X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Fdsputil.h;h=d1816e66ba000be372c14240f3851418b4d2a2bf;hb=6c71d2c1357018f7f68a8bde773306298ce72057;hp=7ef6e6a73e57505ba3d3b796adbbf803e3d0015f;hpb=6cecd63005b29a1dc3a5104e6ac85fd112705122;p=ffmpeg diff --git a/libavcodec/dsputil.h b/libavcodec/dsputil.h index 7ef6e6a73e5..d1816e66ba0 100644 --- a/libavcodec/dsputil.h +++ b/libavcodec/dsputil.h @@ -37,8 +37,6 @@ //#define DEBUG /* dct code */ typedef short DCTELEM; -typedef int DWTELEM; -typedef short IDWTELEM; void fdct_ifast (DCTELEM *data); void fdct_ifast248 (DCTELEM *data); @@ -66,8 +64,6 @@ void ff_h264_idct_add16intra_c(uint8_t *dst, const int *blockoffset, DCTELEM *bl void ff_h264_idct8_add4_c(uint8_t *dst, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); void ff_h264_idct_add8_c(uint8_t **dest, const int *blockoffset, DCTELEM *block, int stride, const uint8_t nnzc[6*8]); -void ff_vector_fmul_add_add_c(float *dst, const float *src0, const float *src1, - const float *src2, int src3, int blocksize, int step); void ff_vector_fmul_window_c(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len); void ff_float_to_int16_c(int16_t *dst, const float *src, long len); @@ -98,6 +94,24 @@ void ff_vp3_h_loop_filter_c(uint8_t *src, int stride, int *bounding_values); void ff_vp6_filter_diag4_c(uint8_t *dst, uint8_t *src, int stride, const int16_t *h_weights, const int16_t *v_weights); +/* Bink functions */ +void ff_bink_idct_c (DCTELEM *block); +void ff_bink_idct_add_c(uint8_t *dest, int linesize, DCTELEM *block); +void ff_bink_idct_put_c(uint8_t *dest, int linesize, DCTELEM *block); + +/* CAVS functions */ +void ff_put_cavs_qpel8_mc00_c(uint8_t *dst, uint8_t *src, int stride); +void ff_avg_cavs_qpel8_mc00_c(uint8_t *dst, uint8_t *src, int stride); +void ff_put_cavs_qpel16_mc00_c(uint8_t *dst, uint8_t *src, int stride); +void ff_avg_cavs_qpel16_mc00_c(uint8_t *dst, uint8_t *src, int stride); + +/* VC1 functions */ +void ff_put_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src, int stride, int rnd); +void ff_avg_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src, int stride, int rnd); + +/* EA functions */ +void ff_ea_idct_put_c(uint8_t *dest, int linesize, DCTELEM *block); + /* 1/2^n downscaling functions from imgconvert.c */ void ff_img_copy_plane(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); void ff_shrink22(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); @@ -135,8 +149,8 @@ typedef void (*op_pixels_func)(uint8_t *block/*align width (8 or 16)*/, const ui typedef void (*tpel_mc_func)(uint8_t *block/*align width (8 or 16)*/, const uint8_t *pixels/*align 1*/, int line_size, int w, int h); typedef void (*qpel_mc_func)(uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride); typedef void (*h264_chroma_mc_func)(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int srcStride, int h, int x, int y); -typedef void (*h264_weight_func)(uint8_t *block, int stride, int log2_denom, int weight, int offset); -typedef void (*h264_biweight_func)(uint8_t *dst, uint8_t *src, int stride, int log2_denom, int weightd, int weights, int offset); + +typedef void (*op_fill_func)(uint8_t *block/*align width (8 or 16)*/, uint8_t value, int line_size, int h); #define DEF_OLD_QPEL(name)\ void ff_put_ ## name (uint8_t *dst/*align width (8 or 16)*/, uint8_t *src/*align 1*/, int stride);\ @@ -167,10 +181,6 @@ static void a(uint8_t *block, const uint8_t *pixels, int line_size, int h){\ // although currently h<4 is not used as functions with width <8 are neither used nor implemented typedef int (*me_cmp_func)(void /*MpegEncContext*/ *s, uint8_t *blk1/*align width (8 or 16)*/, uint8_t *blk2/*align 1*/, int line_size, int h)/* __attribute__ ((const))*/; - -// for snow slices -typedef struct slice_buffer_s slice_buffer; - /** * Scantable. */ @@ -180,7 +190,7 @@ typedef struct ScanTable{ uint8_t raster_end[64]; #if ARCH_PPC /** Used by dct_quantize_altivec to