X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Ffft.c;h=aa34b34152ac5a32c91e51567410c8891b1a26e5;hb=f6ba1f264190d8a6409914faed708ae82eee82a3;hp=f060992f4705ffb5e5e0a29311b9e507a6a89ed2;hpb=8d268a7d4c4b4f58b5561e7384d91ee39a72d3a7;p=ffmpeg diff --git a/libavcodec/fft.c b/libavcodec/fft.c index f060992f470..aa34b34152a 100644 --- a/libavcodec/fft.c +++ b/libavcodec/fft.c @@ -1,244 +1,353 @@ /* * FFT/IFFT transforms - * Copyright (c) 2002 Fabrice Bellard. + * Copyright (c) 2008 Loren Merritt + * Copyright (c) 2002 Fabrice Bellard + * Partly based on libdjbfft by D. J. Bernstein * - * This library is free software; you can redistribute it and/or + * This file is part of Libav. + * + * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. + * version 2.1 of the License, or (at your option) any later version. * - * This library is distributed in the hope that it will be useful, + * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + * License along with Libav; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ -#include "dsputil.h" /** - * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is - * done + * @file + * FFT/IFFT transforms. */ -int fft_init(FFTContext *s, int nbits, int inverse) + +#include +#include +#include "libavutil/mathematics.h" +#include "fft.h" +#include "fft-internal.h" + +/* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */ +#if !CONFIG_HARDCODED_TABLES +COSTABLE(16); +COSTABLE(32); +COSTABLE(64); +COSTABLE(128); +COSTABLE(256); +COSTABLE(512); +COSTABLE(1024); +COSTABLE(2048); +COSTABLE(4096); +COSTABLE(8192); +COSTABLE(16384); +COSTABLE(32768); +COSTABLE(65536); +#endif +COSTABLE_CONST FFTSample * const FFT_NAME(ff_cos_tabs)[] = { + NULL, NULL, NULL, NULL, + FFT_NAME(ff_cos_16), + FFT_NAME(ff_cos_32), + FFT_NAME(ff_cos_64), + FFT_NAME(ff_cos_128), + FFT_NAME(ff_cos_256), + FFT_NAME(ff_cos_512), + FFT_NAME(ff_cos_1024), + FFT_NAME(ff_cos_2048), + FFT_NAME(ff_cos_4096), + FFT_NAME(ff_cos_8192), + FFT_NAME(ff_cos_16384), + FFT_NAME(ff_cos_32768), + FFT_NAME(ff_cos_65536), +}; + +static void ff_fft_permute_c(FFTContext *s, FFTComplex *z); +static void ff_fft_calc_c(FFTContext *s, FFTComplex *z); + +static int split_radix_permutation(int i, int n, int inverse) { - int i, j, m, n; - float alpha, c1, s1, s2; - + int m; + if(n <= 2) return i&1; + m = n >> 1; + if(!(i&m)) return split_radix_permutation(i, m, inverse)*2; + m >>= 1; + if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1; + else return split_radix_permutation(i, m, inverse)*4 - 1; +} + +av_cold void ff_init_ff_cos_tabs(int index) +{ +#if !CONFIG_HARDCODED_TABLES + int i; + int m = 1<= 16; + else if (i < n/2) + return is_second_half_of_fft32(i, n/2); + else if (i < 3*n/4) + return is_second_half_of_fft32(i - n/2, n/4); + else + return is_second_half_of_fft32(i - 3*n/4, n/4); +} + +static av_cold void fft_perm_avx(FFTContext *s) +{ + int i; + int n = 1 << s->nbits; + + for (i = 0; i < n; i += 16) { + int k; + if (is_second_half_of_fft32(i, n)) { + for (k = 0; k < 16; k++) + s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = + i + avx_tab[k]; + + } else { + for (k = 0; k < 16; k++) { + int j = i + k; + j = (j & ~7) | ((j >> 1) & 3) | ((j << 2) & 4); + s->revtab[-split_radix_permutation(i + k, n, s->inverse) & (n - 1)] = j; + } + } + } +} + +av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse) +{ + int i, j, n; + + if (nbits < 2 || nbits > 16) + goto fail; s->nbits = nbits; n = 1 << nbits; - s->exptab = av_malloc((n / 2) * sizeof(FFTComplex)); - if (!s->exptab) - goto fail; s->revtab = av_malloc(n * sizeof(uint16_t)); if (!s->revtab) goto fail; + s->tmp_buf = av_malloc(n * sizeof(FFTComplex)); + if (!s->tmp_buf) + goto fail; s->inverse = inverse; + s->fft_permutation = FF_FFT_PERM_DEFAULT; - s2 = inverse ? 1.0 : -1.0; - - for(i=0;i<(n/2);i++) { - alpha = 2 * M_PI * (float)i / (float)n; - c1 = cos(alpha); - s1 = sin(alpha) * s2; - s->exptab[i].re = c1; - s->exptab[i].im = s1; - } - s->fft_calc = fft_calc_c; - s->exptab1 = NULL; - - /* compute constant table for HAVE_SSE version */ -#if (defined(HAVE_MMX) && defined(HAVE_BUILTIN_VECTOR)) || defined(HAVE_ALTIVEC) - { - int has_vectors; - -#if defined(HAVE_MMX) - has_vectors = mm_support() & MM_SSE; -#else - /* XXX: should also use mm_support() ? */ - has_vectors = has_altivec() & MM_ALTIVEC; + s->fft_permute = ff_fft_permute_c; + s->fft_calc = ff_fft_calc_c; +#if CONFIG_MDCT + s->imdct_calc = ff_imdct_calc_c; + s->imdct_half = ff_imdct_half_c; + s->mdct_calc = ff_mdct_calc_c; #endif - if (has_vectors) { - int np, nblocks, np2, l; - FFTComplex *q; - - np = 1 << nbits; - nblocks = np >> 3; - np2 = np >> 1; - s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex)); - if (!s->exptab1) - goto fail; - q = s->exptab1; - do { - for(l = 0; l < np2; l += 2 * nblocks) { - *q++ = s->exptab[l]; - *q++ = s->exptab[l + nblocks]; - - q->re = -s->exptab[l].im; - q->im = s->exptab[l].re; - q++; - q->re = -s->exptab[l + nblocks].im; - q->im = s->exptab[l + nblocks].re; - q++; - } - nblocks = nblocks >> 1; - } while (nblocks != 0); - av_freep(&s->exptab); -#if defined(HAVE_MMX) - s->fft_calc = fft_calc_sse; + +#if CONFIG_FFT_FLOAT + if (ARCH_ARM) ff_fft_init_arm(s); + if (HAVE_ALTIVEC) ff_fft_init_altivec(s); + if (HAVE_MMX) ff_fft_init_mmx(s); + if (CONFIG_MDCT) s->mdct_calcw = s->mdct_calc; #else - s->fft_calc = fft_calc_altivec; -#endif - } - } + if (CONFIG_MDCT) s->mdct_calcw = ff_mdct_calcw_c; + if (ARCH_ARM) ff_fft_fixed_init_arm(s); #endif - /* compute bit reverse table */ + for(j=4; j<=nbits; j++) { + ff_init_ff_cos_tabs(j); + } - for(i=0;i> j) & 1) << (nbits-j-1); + if (s->fft_permutation == FF_FFT_PERM_AVX) { + fft_perm_avx(s); + } else { + for(i=0; ifft_permutation == FF_FFT_PERM_SWAP_LSBS) + j = (j&~3) | ((j>>1)&1) | ((j<<1)&2); + s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j; } - s->revtab[i]=m; } + return 0; fail: av_freep(&s->revtab); - av_freep(&s->exptab); - av_freep(&s->exptab1); + av_freep(&s->tmp_buf); return -1; } -/* butter fly op */ -#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ +static void ff_fft_permute_c(FFTContext *s, FFTComplex *z) +{ + int j, np; + const uint16_t *revtab = s->revtab; + np = 1 << s->nbits; + /* TODO: handle split-radix permute in a more optimal way, probably in-place */ + for(j=0;jtmp_buf[revtab[j]] = z[j]; + memcpy(z, s->tmp_buf, np * sizeof(FFTComplex)); +} + +av_cold void ff_fft_end(FFTContext *s) +{ + av_freep(&s->revtab); + av_freep(&s->tmp_buf); +} + +#define BUTTERFLIES(a0,a1,a2,a3) {\ + BF(t3, t5, t5, t1);\ + BF(a2.re, a0.re, a0.re, t5);\ + BF(a3.im, a1.im, a1.im, t3);\ + BF(t4, t6, t2, t6);\ + BF(a3.re, a1.re, a1.re, t4);\ + BF(a2.im, a0.im, a0.im, t6);\ +} + +// force loading all the inputs before storing any. +// this is slightly slower for small data, but avoids store->load aliasing +// for addresses separated by large powers of 2. +#define BUTTERFLIES_BIG(a0,a1,a2,a3) {\ + FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\ + BF(t3, t5, t5, t1);\ + BF(a2.re, a0.re, r0, t5);\ + BF(a3.im, a1.im, i1, t3);\ + BF(t4, t6, t2, t6);\ + BF(a3.re, a1.re, r1, t4);\ + BF(a2.im, a0.im, i0, t6);\ +} + +#define TRANSFORM(a0,a1,a2,a3,wre,wim) {\ + CMUL(t1, t2, a2.re, a2.im, wre, -wim);\ + CMUL(t5, t6, a3.re, a3.im, wre, wim);\ + BUTTERFLIES(a0,a1,a2,a3)\ +} + +#define TRANSFORM_ZERO(a0,a1,a2,a3) {\ + t1 = a2.re;\ + t2 = a2.im;\ + t5 = a3.re;\ + t6 = a3.im;\ + BUTTERFLIES(a0,a1,a2,a3)\ +} + +/* z[0...8n-1], w[1...2n-1] */ +#define PASS(name)\ +static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\ {\ - FFTSample ax, ay, bx, by;\ - bx=pre1;\ - by=pim1;\ - ax=qre1;\ - ay=qim1;\ - pre = (bx + ax);\ - pim = (by + ay);\ - qre = (bx - ax);\ - qim = (by - ay);\ + FFTDouble t1, t2, t3, t4, t5, t6;\ + int o1 = 2*n;\ + int o2 = 4*n;\ + int o3 = 6*n;\ + const FFTSample *wim = wre+o1;\ + n--;\ +\ + TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\ + TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ + do {\ + z += 2;\ + wre += 2;\ + wim -= 2;\ + TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\ + TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\ + } while(--n);\ } -#define MUL16(a,b) ((a) * (b)) +PASS(pass) +#undef BUTTERFLIES +#define BUTTERFLIES BUTTERFLIES_BIG +PASS(pass_big) -#define CMUL(pre, pim, are, aim, bre, bim) \ +#define DECL_FFT(n,n2,n4)\ +static void fft##n(FFTComplex *z)\ {\ - pre = (MUL16(are, bre) - MUL16(aim, bim));\ - pim = (MUL16(are, bim) + MUL16(bre, aim));\ + fft##n2(z);\ + fft##n4(z+n4*2);\ + fft##n4(z+n4*3);\ + pass(z,FFT_NAME(ff_cos_##n),n4/2);\ } -/** - * Do a complex FFT with the parameters defined in fft_init(). The - * input data must be permuted before with s->revtab table. No - * 1.0/sqrt(n) normalization is done. - */ -void fft_calc_c(FFTContext *s, FFTComplex *z) +static void fft4(FFTComplex *z) { - int ln = s->nbits; - int j, np, np2; - int