X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Fflacenc.c;h=67f899f712cb445b8cefea0b8be25e6e2149edb7;hb=e5e8a26dcf6d572e841a7a191e4c96524367e3f9;hp=66e5bfafcfb5114d44de1d4a1248f184ab192c4f;hpb=0bc08ed941f7663b6345b59faf73ad13f615834a;p=ffmpeg diff --git a/libavcodec/flacenc.c b/libavcodec/flacenc.c index 66e5bfafcfb..67f899f712c 100644 --- a/libavcodec/flacenc.c +++ b/libavcodec/flacenc.c @@ -1,33 +1,37 @@ -/** +/* * FLAC audio encoder * Copyright (c) 2006 Justin Ruggles * - * This file is part of FFmpeg. + * This file is part of Libav. * - * FFmpeg is free software; you can redistribute it and/or + * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * - * FFmpeg is distributed in the hope that it will be useful, + * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software + * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/crc.h" +#include "libavutil/intmath.h" #include "libavutil/md5.h" +#include "libavutil/opt.h" + #include "avcodec.h" -#include "get_bits.h" -#include "dsputil.h" +#include "bswapdsp.h" #include "golomb.h" +#include "internal.h" #include "lpc.h" #include "flac.h" #include "flacdata.h" +#include "flacdsp.h" #define FLAC_SUBFRAME_CONSTANT 0 #define FLAC_SUBFRAME_VERBATIM 1 @@ -39,29 +43,38 @@ #define MAX_PARTITIONS (1 << MAX_PARTITION_ORDER) #define MAX_LPC_PRECISION 15 #define MAX_LPC_SHIFT 15 -#define MAX_RICE_PARAM 14 + +enum CodingMode { + CODING_MODE_RICE = 4, + CODING_MODE_RICE2 = 5, +}; typedef struct CompressionOptions { int compression_level; int block_time_ms; - int use_lpc; + enum FFLPCType lpc_type; + int lpc_passes; int lpc_coeff_precision; int min_prediction_order; int max_prediction_order; int prediction_order_method; int min_partition_order; int max_partition_order; + int ch_mode; } CompressionOptions; typedef struct RiceContext { + enum CodingMode coding_mode; int porder; int params[MAX_PARTITIONS]; + uint32_t udata[FLAC_MAX_BLOCKSIZE]; } RiceContext; typedef struct FlacSubframe { int type; int type_code; int obits; + int wasted; int order; int32_t coefs[MAX_LPC_ORDER]; int shift; @@ -76,13 +89,16 @@ typedef struct FlacFrame { int bs_code[2]; uint8_t crc8; int ch_mode; + int verbatim_only; } FlacFrame; typedef struct FlacEncodeContext { + AVClass *class; PutBitContext pb; int channels; int samplerate; int sr_code[2]; + int bps_code; int max_blocksize; int min_framesize; int max_framesize; @@ -93,12 +109,20 @@ typedef struct FlacEncodeContext { FlacFrame frame; CompressionOptions options; AVCodecContext *avctx; - DSPContext dsp; + LPCContext lpc_ctx; struct AVMD5 *md5ctx; + uint8_t *md5_buffer; + unsigned int md5_buffer_size; + BswapDSPContext bdsp; + FLACDSPContext flac_dsp; + + int flushed; + int64_t next_pts; } FlacEncodeContext; + /** - * Writes streaminfo metadata block to byte array + * Write streaminfo metadata block to byte array. */ static void write_streaminfo(FlacEncodeContext *s, uint8_t *header) { @@ -114,7 +138,7 @@ static void write_streaminfo(FlacEncodeContext *s, uint8_t *header) put_bits(&pb, 24, s->max_framesize); put_bits(&pb, 20, s->samplerate); put_bits(&pb, 3, s->channels-1); - put_bits(&pb, 5, 15); /* bits per sample - 1 */ + put_bits(&pb, 5, s->avctx->bits_per_raw_sample - 1); /* write 36-bit sample count in 2 put_bits() calls */ put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12); put_bits(&pb, 12, s->sample_count & 0x000000FFFLL); @@ -122,9 +146,10 @@ static void write_streaminfo(FlacEncodeContext *s, uint8_t *header) memcpy(&header[18], s->md5sum, 16); } + /** - * Sets blocksize based on samplerate - * Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds + * Set blocksize based on samplerate. + * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds. */ static int select_blocksize(int samplerate, int block_time_ms) { @@ -134,41 +159,107 @@ static int select_blocksize(int samplerate, int block_time_ms) assert(samplerate > 0); blocksize = ff_flac_blocksize_table[1]; - target = (samplerate * block_time_ms) / 1000; - for(i=0; i<16; i++) { - if(target >= ff_flac_blocksize_table[i] && ff_flac_blocksize_table[i] > blocksize) { + target = (samplerate * block_time_ms) / 1000; + for (i = 0; i < 16; i++) { + if (target >= ff_flac_blocksize_table[i] && + ff_flac_blocksize_table[i] > blocksize) { blocksize = ff_flac_blocksize_table[i]; } } return blocksize; } + +static av_cold void dprint_compression_options(FlacEncodeContext *s) +{ + AVCodecContext *avctx = s->avctx; + CompressionOptions *opt = &s->options; + + av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level); + + switch (opt->lpc_type) { + case FF_LPC_TYPE_NONE: + av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n"); + break; + case FF_LPC_TYPE_FIXED: + av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n"); + break; + case FF_LPC_TYPE_LEVINSON: + av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n"); + break; + case FF_LPC_TYPE_CHOLESKY: + av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n", + opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es"); + break; + } + + av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n", + opt->min_prediction_order, opt->max_prediction_order); + + switch (opt->prediction_order_method) { + case ORDER_METHOD_EST: + av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate"); + break; + case ORDER_METHOD_2LEVEL: + av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level"); + break; + case ORDER_METHOD_4LEVEL: + av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level"); + break; + case ORDER_METHOD_8LEVEL: + av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level"); + break; + case ORDER_METHOD_SEARCH: + av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search"); + break; + case ORDER_METHOD_LOG: + av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search"); + break; + } + + + av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n", + opt->min_partition_order, opt->max_partition_order); + + av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size); + + av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n", + opt->lpc_coeff_precision); +} + + static av_cold int flac_encode_init(AVCodecContext *avctx) { int freq = avctx->sample_rate; int channels = avctx->channels; FlacEncodeContext *s = avctx->priv_data; - int i, level; + int i, level, ret; uint8_t *streaminfo; s->avctx = avctx; - dsputil_init(&s->dsp, avctx); - - if(avctx->sample_fmt != SAMPLE_FMT_S16) { - return -1; + switch (avctx->sample_fmt) { + case AV_SAMPLE_FMT_S16: + avctx->bits_per_raw_sample = 16; + s->bps_code = 4; + break; + case AV_SAMPLE_FMT_S32: + if (avctx->bits_per_raw_sample != 24) + av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n"); + avctx->bits_per_raw_sample = 24; + s->bps_code = 6; + break; } - if(channels < 1 || channels > FLAC_MAX_CHANNELS) { + if (channels < 1 || channels > FLAC_MAX_CHANNELS) return -1; - } s->channels = channels; /* find samplerate in table */ - if(freq < 1) + if (freq < 1) return -1; - for(i=4; i<12; i++) { - if(freq == ff_flac_sample_rate_table[i]) { + for (i = 4; i < 12; i++) { + if (freq == ff_flac_sample_rate_table[i]) { s->samplerate = ff_flac_sample_rate_table[i]; s->sr_code[0] = i; s->sr_code[1] = 0; @@ -176,14 +267,14 @@ static av_cold int flac_encode_init(AVCodecContext *avctx) } } /* if not in table, samplerate is non-standard */ - if(i == 12) { - if(freq % 1000 == 0 && freq < 255000) { + if (i == 12) { + if (freq % 1000 == 0 && freq < 255000) { s->sr_code[0] = 12; s->sr_code[1] = freq / 1000; - } else if(freq % 10 == 0 && freq < 655350) { + } else if (freq % 10 == 0 && freq < 655350) { s->sr_code[0] = 14; s->sr_code[1] = freq / 10; - } else if(freq < 65535) { + } else if (freq < 65535) { s->sr_code[0] = 13; s->sr_code[1] = freq; } else { @@ -193,132 +284,111 @@ static av_cold int flac_encode_init(AVCodecContext *avctx) } /* set compression option defaults based on avctx->compression_level */ - if(avctx->compression_level < 0) { + if (avctx->compression_level < 0) s->options.compression_level = 5; - } else { + else s->options.compression_level = avctx->compression_level; - } - av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level); - level= s->options.compression_level; - if(level > 12) { + level = s->options.compression_level; + if (level > 12) { av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n", s->options.compression_level); return -1; } - s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level]; - s->options.use_lpc = ((int[]){ 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level]; - s->options.min_prediction_order= ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level]; - s->options.max_prediction_order= ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level]; - s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, - ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, - ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL, - ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG, - ORDER_METHOD_SEARCH})[level]; - s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level]; - s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level]; - - /* set compression option overrides from AVCodecContext */ - if(avctx->use_lpc >= 0) { - s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11); - } - if(s->options.use_lpc == 1) - av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n"); - else if(s->options.use_lpc > 1) - av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n"); - - if(avctx->min_prediction_order >= 0) { - if(s->options.use_lpc) { - if(avctx->min_prediction_order < MIN_LPC_ORDER || - avctx->min_prediction_order > MAX_LPC_ORDER) { - av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", - avctx->min_prediction_order); - return -1; - } - } else { - if(avctx->min_prediction_order > MAX_FIXED_ORDER) { - av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", - avctx->min_prediction_order); - return -1; + s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level]; + + if (s->options.lpc_type == FF_LPC_TYPE_DEFAULT) + s->options.lpc_type = ((int[]){ FF_LPC_TYPE_FIXED, FF_LPC_TYPE_FIXED, FF_LPC_TYPE_FIXED, + FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, + FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, + FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, + FF_LPC_TYPE_LEVINSON})[level]; + + if (s->options.min_prediction_order < 0) + s->options.min_prediction_order = ((int[]){ 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1})[level]; + if (s->options.max_prediction_order < 0) + s->options.max_prediction_order = ((int[]){ 3, 4, 4, 6, 8, 8, 8, 8, 12, 12, 12, 32, 32})[level]; + + if (s->options.prediction_order_method < 0) + s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, + ORDER_METHOD_EST, ORDER_METHOD_EST, ORDER_METHOD_EST, + ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG, ORDER_METHOD_4LEVEL, + ORDER_METHOD_LOG, ORDER_METHOD_SEARCH, ORDER_METHOD_LOG, + ORDER_METHOD_SEARCH})[level]; + + if (s->options.min_partition_order > s->options.max_partition_order) { + av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n", + s->options.min_partition_order, s->options.max_partition_order); + return AVERROR(EINVAL); + } + if (s->options.min_partition_order < 0) + s->options.min_partition_order = ((int[]){ 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0})[level]; + if (s->options.max_partition_order < 0) + s->options.max_partition_order = ((int[]){ 2, 2, 3, 3, 3, 8, 8, 8, 8, 8, 8, 8, 8})[level]; + +#if FF_API_PRIVATE_OPT +FF_DISABLE_DEPRECATION_WARNINGS + if (avctx->min_prediction_order >= 0) { + if (s->options.lpc_type == FF_LPC_TYPE_FIXED) { + if (avctx->min_prediction_order > MAX_FIXED_ORDER) { + av_log(avctx, AV_LOG_WARNING, + "invalid min prediction order %d, clamped to %d\n", + avctx->min_prediction_order, MAX_FIXED_ORDER); + avctx->min_prediction_order = MAX_FIXED_ORDER; } + } else if (avctx->min_prediction_order < MIN_LPC_ORDER || + avctx->min_prediction_order > MAX_LPC_ORDER) { + av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n", + avctx->min_prediction_order); + return -1; } s->options.min_prediction_order = avctx->min_prediction_order; } - if(avctx->max_prediction_order >= 0) { - if(s->options.use_lpc) { - if(avctx->max_prediction_order < MIN_LPC_ORDER || - avctx->max_prediction_order > MAX_LPC_ORDER) { - av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", - avctx->max_prediction_order); - return -1; + if (avctx->max_prediction_order >= 0) { + if (s->options.lpc_type == FF_LPC_TYPE_FIXED) { + if (avctx->max_prediction_order > MAX_FIXED_ORDER) { + av_log(avctx, AV_LOG_WARNING, + "invalid max prediction order %d, clamped to %d\n", + avctx->max_prediction_order, MAX_FIXED_ORDER); + avctx->max_prediction_order = MAX_FIXED_ORDER; } - } else { - if(avctx->max_prediction_order > MAX_FIXED_ORDER) { - av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", - avctx->max_prediction_order); - return -1; - } - } - s->options.max_prediction_order = avctx->max_prediction_order; - } - if(s->options.max_prediction_order < s->options.min_prediction_order) { - av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n", - s->options.min_prediction_order, s->options.max_prediction_order); - return -1; - } - av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n", - s->options.min_prediction_order, s->options.max_prediction_order); - - if(avctx->prediction_order_method >= 0) { - if(avctx->prediction_order_method > ORDER_METHOD_LOG) { - av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n", - avctx->prediction_order_method); + } else if (avctx->max_prediction_order < MIN_LPC_ORDER || + avctx->max_prediction_order > MAX_LPC_ORDER) { + av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n", + avctx->max_prediction_order); return -1; } - s->options.prediction_order_method = avctx->prediction_order_method; - } - switch(s->options.prediction_order_method) { - case ORDER_METHOD_EST: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", - "estimate"); break; - case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", - "2-level"); break; - case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", - "4-level"); break; - case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", - "8-level"); break; - case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", - "full search"); break; - case ORDER_METHOD_LOG: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", - "log search"); break; + s->options.max_prediction_order = avctx->max_prediction_order; } - - if(avctx->min_partition_order >= 0) { - if(avctx->min_partition_order > MAX_PARTITION_ORDER) { - av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n", - avctx->min_partition_order); - return -1; +FF_ENABLE_DEPRECATION_WARNINGS +#endif + if (s->options.lpc_type == FF_LPC_TYPE_NONE) { + s->options.min_prediction_order = 0; + s->options.max_prediction_order = 0; + } else if (s->options.lpc_type == FF_LPC_TYPE_FIXED) { + if (s->options.min_prediction_order > MAX_FIXED_ORDER) { + av_log(avctx, AV_LOG_WARNING, + "invalid min prediction order %d, clamped to %d\n", + s->options.min_prediction_order, MAX_FIXED_ORDER); + s->options.min_prediction_order = MAX_FIXED_ORDER; } - s->options.min_partition_order = avctx->min_partition_order; - } - if(avctx->max_partition_order >= 0) { - if(avctx->max_partition_order > MAX_PARTITION_ORDER) { - av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n", - avctx->max_partition_order); - return -1; + if (s->options.max_prediction_order > MAX_FIXED_ORDER) { + av_log(avctx, AV_LOG_WARNING, + "invalid max prediction order %d, clamped to %d\n", + s->options.max_prediction_order, MAX_FIXED_ORDER); + s->options.max_prediction_order = MAX_FIXED_ORDER; } - s->options.max_partition_order = avctx->max_partition_order; } - if(s->options.max_partition_order < s->options.min_partition_order) { - av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n", - s->options.min_partition_order, s->options.max_partition_order); + + if (s->options.max_prediction_order < s->options.min_prediction_order) { + av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n", + s->options.min_prediction_order, s->options.max_prediction_order); return -1; } - av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n", - s->options.min_partition_order, s->options.max_partition_order); - if(avctx->frame_size > 0) { - if(avctx->frame_size < FLAC_MIN_BLOCKSIZE || + if (avctx->frame_size > 0) { + if (avctx->frame_size < FLAC_MIN_BLOCKSIZE || avctx->frame_size > FLAC_MAX_BLOCKSIZE) { av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n", avctx->frame_size); @@ -328,65 +398,59 @@ static av_cold int flac_encode_init(AVCodecContext *avctx) s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms); } s->max_blocksize = s->avctx->frame_size; - av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->avctx->frame_size); - - /* set LPC precision */ - if(avctx->lpc_coeff_precision > 0) { - if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) { - av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n", - avctx->lpc_coeff_precision); - return -1; - } - s->options.lpc_coeff_precision = avctx->lpc_coeff_precision; - } else { - /* default LPC precision */ - s->options.lpc_coeff_precision = 15; - } - av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n", - s->options.lpc_coeff_precision); /* set maximum encoded frame size in verbatim mode */ s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size, - s->channels, 16); + s->channels, + s->avctx->bits_per_raw_sample); /* initialize MD5 context */ - s->md5ctx = av_malloc(av_md5_size); - if(!s->md5ctx) - return AVERROR_NOMEM; + s->md5ctx = av_md5_alloc(); + if (!s->md5ctx) + return AVERROR(ENOMEM); av_md5_init(s->md5ctx); streaminfo = av_malloc(FLAC_STREAMINFO_SIZE); + if (!streaminfo) + return AVERROR(ENOMEM); write_streaminfo(s, streaminfo); avctx->extradata = streaminfo; avctx->extradata_size = FLAC_STREAMINFO_SIZE; - s->frame_count = 0; + s->frame_count = 0; s->min_framesize = s->max_framesize; - avctx->coded_frame = avcodec_alloc_frame(); - avctx->coded_frame->key_frame = 1; + ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size, + s->options.max_prediction_order, FF_LPC_TYPE_LEVINSON); - return 0; + ff_bswapdsp_init(&s->bdsp); + ff_flacdsp_init(&s->flac_dsp, avctx->sample_fmt, + avctx->bits_per_raw_sample); + + dprint_compression_options(s); + + return ret; } -static void init_frame(FlacEncodeContext *s) + +static void init_frame(FlacEncodeContext *s, int nb_samples) { int i, ch; FlacFrame *frame; frame = &s->frame; - for(i=0; i<16; i++) { - if(s->avctx->frame_size == ff_flac_blocksize_table[i]) { - frame->blocksize = ff_flac_blocksize_table[i]; + for (i = 0; i < 16; i++) { + if (nb_samples == ff_flac_blocksize_table[i]) { + frame->blocksize = ff_flac_blocksize_table[i]; frame->bs_code[0] = i; frame->bs_code[1] = 0; break; } } - if(i == 16) { - frame->blocksize = s->avctx->frame_size; - if(frame->blocksize <= 256) { + if (i == 16) { + frame->blocksize = nb_samples; + if (frame->blocksize <= 256) { frame->bs_code[0] = 6; frame->bs_code[1] = frame->blocksize-1; } else { @@ -395,58 +459,141 @@ static void init_frame(FlacEncodeContext *s) } } - for(ch=0; chchannels; ch++) { - frame->subframes[ch].obits = 16; + for (ch = 0; ch < s->channels; ch++) { + FlacSubframe *sub = &frame->subframes[ch]; + + sub->wasted = 0; + sub->obits = s->avctx->bits_per_raw_sample; + + if (sub->obits > 16) + sub->rc.coding_mode = CODING_MODE_RICE2; + else + sub->rc.coding_mode = CODING_MODE_RICE; } + + frame->verbatim_only = 0; } + /** - * Copy channel-interleaved input samples into separate subframes + * Copy channel-interleaved input samples into separate subframes. */ -static void copy_samples(FlacEncodeContext *s, int16_t *samples) +static void copy_samples(FlacEncodeContext *s, const void *samples) { int i, j, ch; FlacFrame *frame; + int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 - + s->avctx->bits_per_raw_sample; + +#define COPY_SAMPLES(bits) do { \ + const int ## bits ## _t *samples0 = samples; \ + frame = &s->frame; \ + for (i = 0, j = 0; i < frame->blocksize; i++) \ + for (ch = 0; ch < s->channels; ch++, j++) \ + frame->subframes[ch].samples[i] = samples0[j] >> shift; \ +} while (0) + + if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S16) + COPY_SAMPLES(16); + else + COPY_SAMPLES(32); +} - frame = &s->frame; - for(i=0,j=0; iblocksize; i++) { - for(ch=0; chchannels; ch++,j++) { - frame->subframes[ch].samples[i] = samples[j]; + +static uint64_t rice_count_exact(int32_t *res, int n, int k) +{ + int i; + uint64_t count = 0; + + for (i = 0; i < n; i++) { + int32_t v = -2 * res[i] - 1; + v ^= v >> 31; + count += (v >> k) + 1 + k; + } + return count; +} + + +static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub, + int pred_order) +{ + int p, porder, psize; + int i, part_end; + uint64_t count = 0; + + /* subframe header */ + count += 8; + + /* subframe */ + if (sub->type == FLAC_SUBFRAME_CONSTANT) { + count += sub->obits; + } else if (sub->type == FLAC_SUBFRAME_VERBATIM) { + count += s->frame.blocksize * sub->obits; + } else { + /* warm-up samples */ + count += pred_order * sub->obits; + + /* LPC coefficients */ + if (sub->type == FLAC_SUBFRAME_LPC) + count += 4 + 5 + pred_order * s->options.lpc_coeff_precision; + + /* rice-encoded block */ + count += 2; + + /* partition order */ + porder = sub->rc.porder; + psize = s->frame.blocksize >> porder; + count += 4; + + /* residual */ + i = pred_order; + part_end = psize; + for (p = 0; p < 1 << porder; p++) { + int k = sub->rc.params[p]; + count += sub->rc.coding_mode; + count += rice_count_exact(&sub->residual[i], part_end - i, k); + i = part_end; + part_end = FFMIN(s->frame.blocksize, part_end + psize); } } + + return count; } #define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k))) /** - * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0 + * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0. */ -static int find_optimal_param(uint32_t sum, int n) +static int find_optimal_param(uint64_t