find last-non-zero */ - DECLARE_ALIGNED(16, uint8_t, inverse[64]); + DECLARE_ALIGNED(16, uint8_t, inverse)[64]; #endif } ScanTable; @@ -199,6 +209,7 @@ typedef struct DSPContext { void (*diff_pixels)(DCTELEM *block/*align 16*/, const uint8_t *s1/*align 8*/, const uint8_t *s2/*align 8*/, int stride); void (*put_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); void (*put_signed_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); + void (*put_pixels_nonclamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); void (*add_pixels_clamped)(const DCTELEM *block/*align 16*/, uint8_t *pixels/*align 8*/, int line_size); void (*add_pixels8)(uint8_t *pixels, DCTELEM *block, int line_size); void (*add_pixels4)(uint8_t *pixels, DCTELEM *block, int line_size); @@ -316,9 +327,10 @@ typedef struct DSPContext { * h264 Chroma MC */ h264_chroma_mc_func put_h264_chroma_pixels_tab[3]; - /* This is really one func used in VC-1 decoding */ - h264_chroma_mc_func put_no_rnd_h264_chroma_pixels_tab[3]; h264_chroma_mc_func avg_h264_chroma_pixels_tab[3]; + /* This is really one func used in VC-1 decoding */ + h264_chroma_mc_func put_no_rnd_vc1_chroma_pixels_tab[3]; + h264_chroma_mc_func avg_no_rnd_vc1_chroma_pixels_tab[3]; qpel_mc_func put_h264_qpel_pixels_tab[4][16]; qpel_mc_func avg_h264_qpel_pixels_tab[4][16]; @@ -326,9 +338,6 @@ typedef struct DSPContext { qpel_mc_func put_2tap_qpel_pixels_tab[4][16]; qpel_mc_func avg_2tap_qpel_pixels_tab[4][16]; - h264_weight_func weight_h264_pixels_tab[10]; - h264_biweight_func biweight_h264_pixels_tab[10]; - /* AVS specific */ qpel_mc_func put_cavs_qpel_pixels_tab[2][16]; qpel_mc_func avg_cavs_qpel_pixels_tab[2][16]; @@ -348,25 +357,14 @@ typedef struct DSPContext { * subtract huffyuv's variant of median prediction * note, this might read from src1[-1], src2[-1] */ - void (*sub_hfyu_median_prediction)(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top); - void (*add_hfyu_median_prediction)(uint8_t *dst, uint8_t *top, uint8_t *diff, int w, int *left, int *left_top); + void (*sub_hfyu_median_prediction)(uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top); + void (*add_hfyu_median_prediction)(uint8_t *dst, const uint8_t *top, const uint8_t *diff, int w, int *left, int *left_top); + int (*add_hfyu_left_prediction)(uint8_t *dst, const uint8_t *src, int w, int left); + void (*add_hfyu_left_prediction_bgr32)(uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha); /* this might write to dst[w] */ void (*add_png_paeth_prediction)(uint8_t *dst, uint8_t *src, uint8_t *top, int w, int bpp); void (*bswap_buf)(uint32_t *dst, const uint32_t *src, int w); - void (*h264_v_loop_filter_luma)(uint8_t *pix/*align 16*/, int stride, int alpha, int beta, int8_t *tc0); - void (*h264_h_loop_filter_luma)(uint8_t *pix/*align 4 */, int stride, int alpha, int beta, int8_t *tc0); - /* v/h_loop_filter_luma_intra: align 16 */ - void (*h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta); - void (*h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta); - void (*h264_v_loop_filter_chroma)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta, int8_t *tc0); - void (*h264_h_loop_filter_chroma)(uint8_t *pix/*align 4*/, int stride, int alpha, int beta, int8_t *tc0); - void (*h264_v_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta); - void (*h264_h_loop_filter_chroma_intra)(uint8_t *pix/*align 8*/, int stride, int alpha, int beta); - // h264_loop_filter_strength: simd only. the C version is inlined in h264.c - void (*h264_loop_filter_strength)(int16_t bS[2][4][4], uint8_t nnz[40], int8_t ref[2][40], int16_t mv[2][40][2], - int bidir, int edges, int step, int mask_mv0, int mask_mv1, int field); - void (*h263_v_loop_filter)(uint8_t *src, int stride, int qscale); void (*h263_h_loop_filter)(uint8_t *src, int stride, int qscale); @@ -385,16 +383,67 @@ typedef struct DSPContext { void (*vorbis_inverse_coupling)(float *mag, float *ang, int blocksize); void (*ac3_downmix)(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len); /* no alignment needed */ - void (*flac_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc); + void (*lpc_compute_autocorr)(const int32_t *data, int len, int lag, double *autoc); /* assume len is a multiple of 8, and arrays are 16-byte aligned */ void (*vector_fmul)(float *dst, const float *src, int len); void (*vector_fmul_reverse)(float *dst, const float *src0, const float *src1, int len); /* assume len is a multiple of 8, and src arrays are 16-byte aligned */ - void (*vector_fmul_add_add)(float *dst, const float *src0, const float *src1, const float *src2, int src3, int len, int step); + void (*vector_fmul_add)(float *dst, const float *src0, const float *src1, const float *src2, int len); /* assume len is a multiple of 4, and arrays are 16-byte aligned */ void (*vector_fmul_window)(float *dst, const float *src0, const float *src1, const float *win, float add_bias, int len); /* assume len is a multiple of 8, and arrays are 16-byte aligned */ void (*int32_to_float_fmul_scalar)(float *dst, const int *src, float mul, int len); + void (*vector_clipf)(float *dst /* align 16 */, const float *src /* align 16 */, float min, float max, int len /* align 16 */); + /** + * Multiply a vector of floats by a scalar float. Source and + * destination vectors must overlap exactly or not at all. + * @param dst result vector, 16-byte aligned + * @param src input vector, 16-byte aligned + * @param mul scalar value + * @param len length of vector, multiple of 4 + */ + void (*vector_fmul_scalar)(float *dst, const float *src, float mul, + int len); + /** + * Multiply a vector of floats by concatenated short vectors of + * floats and by a scalar float. Source and destination vectors + * must overlap exactly or not at all. + * [0]: short vectors of length 2, 8-byte aligned + * [1]: short vectors of length 4, 16-byte aligned + * @param dst output vector, 16-byte aligned + * @param src input vector, 16-byte aligned + * @param sv array of pointers to short vectors + * @param mul scalar value + * @param len number of elements in src and dst, multiple of 4 + */ + void (*vector_fmul_sv_scalar[2])(float *dst, const float *src, + const float **sv, float mul, int len); + /** + * Multiply short vectors of floats by a scalar float, store + * concatenated result. + * [0]: short vectors of length 2, 8-byte aligned + * [1]: short vectors of length 4, 16-byte aligned + * @param dst output vector, 16-byte aligned + * @param sv array of pointers to short vectors + * @param mul scalar value + * @param len number of output elements, multiple of 4 + */ + void (*sv_fmul_scalar[2])(float *dst, const float **sv, + float mul, int len); + /** + * Calculate the scalar product of two vectors of floats. + * @param v1 first vector, 16-byte aligned + * @param v2 second vector, 16-byte aligned + * @param len length of vectors, multiple of 4 + */ + float (*scalarproduct_float)(const float *v1, const float *v2, int len); + /** + * Calculate the sum and difference of two vectors of floats. + * @param v1 first input vector, sum output, 16-byte aligned + * @param v2 second input vector, difference output, 16-byte aligned + * @param len length of vectors, multiple of 4 + */ + void (*butterflies_float)(float *restrict v1, float *restrict v2, int len); /* C version: convert floats from the range [384.0,386.0] to ints in [-32768,32767] * simd versions: convert floats from [-32768.0,32767.0] without rescaling and arrays are 16byte aligned */ @@ -450,37 +499,33 @@ typedef struct DSPContext { void (*draw_edges)(uint8_t *buf, int wrap, int width, int height, int w); #define EDGE_WIDTH 16 - /* h264 functions */ - /* NOTE!!! if you implement any of h264_idct8_add, h264_idct8_add4 then you must implement all of them - NOTE!!! if you implement any of h264_idct_add, h264_idct_add16, h264_idct_add16intra, h264_idct_add8 then you must implement all of them - The reason for above, is that no 2 out of one list may use a different permutation. - */ - void (*h264_idct_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride); - void (*h264_idct8_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride); - void (*h264_idct_dc_add)(uint8_t *dst/*align 4*/, DCTELEM *block/*align 16*/, int stride); - void (*h264_idct8_dc_add)(uint8_t *dst/*align 8*/, DCTELEM *block/*align 16*/, int stride); - void (*h264_dct)(DCTELEM block[4][4]); - void (*h264_idct_add16)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); - void (*h264_idct8_add4)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); - void (*h264_idct_add8)(uint8_t **dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); - void (*h264_idct_add16intra)(uint8_t *dst/*align 16*/, const int *blockoffset, DCTELEM *block/*align 16*/, int stride, const uint8_t nnzc[6*8]); - - /* snow wavelet */ - void (*vertical_compose97i)(IDWTELEM *b0, IDWTELEM *b1, IDWTELEM *b2, IDWTELEM *b3, IDWTELEM *b4, IDWTELEM *b5, int width); - void (*horizontal_compose97i)(IDWTELEM *b, int width); - void (*inner_add_yblock)(const uint8_t *obmc, const int obmc_stride, uint8_t * * block, int b_w, int b_h, int src_x, int src_y, int src_stride, slice_buffer * sb, int add, uint8_t * dst8); - void (*prefetch)(void *mem, int stride, int h); void (*shrink[4])(uint8_t *dst, int dst_wrap, const uint8_t *src, int src_wrap, int width, int height); + /* mlp/truehd functions */ + void (*mlp_filter_channel)(int32_t *state, const int32_t *coeff, + int firorder, int iirorder, + unsigned int filter_shift, int32_t mask, int blocksize, + int32_t *sample_buffer); + /* vc1 functions */ void (*vc1_inv_trans_8x8)(DCTELEM *b); void (*vc1_inv_trans_8x4)(uint8_t *dest, int line_size, DCTELEM *block); void (*vc1_inv_trans_4x8)(uint8_t *dest, int line_size, DCTELEM *block); void (*vc1_inv_trans_4x4)(uint8_t *dest, int line_size, DCTELEM *block); + void (*vc1_inv_trans_8x8_dc)(uint8_t *dest, int line_size, DCTELEM *block); + void (*vc1_inv_trans_8x4_dc)(uint8_t *dest, int line_size, DCTELEM *block); + void (*vc1_inv_trans_4x8_dc)(uint8_t *dest, int line_size, DCTELEM *block); + void (*vc1_inv_trans_4x4_dc)(uint8_t *dest, int line_size, DCTELEM *block); void (*vc1_v_overlap)(uint8_t* src, int stride); void (*vc1_h_overlap)(uint8_t* src, int stride); + void (*vc1_v_loop_filter4)(uint8_t *src, int stride, int pq); + void (*vc1_h_loop_filter4)(uint8_t *src, int stride, int pq); + void (*vc1_v_loop_filter8)(uint8_t *src, int stride, int pq); + void (*vc1_h_loop_filter8)(uint8_t *src, int stride, int pq); + void (*vc1_v_loop_filter16)(uint8_t *src, int stride, int pq); + void (*vc1_h_loop_filter16)(uint8_t *src, int stride, int pq); /* put 8x8 block with bicubic interpolation and quarterpel precision * last argument is actually round value instead of height */ @@ -492,23 +537,19 @@ typedef struct DSPContext { void (*x8_setup_spatial_compensation)(uint8_t *src, uint8_t *dst, int linesize, int * range, int * sum, int edges); - /* ape functions */ - /** - * Add contents of the second vector to the first one. - * @param len length of vectors, should be multiple of 16 - */ - void (*add_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len); - /** - * Add contents of the second vector to the first one. - * @param len length of vectors, should be multiple of 16 - */ - void (*sub_int16)(int16_t *v1/*align 16*/, int16_t *v2, int len); /** * Calculate scalar product of two vectors. * @param len length of vectors, should be multiple of 16 * @param shift number of bits to discard from product */ int32_t (*scalarproduct_int16)(int16_t *v1, int16_t *v2/*align 16*/, int len, int shift); + /* ape functions */ + /** + * Calculate scalar product of v1 and v2, + * and v1[i] += v3[i] * mul + * @param len length of vectors, should be multiple of 16 + */ + int32_t (*scalarproduct_and_madd_int16)(int16_t *v1/*align 16*/, int16_t *v2, int16_t *v3, int