quantize[0].quantized_sample & 0x7F) ) << 0); -} - -static uint32_t aptxhd_pack_codeword(Channel *channel) -{ - int32_t parity = aptx_quantized_parity(channel); - return (((channel->quantize[3].quantized_sample & 0x01E) | parity) << 19) - | (((channel->quantize[2].quantized_sample & 0x00F) ) << 15) - | (((channel->quantize[1].quantized_sample & 0x03F) ) << 9) - | (((channel->quantize[0].quantized_sample & 0x1FF) ) << 0); -} - -static void aptx_unpack_codeword(Channel *channel, uint16_t codeword) -{ - channel->quantize[0].quantized_sample = sign_extend(codeword >> 0, 7); - channel->quantize[1].quantized_sample = sign_extend(codeword >> 7, 4); - channel->quantize[2].quantized_sample = sign_extend(codeword >> 11, 2); - channel->quantize[3].quantized_sample = sign_extend(codeword >> 13, 3); - channel->quantize[3].quantized_sample = (channel->quantize[3].quantized_sample & ~1) - | aptx_quantized_parity(channel); -} - -static void aptxhd_unpack_codeword(Channel *channel, uint32_t codeword) -{ - channel->quantize[0].quantized_sample = sign_extend(codeword >> 0, 9); - channel->quantize[1].quantized_sample = sign_extend(codeword >> 9, 6); - channel->quantize[2].quantized_sample = sign_extend(codeword >> 15, 4); - channel->quantize[3].quantized_sample = sign_extend(codeword >> 19, 5); - channel->quantize[3].quantized_sample = (channel->quantize[3].quantized_sample & ~1) - | aptx_quantized_parity(channel); -} - -static void aptx_encode_samples(AptXContext *ctx, - int32_t samples[NB_CHANNELS][4], - uint8_t *output) -{ - int channel; - for (channel = 0; channel < NB_CHANNELS; channel++) - aptx_encode_channel(&ctx->channels[channel], samples[channel], ctx->hd); - - aptx_insert_sync(ctx->channels, &ctx->sync_idx); - - for (channel = 0; channel < NB_CHANNELS; channel++) { - aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd); - if (ctx->hd) - AV_WB24(output + 3*channel, - aptxhd_pack_codeword(&ctx->channels[channel])); - else - AV_WB16(output + 2*channel, - aptx_pack_codeword(&ctx->channels[channel])); - } -} - -static int aptx_decode_samples(AptXContext *ctx, - const uint8_t *input, - int32_t samples[NB_CHANNELS][4]) -{ - int channel, ret; - - for (channel = 0; channel < NB_CHANNELS; channel++) { - aptx_generate_dither(&ctx->channels[channel]); - - if (ctx->hd) - aptxhd_unpack_codeword(&ctx->channels[channel], - AV_RB24(input + 3*channel)); - else - aptx_unpack_codeword(&ctx->channels[channel], - AV_RB16(input + 2*channel)); - aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd); - } - - ret = aptx_check_parity(ctx->channels, &ctx->sync_idx); - - for (channel = 0; channel < NB_CHANNELS; channel++) - aptx_decode_channel(&ctx->channels[channel], samples[channel]); - - return ret; -} - - -static av_cold int aptx_init(AVCodecContext *avctx) +av_cold int ff_aptx_init(AVCodecContext *avctx) { AptXContext *s = avctx->priv_data; int chan, subband; + if (avctx->channels != 2) + return AVERROR_INVALIDDATA; + s->hd = avctx->codec->id == AV_CODEC_ID_APTX_HD; s->block_size = s->hd ? 6 : 4; @@ -1013,150 +536,3 @@ static av_cold int aptx_init(AVCodecContext *avctx) ff_af_queue_init(avctx, &s->afq); return 0; } - -static int aptx_decode_frame(AVCodecContext *avctx, void *data, - int *got_frame_ptr, AVPacket *avpkt) -{ - AptXContext *s = avctx->priv_data; - AVFrame *frame = data; - int pos, opos, channel, sample, ret; - - if (avpkt->size < s->block_size) { - av_log(avctx, AV_LOG_ERROR, "Packet is too small\n"); - return AVERROR_INVALIDDATA; - } - - /* get output buffer */ - frame->channels = NB_CHANNELS; - frame->format = AV_SAMPLE_FMT_S32P; - frame->nb_samples = 4 * avpkt->size / s->block_size; - if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) - return ret; - - for (pos = 0, opos = 0; opos < frame->nb_samples; pos += s->block_size, opos += 4) { - int32_t samples[NB_CHANNELS][4]; - - if (aptx_decode_samples(s, &avpkt->data[pos], samples)) { - av_log(avctx, AV_LOG_ERROR, "Synchronization error\n"); - return AVERROR_INVALIDDATA; - } - - for (channel = 0; channel < NB_CHANNELS; channel++) - for (sample = 0; sample < 4; sample++) - AV_WN32A(&frame->data[channel][4*(opos+sample)], - samples[channel][sample] << 8); - } - - *got_frame_ptr = 1; - return s->block_size * frame->nb_samples / 4; -} - -static int aptx_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, - const AVFrame *frame, int *got_packet_ptr) -{ - AptXContext *s = avctx->priv_data; - int pos, ipos, channel, sample, output_size, ret; - - if ((ret = ff_af_queue_add(&s->afq, frame)) < 0) - return ret; - - output_size = s->block_size * frame->nb_samples/4; - if ((ret = ff_alloc_packet2(avctx, avpkt, output_size, 0)) < 0) - return ret; - - for (pos = 0, ipos = 0; pos < output_size; pos += s->block_size, ipos += 4) { - int32_t samples[NB_CHANNELS][4]; - - for (channel = 0; channel < NB_CHANNELS; channel++) - for (sample = 0; sample < 4; sample++) - samples[channel][sample] = (int32_t)AV_RN32A(&frame->data[channel][4*(ipos+sample)]) >> 8; - - aptx_encode_samples(s, samples, avpkt->data + pos); - } - - ff_af_queue_remove(&s->afq, frame->nb_samples, &avpkt->pts, &avpkt->duration); - *got_packet_ptr = 1; - return 0; -} - -static av_cold int aptx_close(AVCodecContext *avctx) -{ - AptXContext *s = avctx->priv_data; - ff_af_queue_close(&s->afq); - return 0; -} - - -#if CONFIG_APTX_DECODER -AVCodec ff_aptx_decoder = { - .name = "aptx", - .long_name = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"), - .type = AVMEDIA_TYPE_AUDIO, - .id = AV_CODEC_ID_APTX, - .priv_data_size = sizeof(AptXContext), - .init = aptx_init, - .decode = aptx_decode_frame, - .close = aptx_close, - .capabilities = AV_CODEC_CAP_DR1, - .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, - .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, - .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P, - AV_SAMPLE_FMT_NONE }, -}; -#endif - -#if CONFIG_APTX_HD_DECODER -AVCodec ff_aptx_hd_decoder = { - .name = "aptx_hd", - .long_name = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"), - .type = AVMEDIA_TYPE_AUDIO, - .id = AV_CODEC_ID_APTX_HD, - .priv_data_size = sizeof(AptXContext), - .init = aptx_init, - .decode = aptx_decode_frame, - .close = aptx_close, - .capabilities = AV_CODEC_CAP_DR1, - .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, - .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, - .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P, - AV_SAMPLE_FMT_NONE }, -}; -#endif - -#if CONFIG_APTX_ENCODER -AVCodec ff_aptx_encoder = { - .name = "aptx", - .long_name = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"), - .type = AVMEDIA_TYPE_AUDIO, - .id = AV_CODEC_ID_APTX, - .priv_data_size = sizeof(AptXContext), - .init = aptx_init, - .encode2 = aptx_encode_frame, - .close = aptx_close, - .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME, - .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, - .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, - .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P, - AV_SAMPLE_FMT_NONE }, - .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0}, -}; -#endif - -#if CONFIG_APTX_HD_ENCODER -AVCodec ff_aptx_hd_encoder = { - .name = "aptx_hd", - .long_name = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"), - .type = AVMEDIA_TYPE_AUDIO, - .id = AV_CODEC_ID_APTX_HD, - .priv_data_size = sizeof(AptXContext), - .init = aptx_init, - .encode2 = aptx_encode_frame, - .close = aptx_close, - .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME, - .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, - .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0}, - .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P, - AV_SAMPLE_FMT_NONE }, - .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0}, -}; -#endif