sum, int n, int max_param) { int k; - uint32_t sum2; + uint64_t sum2; - if(sum <= n>>1) + if (sum <= n >> 1) return 0; - sum2 = sum-(n>>1); - k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n); - return FFMIN(k, MAX_RICE_PARAM); + sum2 = sum - (n >> 1); + k = av_log2(av_clipl_int32(sum2 / n)); + return FFMIN(k, max_param); } -static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder, - uint32_t *sums, int n, int pred_order) + +static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder, + uint64_t *sums, int n, int pred_order) { int i; - int k, cnt, part; - uint32_t all_bits; + int k, cnt, part, max_param; + uint64_t all_bits; - part = (1 << porder); + max_param = (1 << rc->coding_mode) - 2; + + part = (1 << porder); all_bits = 4 * part; cnt = (n >> porder) - pred_order; - for(i=0; iparams[i] = k; all_bits += rice_encode_count(sums[i], cnt, k); cnt = n >> porder; @@ -457,494 +604,374 @@ static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder, return all_bits; } + static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order, - uint32_t sums[][MAX_PARTITIONS]) + uint64_t sums[][MAX_PARTITIONS]) { int i, j; int parts; uint32_t *res, *res_end; /* sums for highest level */ - parts = (1 << pmax); - res = &data[pred_order]; + parts = (1 << pmax); + res = &data[pred_order]; res_end = &data[n >> pmax]; - for(i=0; i> pmax; + res_end += n >> pmax; } /* sums for lower levels */ - for(i=pmax-1; i>=pmin; i--) { + for (i = pmax - 1; i >= pmin; i--) { parts = (1 << i); - for(j=0; j= 0 && pmin <= MAX_PARTITION_ORDER); assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER); assert(pmin <= pmax); - udata = av_malloc(n * sizeof(uint32_t)); - for(i=0; i>31); - } + tmp_rc.coding_mode = rc->coding_mode; + + for (i = 0; i < n; i++) + rc->udata[i] = (2 * data[i]) ^ (data[i] >> 31); - calc_sums(pmin, pmax, udata, n, pred_order, sums); + calc_sums(pmin, pmax, rc->udata, n, pred_order, sums); opt_porder = pmin; bits[pmin] = UINT32_MAX; - for(i=pmin; i<=pmax; i++) { + for (i = pmin; i <= pmax; i++) { bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order); - if(bits[i] <= bits[opt_porder]) { + if (bits[i] <= bits[opt_porder]) { opt_porder = i; - *rc= tmp_rc; + *rc = tmp_rc; } } - av_freep(&udata); return bits[opt_porder]; } + static int get_max_p_order(int max_porder, int n, int order) { int porder = FFMIN(max_porder, av_log2(n^(n-1))); - if(order > 0) + if (order > 0) porder = FFMIN(porder, av_log2(n/order)); return porder; } -static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax, - int32_t *data, int n, int pred_order, - int bps) -{ - uint32_t bits; - pmin = get_max_p_order(pmin, n, pred_order); - pmax = get_max_p_order(pmax, n, pred_order); - bits = pred_order*bps + 6; - bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order); - return bits; -} -static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax, - int32_t *data, int n, int pred_order, - int bps, int precision) +static uint64_t find_subframe_rice_params(FlacEncodeContext *s, + FlacSubframe *sub, int pred_order) { - uint32_t bits; - pmin = get_max_p_order(pmin, n, pred_order); - pmax = get_max_p_order(pmax, n, pred_order); - bits = pred_order*bps + 4 + 5 + pred_order*precision + 6; - bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order); + int pmin = get_max_p_order(s->options.min_partition_order, + s->frame.blocksize, pred_order); + int pmax = get_max_p_order(s->options.max_partition_order, + s->frame.blocksize, pred_order); + + uint64_t bits = 8 + pred_order * sub->obits + 2 + sub->rc.coding_mode; + if (sub->type == FLAC_SUBFRAME_LPC) + bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision; + bits += calc_rice_params(&sub->rc, pmin, pmax, sub->residual, + s->frame.blocksize, pred_order); return bits; } -/** - * Apply Welch window function to audio block - */ -static void apply_welch_window(const int32_t *data, int len, double *w_data) -{ - int i, n2; - double w; - double c; - - assert(!