len, int mul); /* rv30 functions */ qpel_mc_func put_rv30_tpel_pixels_tab[4][16]; @@ -519,6 +560,10 @@ typedef struct DSPContext { qpel_mc_func avg_rv40_qpel_pixels_tab[4][16]; h264_chroma_mc_func put_rv40_chroma_pixels_tab[3]; h264_chroma_mc_func avg_rv40_chroma_pixels_tab[3]; + + /* bink functions */ + op_fill_func fill_block_tab[2]; + void (*scale_block)(const uint8_t src[64]/*align 8*/, uint8_t *dst/*align 8*/, int linesize); } DSPContext; void dsputil_static_init(void); @@ -580,6 +625,7 @@ static inline int get_penalty_factor(int lambda, int lambda2, int type){ /* should be defined by architectures supporting one or more MultiMedia extension */ int mm_support(void); +extern int mm_flags; void dsputil_init_alpha(DSPContext* c, AVCodecContext *avctx); void dsputil_init_arm(DSPContext* c, AVCodecContext *avctx); @@ -591,18 +637,19 @@ void dsputil_init_ppc(DSPContext* c, AVCodecContext *avctx); void dsputil_init_sh4(DSPContext* c, AVCodecContext *avctx); void dsputil_init_vis(DSPContext* c, AVCodecContext *avctx); -#define DECLARE_ALIGNED_16(t, v) DECLARE_ALIGNED(16, t, v) +void ff_dsputil_init_dwt(DSPContext *c); +void ff_cavsdsp_init(DSPContext* c, AVCodecContext *avctx); +void ff_rv30dsp_init(DSPContext* c, AVCodecContext *avctx); +void ff_rv40dsp_init(DSPContext* c, AVCodecContext *avctx); +void ff_vc1dsp_init(DSPContext* c, AVCodecContext *avctx); +void ff_intrax8dsp_init(DSPContext* c, AVCodecContext *avctx); +void ff_mlp_init(DSPContext* c, AVCodecContext *avctx); +void ff_mlp_init_x86(DSPContext* c, AVCodecContext *avctx); #if HAVE_MMX #undef emms_c -extern int mm_flags; - -void add_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size); -void put_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size); -void put_signed_pixels_clamped_mmx(const DCTELEM *block, uint8_t *pixels, int line_size); - static inline void emms(void) { __asm__ volatile ("emms;":::"memory"); @@ -615,27 +662,18 @@ static inline void emms(void) emms();\ } -void dsputil_init_pix_mmx(DSPContext* c, AVCodecContext *avctx); - #elif ARCH_ARM -extern int mm_flags; - #if HAVE_NEON -# define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v) # define STRIDE_ALIGN 16 #endif #elif ARCH_PPC -extern int mm_flags; - -#define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v) #define STRIDE_ALIGN 16 #elif HAVE_MMI -#define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(16, t, v) #define STRIDE_ALIGN 16 #else @@ -645,160 +683,31 @@ extern int mm_flags; #endif -#ifndef DECLARE_ALIGNED_8 -# define DECLARE_ALIGNED_8(t, v) DECLARE_ALIGNED(8, t, v) -#endif - #ifndef STRIDE_ALIGN # define STRIDE_ALIGN 8 #endif +#define LOCAL_ALIGNED(a, t, v, s, ...) \ + uint8_t la_##v[sizeof(t s __VA_ARGS__) + (a)]; \ + t (*v) __VA_ARGS__ = (void *)FFALIGN((uintptr_t)la_##v, a) + +#if HAVE_LOCAL_ALIGNED_8 +# define LOCAL_ALIGNED_8(t, v, s, ...) DECLARE_ALIGNED(8, t, v) s __VA_ARGS__ +#else +# define LOCAL_ALIGNED_8(t, v, s, ...) LOCAL_ALIGNED(8, t, v, s, __VA_ARGS__) +#endif + +#if HAVE_LOCAL_ALIGNED_16 +# define LOCAL_ALIGNED_16(t, v, s, ...) DECLARE_ALIGNED(16, t, v) s __VA_ARGS__ +#else +# define LOCAL_ALIGNED_16(t, v, s, ...) LOCAL_ALIGNED(16, t, v, s, __VA_ARGS__) +#endif + /* PSNR */ void get_psnr(uint8_t *orig_image[3], uint8_t *coded_image[3], int orig_linesize[3], int coded_linesize, AVCodecContext *avctx); -/* FFT computation */ - -/* NOTE: soon integer code will be added, so you must use the - FFTSample type */ -typedef float FFTSample; - -struct MDCTContext; - -typedef struct FFTComplex { - FFTSample re, im; -} FFTComplex; - -typedef struct FFTContext { - int nbits; - int inverse; - uint16_t *revtab; - FFTComplex *exptab; - FFTComplex *exptab1; /* only used by SSE code */ - FFTComplex *tmp_buf; - void (*fft_permute)(struct FFTContext *s, FFTComplex *z); - void (*fft_calc)(struct FFTContext *s, FFTComplex *z); - void (*imdct_calc)(struct MDCTContext *s, FFTSample *output, const FFTSample *input); - void (*imdct_half)(struct MDCTContext *s, FFTSample *output, const FFTSample *input); -} FFTContext; - -extern FFTSample* ff_cos_tabs[13]; - -/** - * Sets up a complex FFT. - * @param nbits log2 of the length of the input array - * @param inverse if 0 perform the forward transform, if 1 perform the inverse - */ -int ff_fft_init(FFTContext *s, int nbits, int inverse); -void ff_fft_permute_c(FFTContext *s, FFTComplex *z); -void ff_fft_permute_sse(FFTContext *s, FFTComplex *z); -void ff_fft_calc_c(FFTContext *s, FFTComplex *z); -void ff_fft_calc_sse(FFTContext *s, FFTComplex *z); -void ff_fft_calc_3dn(FFTContext *s, FFTComplex *z); -void ff_fft_calc_3dn2(FFTContext *s, FFTComplex *z); -void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z); - -/** - * Do the permutation needed BEFORE calling ff_fft_calc(). - */ -static inline void ff_fft_permute(FFTContext *s, FFTComplex *z) -{ - s->fft_permute(s, z); -} -/** - * Do a complex FFT with the parameters defined in ff_fft_init(). The - * input data must be permuted before. No 1.0/sqrt(n) normalization is done. - */ -static inline void ff_fft_calc(FFTContext *s, FFTComplex *z) -{ - s->fft_calc(s, z); -} -void ff_fft_end(FFTContext *s); - -/* MDCT computation */ - -typedef struct MDCTContext { - int n; /* size of MDCT (i.e. number of input data * 2) */ - int nbits; /* n = 2^nbits */ - /* pre/post rotation tables */ - FFTSample *tcos; - FFTSample *tsin; - FFTContext fft; -} MDCTContext; - -static inline void ff_imdct_calc(MDCTContext *s, FFTSample *output, const FFTSample *input) -{ - s->fft.imdct_calc(s, output, input); -} -static inline void ff_imdct_half(MDCTContext *s, FFTSample *output, const FFTSample *input) -{ - s->fft.imdct_half(s, output, input); -} - -/** - * Generate a Kaiser-Bessel Derived Window. - * @param window pointer to half window - * @param alpha determines window shape - * @param n size of half window - */ -void ff_kbd_window_init(float *window, float alpha, int n); - -/** - * Generate a sine window. - * @param window pointer to half window - * @param n size of half window - */ -void ff_sine_window_init(float *window, int n); -extern float ff_sine_128 [ 128]; -extern float ff_sine_256 [ 256]; -extern float ff_sine_512 [ 512]; -extern float ff_sine_1024[1024]; -extern float ff_sine_2048[2048]; -extern float ff_sine_4096[4096]; -extern float *ff_sine_windows[6]; - -int ff_mdct_init(MDCTContext *s, int nbits, int inverse); -void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input); -void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input); -void ff_imdct_calc_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input); -void ff_imdct_half_3dn(MDCTContext *s, FFTSample *output, const FFTSample *input); -void ff_imdct_calc_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input); -void ff_imdct_half_3dn2(MDCTContext *s, FFTSample *output, const FFTSample *input); -void ff_imdct_calc_sse(MDCTContext *s, FFTSample *output, const FFTSample *input); -void ff_imdct_half_sse(MDCTContext *s, FFTSample *output, const FFTSample *input); -void ff_mdct_calc(MDCTContext *s, FFTSample *out, const FFTSample *input); -void ff_mdct_end(MDCTContext *s); - -/* Real Discrete Fourier Transform */ - -enum RDFTransformType { - RDFT, - IRDFT, - RIDFT, - IRIDFT, -}; - -typedef struct { - int nbits; - int inverse; - int sign_convention; - - /* pre/post rotation tables */ - FFTSample *tcos; - FFTSample *tsin; - FFTContext fft; -} RDFTContext; - -/** - * Sets up a real FFT. - * @param nbits log2 of the length of the input array - * @param trans the type of transform - */ -int ff_rdft_init(RDFTContext *s, int nbits, enum RDFTransformType trans); -void ff_rdft_calc(RDFTContext *s, FFTSample *data); -void ff_rdft_end(RDFTContext *s); - #define WRAPPER8_16(name8, name16)\ static int name16(void /*MpegEncContext*/ *s, uint8_t *dst, uint8_t *src, int stride, int h){\ return name8(s, dst , src , stride, h)\