X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Fdsputil.h;h=4d783cf266fd0dd43972bbdaeabd31f3d7d5e41a;hb=dad09ff93f5df1ec987493f404d43cd16991e992;hp=58d5b49bd5bd4afef52a25766bbebc88b317b51c;hpb=53b572118ed9f88219e94f08ef7bff79882247ae;p=ffmpeg diff --git a/libavcodec/dsputil.h b/libavcodec/dsputil.h index 58d5b49bd5b..4d783cf266f 100644 --- a/libavcodec/dsputil.h +++ b/libavcodec/dsputil.h @@ -3,25 +3,25 @@ * Copyright (c) 2000, 2001, 2002 Fabrice Bellard * Copyright (c) 2002-2004 Michael Niedermayer * - * This file is part of FFmpeg. + * This file is part of Libav. * - * FFmpeg is free software; you can redistribute it and/or + * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * - * FFmpeg is distributed in the hope that it will be useful, + * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software + * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** - * @file libavcodec/dsputil.h + * @file * DSP utils. * note, many functions in here may use MMX which trashes the FPU state, it is * absolutely necessary to call emms_c() between dsp & float/double code @@ -37,13 +37,13 @@ //#define DEBUG /* dct code */ typedef short DCTELEM; -typedef int DWTELEM; -typedef short IDWTELEM; void fdct_ifast (DCTELEM *data); void fdct_ifast248 (DCTELEM *data); -void ff_jpeg_fdct_islow (DCTELEM *data); -void ff_fdct248_islow (DCTELEM *data); +void ff_jpeg_fdct_islow_8(DCTELEM *data); +void ff_jpeg_fdct_islow_10(DCTELEM *data); +void ff_fdct248_islow_8(DCTELEM *data); +void ff_fdct248_islow_10(DCTELEM *data); void j_rev_dct (DCTELEM *data); void j_rev_dct4 (DCTELEM *data); @@ -55,23 +55,24 @@ void ff_fdct_mmx(DCTELEM *block); void ff_fdct_mmx2(DCTELEM *block); void ff_fdct_sse2(DCTELEM *block); -void ff_h264_idct8_add_c(uint8_t *dst, DCTELEM *block, int stride); -void ff_h264_idct_add_c(uint8_t *dst, DCTELEM *block, int stride); -void ff_h264_idct8_dc_add_c(uint8_t *dst, DCTELEM *block, int stride); -void ff_h264_idct_dc_add_c(uint8_t *dst, DCTELEM *block, int stride); -void ff_h264_lowres_idct_add_c(uint8_t *dst, int stride, DCTELEM *block); -void ff_h264_lowres_idct_put_c(uint8_t *dst, int stride, DCTELEM *block); -void ff_h264_idct_add16_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); -void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); -void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); -void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); - -void ff_vector_fmul_add_add_c(float *dst, const float *src0, const float *src1, - const float *src2, int src3, int blocksize, int step); -void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1, - const float *win, float add_bias, int len); -void ff_float_to_int16_c(int16_t *dst, const float *src, long len); -void ff_float_to_int16_interleave_c(int16_t *dst, const float **src, long len, int channels); +#define H264_IDCT(depth) \ +void ff_h264_idct8_add_ ## depth ## _c(uint8_t *dst, DCTELEM *block, int stride);\ +void ff_h264_idct_add_ ## depth ## _c(uint8_t *dst, DCTELEM *block, int stride);\ +void ff_h264_idct8_dc_add_ ## depth ## _c(uint8_t *dst, DCTELEM *block, int stride);\ +void ff_h264_idct_dc_add_ ## depth ## _c(uint8_t *dst, DCTELEM *block, int stride);\ +void ff_h264_idct_add16_ ## depth ## _c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);\ +void ff_h264_idct_add16intra_ ## depth ## _c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);\ +void ff_h264_idct8_add4_ ## depth ## _c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);\ +void ff_h264_idct_add8_ ## depth ## _c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]);\ +void ff_h264_luma_dc_dequant_idct_ ## depth ## _c(DCTELEM *output, DCTELEM *input, int qmul);\ +void ff_h264_chroma_dc_dequant_idct_ ## depth ## _c(DCTELEM *block, int qmul); + +H264_IDCT( 8) +H264_IDCT( 9) +H264_IDCT(10) + +void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qp); +void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc); /* encoding scans */ extern const uint8_t ff_alternate_horizontal_scan[64]; @@ -86,20 +87,40 @@ extern const uint8_t ff_zigzag248_direct[64]; extern uint32_t ff_squareTbl[512]; extern uint8_t ff_cropTbl[256 + 2 * MAX_NEG_CROP]; +#define PUTAVG_PIXELS(depth)\ +void ff_put_pixels8x8_ ## depth ## _c(uint8_t *dst, uint8_t *src, int stride);\ +void ff_avg_pixels8x8_ ## depth ## _c(uint8_t *dst, uint8_t *src, int stride);\ +void ff_put_pixels16x16_ ## depth ## _c(uint8_t *dst, uint8_t *src, int stride);\ +void ff_avg_pixels16x16_ ## depth ## _c(uint8_t *dst, uint8_t *src, int stride); + +PUTAVG_PIXELS( 8) +PUTAVG_PIXELS( 9) +PUTAVG_PIXELS(10) + +#define ff_put_pixels8x8_c ff_put_pixels8x8_8_c +#define ff_avg_pixels8x8_c ff_avg_pixels8x8_8_c +#define ff_put_pixels16x16_c ff_put_pixels16x16_8_c +#define ff_avg_pixels16x16_c ff_avg_pixels16x16_8_c + /* VP3 DSP functions */ void ff_vp3_idct_c(DCTELEM *block/* align 16*/); void ff_vp3_idct_put_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/); void ff_vp3_idct_add_c(uint8_t *dest/*align 8*/, int line_size, DCTELEM *block/*align 16*/); +void ff_vp3_idct_dc_add_c(uint8_t *dest/*align 8*/, int line_size, const DCTELEM *block/*align 16*/); void ff_vp3_v_loop_filter_c(uint8_t *src, int stride, int *bounding_values); void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values); -/* VP6 DSP functions */ -void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride, - const int16_t *h_weights, const int16_t *v_weights); +/* EA functions */ +void ff_ea_idct_put_c(uint8_t *dest, int linesize, DCTELEM *block); + +/* RV40 functions */ +void ff_put_rv40_qpel16_mc33_c(uint8_t *dst, uint8_t *src, int stride); +void ff_avg_rv40_qpel16_mc33_c(uint8_t *dst, uint8_t *src, int stride); +void ff_put_rv40_qpel8_mc33_c(uint8_t *dst, uint8_t *src, int stride); +void ff_avg_rv40_qpel8_mc33_c(uint8_t *dst, uint8_t *src, int stride); /* 1/2^n downscaling functions from imgconvert.c */ -void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); void ff_shrink44(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); void ff_shrink88(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); @@ -110,7 +131,7 @@ void ff_gmc_c(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy, /* minimum alignment rules ;) If you notice errors in the align stuff, need more alignment for some ASM code for some CPU or need to use a function with less aligned data then send a mail -to the ffmpeg-devel mailing list, ... +to the libav-devel mailing list, ... !warning These alignments might not match reality, (missing attribute((align)) stuff somewhere possible). @@ -130,13 +151,13 @@ void clear_blocks_c(DCTELEM *blocks); /* add and put pixel (decoding) */ // blocksizes for op_pixels_func are 8x4,8x8 16x8 16x16 -//h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller then 4 +//h for op_pixels_func is limited to {width/2, width} but never larger than 16 and never smaller than 4 typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int h); typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h); typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride); typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y); -typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset); -typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset); + +typedef void (*op_fill_func)(uint8_t *block/*align width (8 or 16)*/, uint8_t value, int line_size, int h); #define DEF_OLD_QPEL(name)\ void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\ @@ -163,14 +184,10 @@ static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\ } /* motion estimation */ -// h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller then 2 +// h is limited to {width/2, width, 2*width} but never larger than 16 and never smaller than 2 // although currently h<4 is not used as functions with width <8 are neither used nor implemented typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/; - -// for snow slices -typedef struct slice_buffer_s slice_buffer; - /** * Scantable. */ @@ -180,20 +197,34 @@ typedef struct ScanTable{ uint8_t raster_end[64]; #if ARCH_PPC /** Used by dct_quantize_altivec to find last-non-zero */ - DECLARE_ALIGNED(16, uint8_t, inverse[64]); + DECLARE_ALIGNED(16, uint8_t, inverse)[64]; #endif } ScanTable; void ff_init_scantable(uint8_t *, ScanTable *st, const uint8_t *src_scantable); -void ff_emulated_edge_mc(uint8_t *buf, uint8_t *src, int linesize, - int block_w, int block_h, +#define EMULATED_EDGE(depth) \ +void ff_emulated_edge_mc_ ## depth (uint8_t *buf, const uint8_t *src, int linesize,\ + int block_w, int block_h,\ int src_x, int src_y, int w, int h); +EMULATED_EDGE(8) +EMULATED_EDGE(9) +EMULATED_EDGE(10) + +void ff_add_pixels_clamped_c(const DCTELEM *block, uint8_t *dest, int linesize); +void ff_put_pixels_clamped_c(const DCTELEM *block, uint8_t *dest, int linesize); +void ff_put_signed_pixels_clamped_c(const DCTELEM *block, uint8_t *dest, int linesize); + /** * DSPContext. */ typedef struct DSPContext { + /** + * Size of DCT coefficients. + */ + int dct_bits; + /* pixel ops : interface with DCT */ void (*get_pixels)(DCTELEM *block/*align 16*/, const uint8_t *pixels/*align 8*/, int line_size); void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride); @@ -203,6 +234,21 @@ typedef struct DSPContext { void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size); void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size); int (*sum_abs_dctelem)(DCTELEM *block/*align 16*/); + /** + * Motion estimation with emulated edge values. + * @param buf pointer to destination buffer (unaligned) + * @param src pointer to pixel source (unaligned) + * @param linesize width (in pixels) for src/buf + * @param block_w number of pixels (per row) to copy to buf + * @param block_h nummber of pixel rows to copy to buf + * @param src_x offset of src to start of row - this may be negative + * @param src_y offset of src to top of image - this may be negative + * @param w width of src in pixels + * @param h height of src in pixels + */ + void (*emulated_edge_mc)(uint8_t *buf, const uint8_t *src, int linesize, + int block_w, int block_h, + int src_x, int src_y, int w, int h); /** * translational global motion compensation. */ @@ -317,9 +363,6 @@ typedef struct DSPContext { */ h264_chroma_mc_func put_h264_chroma_pixels_tab[3]; h264_chroma_mc_func avg_h264_chroma_pixels_tab[3]; - /* This is really one func used in VC-1 decoding */ - h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3]; - h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3]; qpel_mc_func put_h264_qpel_pixels_tab[4][16]; qpel_mc_func avg_h264_qpel_pixels_tab[4][16]; @@ -327,18 +370,6 @@ typedef struct DSPContext { qpel_mc_func put_2tap_qpel_pixels_tab[4][16]; qpel_mc_func avg_2tap_qpel_pixels_tab[4][16]; - h264_weight_func weight_h264_pixels_tab[10]; - h264_biweight_func biweight_h264_pixels_tab[10]; - - /* AVS specific */ - qpel_mc_func put_cavs_qpel_pixels_tab[2][16]; - qpel_mc_func avg_cavs_qpel_pixels_tab[2][16]; - void (*cavs_filter_lv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); - void (*cavs_filter_lh)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); - void (*cavs_filter_cv)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); - void (*cavs_filter_ch)(uint8_t *pix, int stride, int alpha, int beta, int tc, int bs1, int bs2); - void (*cavs_idct8_add)(uint8_t *dst, DCTELEM *block, int stride); - me_cmp_func pix_abs[2][4]; /* huffyuv specific */ @@ -349,24 +380,14 @@ typedef struct DSPContext { * subtract huffyuv's variant of median prediction * note, this might read from src1[-1], src2[-1] */ - void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top); - void (*add_hfyu_median_prediction)(uint8_t *dst, uint8_t *top, uint8_t *diff, int w, int *left, int *left_top); + void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top); + void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top); + int (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left); + void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha); /* this might write to dst[w] */ void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp); void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w); - - void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0); - void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0); - /* v/h_loop_filter_luma_intra: align 16 */ - void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta); - void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta); - void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0); - void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0); - void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta); - void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta); - // h264_loop_filter_strength: simd only. the C version is inlined in h264.c - void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2], - int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field); + void (*bswap16_buf)(uint16_t *dst, const uint16_t *src, int len); void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale); void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale); @@ -376,26 +397,21 @@ typedef struct DSPContext { void (*x8_v_loop_filter)(uint8_t *src, int stride, int qscale); void (*x8_h_loop_filter)(uint8_t *src, int stride, int qscale); + void (*vp3_idct_dc_add)(uint8_t *dest/*align 8*/, int line_size, const DCTELEM *block/*align 16*/); void (*vp3_v_loop_filter)(uint8_t *src, int stride, int *bounding_values); void (*vp3_h_loop_filter)(uint8_t *src, int stride, int *bounding_values); - void (*vp6_filter_diag4)(uint8_t *dst, uint8_t *src, int stride, - const int16_t *h_weights,const int16_t *v_weights); - /* assume len is a multiple of 4, and arrays are 16-byte aligned */ void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize); void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len); - /* no alignment needed */ - void (*flac_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc); /* assume len is a multiple of 8, and arrays are 16-byte aligned */ - void (*vector_fmul)(float *dst, const float *src, int len); + void (*vector_fmul)(float *dst, const float *src0, const float *src1, int len); void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len); /* assume len is a multiple of 8, and src arrays are 16-byte aligned */ - void (*vector_fmul_add_add)(float *dst, const float *src0, const float *src1, const float *src2, int src3, int len, int step); + void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len); /* assume len is a multiple of 4, and arrays are 16-byte aligned */ - void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len); + void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, int len); /* assume len is a multiple of 8, and arrays are 16-byte aligned */ - void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len); void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */); /** * Multiply a vector of floats by a scalar float. Source and @@ -407,32 +423,6 @@ typedef struct DSPContext { */ void (*vector_fmul_scalar)(float *dst, const float *src, float mul, int len); - /** - * Multiply a vector of floats by concatenated short vectors of - * floats and by a scalar float. Source and destination vectors - * must overlap exactly or not at all. - * [0]: short vectors of length 2, 8-byte aligned - * [1]: short vectors of length 4, 16-byte aligned - * @param dst output vector, 16-byte aligned - * @param src input vector, 16-byte aligned - * @param sv array of pointers to short vectors - * @param mul scalar value - * @param len number of elements in src and dst, multiple of 4 - */ - void (*vector_fmul_sv_scalar[2])(float *dst, const float *src, - const float **sv, float mul, int len); - /** - * Multiply short vectors of floats by a scalar float, store - * concatenated result. - * [0]: short vectors of length 2, 8-byte aligned - * [1]: short vectors of length 4, 16-byte aligned - * @param dst output vector, 16-byte aligned - * @param sv array of pointers to short vectors - * @param mul scalar value - * @param len number of output elements, multiple of 4 - */ - void (*sv_fmul_scalar[2])(float *dst, const float **sv, - float mul, int len); /** * Calculate the scalar product of two vectors of floats. * @param v1 first vector, 16-byte aligned @@ -448,11 +438,6 @@ typedef struct DSPContext { */ void (*butterflies_float)(float *restrict v1, float *restrict v2, int len); - /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767] - * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */ - void (*float_to_int16)(int16_t *dst, const float *src, long len); - void (*float_to_int16_interleave)(int16_t *dst, const float **src, long len, int channels); - /* (I)DCT */ void (*fdct)(DCTELEM *block/* align 16*/); void (*fdct248)(DCTELEM *block/* align 16*/); @@ -499,28 +484,10 @@ typedef struct DSPContext { #define BASIS_SHIFT 16 #define RECON_SHIFT 6 - void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w); + void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w, int h, int sides); #define EDGE_WIDTH 16 - - /* h264 functions */ - /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them - NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them - The reason for above, is that no 2 out of one list may use a different permutation. - */ - void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride); - void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride); - void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride); - void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride); - void (*h264_dct)(DCTELEM block[4][4]); - void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); - void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); - void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); - void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); - - /* snow wavelet */ - void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width); - void (*horizontal_compose97i)(IDWTELEM *b, int width); - void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8); +#define EDGE_TOP 1 +#define EDGE_BOTTOM 2 void (*prefetch)(void *mem, int stride, int h); @@ -532,61 +499,56 @@ typedef struct DSPContext { unsigned int filter_shift, int32_t mask, int blocksize, int32_t *sample_buffer); - /* vc1 functions */ - void (*vc1_inv_trans_8x8)(DCTELEM *b); - void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block); - void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block); - void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block); - void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block); - void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block); - void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block); - void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block); - void (*vc1_v_overlap)(uint8_t* src, int stride); - void (*vc1_h_overlap)(uint8_t* src, int stride); - void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq); - void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq); - void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq); - void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq); - void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq); - void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq); - /* put 8x8 block with bicubic interpolation and quarterpel precision - * last argument is actually round value instead of height - */ - op_pixels_func put_vc1_mspel_pixels_tab[16]; - op_pixels_func avg_vc1_mspel_pixels_tab[16]; - /* intrax8 functions */ void (*x8_spatial_compensation[12])(uint8_t *src , uint8_t *dst, int linesize); void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize, int * range, int * sum, int edges); - /* ape functions */ /** - * Add contents of the second vector to the first one. + * Calculate scalar product of two vectors. * @param len length of vectors, should be multiple of 16 + * @param shift number of bits to discard from product */ - void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len); + int32_t (*scalarproduct_int16)(const int16_t *v1, const int16_t *v2/*align 16*/, int len, int shift); + /* ape functions */ /** - * Add contents of the second vector to the first one. + * Calculate scalar product of v1 and v2, + * and v1[i] += v3[i] * mul * @param len length of vectors, should be multiple of 16 */ - void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len); + int32_t (*scalarproduct_and_madd_int16)(int16_t *v1/*align 16*/, const int16_t *v2, const int16_t *v3, int len, int mul); + /** - * Calculate scalar product of two vectors. - * @param len length of vectors, should be multiple of 16 - * @param shift number of bits to discard from product + * Apply symmetric window in 16-bit fixed-point. + * @param output destination array + * constraints: 16-byte aligned + * @param input source array + * constraints: 16-byte aligned + * @param window window array + * constraints: 16-byte aligned, at least len/2 elements + * @param len full window length + * constraints: multiple of ? greater than zero */ - int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift); + void (*apply_window_int16)(int16_t *output, const int16_t *input, + const int16_t *window, unsigned int len); - /* rv30 functions */ - qpel_mc_func put_rv30_tpel_pixels_tab[4][16]; - qpel_mc_func avg_rv30_tpel_pixels_tab[4][16]; + /** + * Clip each element in an array of int32_t to a given minimum and maximum value. + * @param dst destination array + * constraints: 16-byte aligned + * @param src source array + * constraints: 16-byte aligned + * @param min minimum value + * constraints: must in the the range [-(1<<24), 1<<24] + * @param max maximum value + * constraints: must in the the range [-(1<<24), 1<<24] + * @param len number of elements in the array + * constraints: multiple of 32 greater than zero + */ + void (*vector_clip_int32)(int32_t *dst, const int32_t *src, int32_t min, + int32_t max, unsigned int len); - /* rv40 functions */ - qpel_mc_func put_rv40_qpel_pixels_tab[4][16]; - qpel_mc_func avg_rv40_qpel_pixels_tab[4][16]; - h264_chroma_mc_func put_rv40_chroma_pixels_tab[3]; - h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3]; + op_fill_func fill_block_tab[2]; } DSPContext; void dsputil_static_init(void); @@ -603,6 +565,7 @@ void ff_block_permute(DCTELEM *block, uint8_t *permutation, const uint8_t *scant void ff_set_cmp(DSPContext* c, me_cmp_func *cmp, int type); #define BYTE_VEC32(c) ((c)*0x01010101UL) +#define BYTE_VEC64(c) ((c)*0x0001000100010001UL) static inline uint32_t rnd_avg32(uint32_t a, uint32_t b) { @@ -614,6 +577,16 @@ static inline uint32_t no_rnd_avg32(uint32_t a, uint32_t b) return (a & b) + (((a ^ b) & ~BYTE_VEC32(0x01)) >> 1); } +static inline uint64_t rnd_avg64(uint64_t a, uint64_t b) +{ + return (a | b) - (((a ^ b) & ~BYTE_VEC64(0x01)) >> 1); +} + +static inline uint64_t no_rnd_avg64(uint64_t a, uint64_t b) +{ + return (a & b) + (((a ^ b) & ~BYTE_VEC64(0x01)) >> 1); +} + static inline int get_penalty_factor(int lambda, int lambda2, int type){ switch(type&0xFF){ default: @@ -638,18 +611,6 @@ static inline int get_penalty_factor(int lambda, int lambda2, int type){ } } -/** - * Empty mmx state. - * this must be called between any dsp function and float/double code. - * for example sin(); dsp->idct_put(); emms_c(); cos() - */ -#define emms_c() - -/* should be defined by architectures supporting - one or more MultiMedia extension */ -int mm_support(void); -extern int mm_flags; - void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx); void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx); void dsputil_init_bfin(DSPContext* c, AVCodecContext *avctx); @@ -660,26 +621,12 @@ void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx); void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx); void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx); -#define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v) -#define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v) - -#if HAVE_MMX - -#undef emms_c - -static inline void emms(void) -{ - __asm__ volatile ("emms;":::"memory"); -} - +void ff_dsputil_init_dwt(DSPContext *c); +void ff_intrax8dsp_init(DSPContext* c, AVCodecContext *avctx); +void ff_mlp_init(DSPContext* c, AVCodecContext *avctx); +void ff_mlp_init_x86(DSPContext* c, AVCodecContext *avctx); -#define emms_c() \ -{\ - if (mm_flags & FF_MM_MMX)\ - emms();\ -} - -#elif ARCH_ARM +#if ARCH_ARM #if HAVE_NEON # define STRIDE_ALIGN 16 @@ -693,162 +640,31 @@ static inline void emms(void) #define STRIDE_ALIGN 16 -#else - -#define mm_flags 0 -#define mm_support() 0 - #endif #ifndef STRIDE_ALIGN # define STRIDE_ALIGN 8 #endif -/* PSNR */ -void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3], - int orig_linesize[3], int coded_linesize, - AVCodecContext *avctx); - -/* FFT computation */ - -/* NOTE: soon integer code will be added, so you must use the - FFTSample type */ -typedef float FFTSample; - -typedef struct FFTComplex { - FFTSample re, im; -} FFTComplex; - -typedef struct FFTContext { - int nbits; - int inverse; - uint16_t *revtab; - FFTComplex *exptab; - FFTComplex *exptab1; /* only used by SSE code */ - FFTComplex *tmp_buf; - int mdct_size; /* size of MDCT (i.e. number of input data * 2) */ - int mdct_bits; /* n = 2^nbits */ - /* pre/post rotation tables */ - FFTSample *tcos; - FFTSample *tsin; - void (*fft_permute)(struct FFTContext *s, FFTComplex *z); - void (*fft_calc)(struct FFTContext *s, FFTComplex *z); - void (*imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input); - void (*imdct_half)(struct FFTContext *s, FFTSample *output, const FFTSample *input); - void (*mdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input); - int split_radix; - int permutation; -#define FF_MDCT_PERM_NONE 0 -#define FF_MDCT_PERM_INTERLEAVE 1 -} FFTContext; - -extern FFTSample* const ff_cos_tabs[13]; +#define LOCAL_ALIGNED_A(a, t, v, s, o, ...) \ + uint8_t la_##v[sizeof(t s o) + (a)]; \ + t (*v) o = (void *)FFALIGN((uintptr_t)la_##v, a) -/** - * Sets up a complex FFT. - * @param nbits log2 of the length of the input array - * @param inverse if 0 perform the forward transform, if 1 perform the inverse - */ -int ff_fft_init(FFTContext *s, int nbits, int inverse); -void ff_fft_permute_c(FFTContext *s, FFTComplex *z); -void ff_fft_calc_c(FFTContext *s, FFTComplex *z); +#define LOCAL_ALIGNED_D(a, t, v, s, o, ...) DECLARE_ALIGNED(a, t, v) s o -void ff_fft_init_altivec(FFTContext *s); -void ff_fft_init_mmx(FFTContext *s); -void ff_fft_init_arm(FFTContext *s); +#define LOCAL_ALIGNED(a, t, v, ...) LOCAL_ALIGNED_A(a, t, v, __VA_ARGS__,,) -/** - * Do the permutation needed BEFORE calling ff_fft_calc(). - */ -static inline void ff_fft_permute(FFTContext *s, FFTComplex *z) -{ - s->fft_permute(s, z); -} -/** - * Do a complex FFT with the parameters defined in ff_fft_init(). The - * input data must be permuted before. No 1.0/sqrt(n) normalization is done. - */ -static inline void ff_fft_calc(FFTContext *s, FFTComplex *z) -{ - s->fft_calc(s, z); -} -void ff_fft_end(FFTContext *s); - -/* MDCT computation */ - -static inline void ff_imdct_calc(FFTContext *s, FFTSample *output, const FFTSample *input) -{ - s->imdct_calc(s, output, input); -} -static inline void ff_imdct_half(FFTContext *s, FFTSample *output, const FFTSample *input) -{ - s->imdct_half(s, output, input); -} - -static inline void ff_mdct_calc(FFTContext *s, FFTSample *output, - const FFTSample *input) -{ - s->mdct_calc(s, output, input); -} - -/** - * Generate a Kaiser-Bessel Derived Window. - * @param window pointer to half window - * @param alpha determines window shape - * @param n size of half window - */ -void ff_kbd_window_init(float *window, float alpha, int n); - -/** - * Generate a sine window. - * @param window pointer to half window - * @param n size of half window - */ -void ff_sine_window_init(float *window, int n); -extern float ff_sine_32 [ 32]; -extern float ff_sine_64 [ 64]; -extern float ff_sine_128 [ 128]; -extern float ff_sine_256 [ 256]; -extern float ff_sine_512 [ 512]; -extern float ff_sine_1024[1024]; -extern float ff_sine_2048[2048]; -extern float ff_sine_4096[4096]; -extern float * const ff_sine_windows[13]; - -int ff_mdct_init(FFTContext *s, int nbits, int inverse, double scale); -void ff_imdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input); -void ff_imdct_half_c(FFTContext *s, FFTSample *output, const FFTSample *input); -void ff_mdct_calc_c(FFTContext *s, FFTSample *output, const FFTSample *input); -void ff_mdct_end(FFTContext *s); - -/* Real Discrete Fourier Transform */ - -enum RDFTransformType { - RDFT, - IRDFT, - RIDFT, - IRIDFT, -}; - -typedef struct { - int nbits; - int inverse; - int sign_convention; - - /* pre/post rotation tables */ - FFTSample *tcos; - FFTSample *tsin; - FFTContext fft; -} RDFTContext; +#if HAVE_LOCAL_ALIGNED_8 +# define LOCAL_ALIGNED_8(t, v, ...) LOCAL_ALIGNED_D(8, t, v, __VA_ARGS__,,) +#else +# define LOCAL_ALIGNED_8(t, v, ...) LOCAL_ALIGNED(8, t, v, __VA_ARGS__) +#endif -/** - * Sets up a real FFT. - * @param nbits log2 of the length of the input array - * @param trans the type of transform - */ -int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans); -void ff_rdft_calc(RDFTContext *s, FFTSample *data); -void ff_rdft_end(RDFTContext *s); +#if HAVE_LOCAL_ALIGNED_16 +# define LOCAL_ALIGNED_16(t, v, ...) LOCAL_ALIGNED_D(16, t, v, __VA_ARGS__,,) +#else +# define LOCAL_ALIGNED_16(t, v, ...) LOCAL_ALIGNED(16, t, v, __VA_ARGS__) +#endif #define WRAPPER8_16(name8, name16)\ static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\