nblocks, nloops; - register FFTComplex *p, *q; - FFTComplex *exptab = s->exptab; - int l; - FFTSample tmp_re, tmp_im; - - np = 1 << ln; - - /* pass 0 */ - - p=&z[0]; - j=(np >> 1); - do { - BF(p[0].re, p[0].im, p[1].re, p[1].im, - p[0].re, p[0].im, p[1].re, p[1].im); - p+=2; - } while (--j != 0); - - /* pass 1 */ - - - p=&z[0]; - j=np >> 2; - if (s->inverse) { - do { - BF(p[0].re, p[0].im, p[2].re, p[2].im, - p[0].re, p[0].im, p[2].re, p[2].im); - BF(p[1].re, p[1].im, p[3].re, p[3].im, - p[1].re, p[1].im, -p[3].im, p[3].re); - p+=4; - } while (--j != 0); - } else { - do { - BF(p[0].re, p[0].im, p[2].re, p[2].im, - p[0].re, p[0].im, p[2].re, p[2].im); - BF(p[1].re, p[1].im, p[3].re, p[3].im, - p[1].re, p[1].im, p[3].im, -p[3].re); - p+=4; - } while (--j != 0); - } - /* pass 2 .. ln-1 */ - - nblocks = np >> 3; - nloops = 1 << 2; - np2 = np >> 1; - do { - p = z; - q = z + nloops; - for (j = 0; j < nblocks; ++j) { - BF(p->re, p->im, q->re, q->im, - p->re, p->im, q->re, q->im); - - p++; - q++; - for(l = nblocks; l < np2; l += nblocks) { - CMUL(tmp_re, tmp_im, exptab[l].re, exptab[l].im, q->re, q->im); - BF(p->re, p->im, q->re, q->im, - p->re, p->im, tmp_re, tmp_im); - p++; - q++; - } + FFTDouble t1, t2, t3, t4, t5, t6, t7, t8; - p += nloops; - q += nloops; - } - nblocks = nblocks >> 1; - nloops = nloops << 1; - } while (nblocks != 0); + BF(t3, t1, z[0].re, z[1].re); + BF(t8, t6, z[3].re, z[2].re); + BF(z[2].re, z[0].re, t1, t6); + BF(t4, t2, z[0].im, z[1].im); + BF(t7, t5, z[2].im, z[3].im); + BF(z[3].im, z[1].im, t4, t8); + BF(z[3].re, z[1].re, t3, t7); + BF(z[2].im, z[0].im, t2, t5); } -/** - * Do the permutation needed BEFORE calling fft_calc() - */ -void fft_permute(FFTContext *s, FFTComplex *z) +static void fft8(FFTComplex *z) { - int j, k, np; - FFTComplex tmp; - const uint16_t *revtab = s->revtab; - - /* reverse */ - np = 1 << s->nbits; - for(j=0;jrevtab); - av_freep(&s->exptab); - av_freep(&s->exptab1); + FFTDouble t1, t2, t3, t4, t5, t6; + FFTSample cos_16_1 = FFT_NAME(ff_cos_16)[1]; + FFTSample cos_16_3 = FFT_NAME(ff_cos_16)[3]; + + fft8(z); + fft4(z+8); + fft4(z+12); + + TRANSFORM_ZERO(z[0],z[4],z[8],z[12]); + TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf); + TRANSFORM(z[1],z[5],z[9],z[13],cos_16_1,cos_16_3); + TRANSFORM(z[3],z[7],z[11],z[15],cos_16_3,cos_16_1); +} +#else +DECL_FFT(16,8,4) +#endif +DECL_FFT(32,16,8) +DECL_FFT(64,32,16) +DECL_FFT(128,64,32) +DECL_FFT(256,128,64) +DECL_FFT(512,256,128) +#if !CONFIG_SMALL +#define pass pass_big +#endif +DECL_FFT(1024,512,256) +DECL_FFT(2048,1024,512) +DECL_FFT(4096,2048,1024) +DECL_FFT(8192,4096,2048) +DECL_FFT(16384,8192,4096) +DECL_FFT(32768,16384,8192) +DECL_FFT(65536,32768,16384) + +static void (* const fft_dispatch[])(FFTComplex*) = { + fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024, + fft2048, fft4096, fft8192, fft16384, fft32768, fft65536, +}; + +static void ff_fft_calc_c(FFTContext *s, FFTComplex *z) +{ + fft_dispatch[s->nbits-2](z); }