(len&1)); //the optimization in r11881 does not support odd len - //if someone wants odd len extend the change in r11881 - - n2 = (len >> 1); - c = 2.0 / (len - 1.0); - - w_data+=n2; - data+=n2; - for(i=0; i 0); - memcpy(res, smp, n * sizeof(int32_t)); -} static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n, int order) { int i; - for(i=0; i> shift); - res[i+1] = smp[i+1] - (p1 >> shift); } } -static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n, - int order, const int32_t *coefs, int shift) -{ - int i; - for(i=0; i> shift); - res[i+1] = smp[i+1] - (p1 >> shift); - } -#else - switch(order) { - case 1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break; - case 2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break; - case 3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break; - case 4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break; - case 5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break; - case 6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break; - case 7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break; - case 8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break; - default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break; - } -#endif -} -static int encode_residual(FlacEncodeContext *ctx, int ch) +static int encode_residual_ch(FlacEncodeContext *s, int ch) { int i, n; - int min_order, max_order, opt_order, precision, omethod; - int min_porder, max_porder; + int min_order, max_order, opt_order, omethod; FlacFrame *frame; FlacSubframe *sub; int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER]; int shift[MAX_LPC_ORDER]; int32_t *res, *smp; - frame = &ctx->frame; - sub = &frame->subframes[ch]; - res = sub->residual; - smp = sub->samples; - n = frame->blocksize; + frame = &s->frame; + sub = &frame->subframes[ch]; + res = sub->residual; + smp = sub->samples; + n = frame->blocksize; /* CONSTANT */ - for(i=1; itype = sub->type_code = FLAC_SUBFRAME_CONSTANT; res[0] = smp[0]; - return sub->obits; + return subframe_count_exact(s, sub, 0); } /* VERBATIM */ - if(n < 5) { + if (frame->verbatim_only || n < 5) { sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; - encode_residual_verbatim(res, smp, n); - return sub->obits * n; + memcpy(res, smp, n * sizeof(int32_t)); + return subframe_count_exact(s, sub, 0); } - min_order = ctx->options.min_prediction_order; - max_order = ctx->options.max_prediction_order; - min_porder = ctx->options.min_partition_order; - max_porder = ctx->options.max_partition_order; - precision = ctx->options.lpc_coeff_precision; - omethod = ctx->options.prediction_order_method; + min_order = s->options.min_prediction_order; + max_order = s->options.max_prediction_order; + omethod = s->options.prediction_order_method; /* FIXED */ - if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) { - uint32_t bits[MAX_FIXED_ORDER+1]; - if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER; + sub->type = FLAC_SUBFRAME_FIXED; + if (s->options.lpc_type == FF_LPC_TYPE_NONE || + s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) { + uint64_t bits[MAX_FIXED_ORDER+1]; + if (max_order > MAX_FIXED_ORDER) + max_order = MAX_FIXED_ORDER; opt_order = 0; - bits[0] = UINT32_MAX; - for(i=min_order; i<=max_order; i++) { + bits[0] = UINT32_MAX; + for (i = min_order; i <= max_order; i++) { encode_residual_fixed(res, smp, n, i); - bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, - n, i, sub->obits); - if(bits[i] < bits[opt_order]) { + bits[i] = find_subframe_rice_params(s, sub, i); + if (bits[i] < bits[opt_order]) opt_order = i; - } } - sub->order = opt_order; - sub->type = FLAC_SUBFRAME_FIXED; + sub->order = opt_order; sub->type_code = sub->type | sub->order; - if(sub->order != max_order) { + if (sub->order != max_order) { encode_residual_fixed(res, smp, n, sub->order); - return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n, - sub->order, sub->obits); + find_subframe_rice_params(s, sub, sub->order); } - return bits[sub->order]; + return subframe_count_exact(s, sub, sub->order); } /* LPC */ - opt_order = ff_lpc_calc_coefs(&ctx->dsp, smp, n, min_order, max_order, - precision, coefs, shift, ctx->options.use_lpc, - omethod, MAX_LPC_SHIFT, 0); - - if(omethod == ORDER_METHOD_2LEVEL || - omethod == ORDER_METHOD_4LEVEL || - omethod == ORDER_METHOD_8LEVEL) { + sub->type = FLAC_SUBFRAME_LPC; + opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order, + s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type, + s->options.lpc_passes, omethod, + MAX_LPC_SHIFT, 0); + + if (omethod == ORDER_METHOD_2LEVEL || + omethod == ORDER_METHOD_4LEVEL || + omethod == ORDER_METHOD_8LEVEL) { int levels = 1 << omethod; - uint32_t bits[levels]; - int order; - int opt_index = levels-1; - opt_order = max_order-1; + uint64_t bits[1 << ORDER_METHOD_8LEVEL]; + int order = -1; + int opt_index = levels-1; + opt_order = max_order-1; bits[opt_index] = UINT32_MAX; - for(i=levels-1; i>=0; i--) { + for (i = levels-1; i >= 0; i--) { + int last_order = order; order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1; - if(order < 0) order = 0; - encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]); - bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, - res, n, order+1, sub->obits, precision); - if(bits[i] < bits[opt_index]) { + order = av_clip(order, min_order - 1, max_order - 1); + if (order == last_order) + continue; + s->flac_dsp.lpc_encode(res, smp, n, order+1, coefs[order], + shift[order]); + bits[i] = find_subframe_rice_params(s, sub, order+1); + if (bits[i] < bits[opt_index]) { opt_index = i; opt_order = order; } } opt_order++; - } else if(omethod == ORDER_METHOD_SEARCH) { + } else if (omethod == ORDER_METHOD_SEARCH) { // brute-force optimal order search - uint32_t bits[MAX_LPC_ORDER]; + uint64_t bits[MAX_LPC_ORDER]; opt_order = 0; - bits[0] = UINT32_MAX; - for(i=min_order-1; irc, min_porder, max_porder, - res, n, i+1, sub->obits, precision); - if(bits[i] < bits[opt_order]) { + bits[0] = UINT32_MAX; + for (i = min_order-1; i < max_order; i++) { + s->flac_dsp.lpc_encode(res, smp, n, i+1, coefs[i], shift[i]); + bits[i] = find_subframe_rice_params(s, sub, i+1); + if (bits[i] < bits[opt_order]) opt_order = i; - } } opt_order++; - } else if(omethod == ORDER_METHOD_LOG) { - uint32_t bits[MAX_LPC_ORDER]; + } else if (omethod == ORDER_METHOD_LOG) { + uint64_t bits[MAX_LPC_ORDER]; int step; - opt_order= min_order - 1 + (max_order-min_order)/3; + opt_order = min_order - 1 + (max_order-min_order)/3; memset(bits, -1, sizeof(bits)); - for(step=16 ;step; step>>=1){ - int last= opt_order; - for(i=last-step; i<=last+step; i+= step){ - if(i=max_order || bits[i] < UINT32_MAX) + for (step = 16; step; step >>= 1) { + int last = opt_order; + for (i = last-step; i <= last+step; i += step) { + if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX) continue; - encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]); - bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder, - res, n, i+1, sub->obits, precision); - if(bits[i] < bits[opt_order]) - opt_order= i; + s->flac_dsp.lpc_encode(res, smp, n, i+1, coefs[i], shift[i]); + bits[i] = find_subframe_rice_params(s, sub, i+1); + if (bits[i] < bits[opt_order]) + opt_order = i; } } opt_order++; } - sub->order = opt_order; - sub->type = FLAC_SUBFRAME_LPC; + sub->order = opt_order; sub->type_code = sub->type | (sub->order-1); - sub->shift = shift[sub->order-1]; - for(i=0; iorder; i++) { + sub->shift = shift[sub->order-1]; + for (i = 0; i < sub->order; i++) sub->coefs[i] = coefs[sub->order-1][i]; - } - encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift); - return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order, - sub->obits, precision); + + s->flac_dsp.lpc_encode(res, smp, n, sub->order, sub->coefs, sub->shift); + + find_subframe_rice_params(s, sub, sub->order); + + return subframe_count_exact(s, sub, sub->order); } -static int encode_residual_v(FlacEncodeContext *ctx, int ch) + +static int count_frame_header(FlacEncodeContext *s) { - int i, n; - FlacFrame *frame; - FlacSubframe *sub; - int32_t *res, *smp; + uint8_t av_unused tmp; + int count; + + /* + <14> Sync code + <1> Reserved + <1> Blocking strategy + <4> Block size in inter-channel samples + <4> Sample rate + <4> Channel assignment + <3> Sample size in bits + <1> Reserved + */ + count = 32; + + /* coded frame number */ + PUT_UTF8(s->frame_count, tmp, count += 8;) + + /* explicit block size */ + if (s->frame.bs_code[0] == 6) + count += 8; + else if (s->frame.bs_code[0] == 7) + count += 16; + + /* explicit sample rate */ + count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12)) * 8; + + /* frame header CRC-8 */ + count += 8; + + return count; +} - frame = &ctx->frame; - sub = &frame->subframes[ch]; - res = sub->residual; - smp = sub->samples; - n = frame->blocksize; - /* CONSTANT */ - for(i=1; itype = sub->type_code = FLAC_SUBFRAME_CONSTANT; - res[0] = smp[0]; - return sub->obits; - } +static int encode_frame(FlacEncodeContext *s) +{ + int ch; + uint64_t count; - /* VERBATIM */ - sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM; - encode_residual_verbatim(res, smp, n); - return sub->obits * n; + count = count_frame_header(s); + + for (ch = 0; ch < s->channels; ch++) + count += encode_residual_ch(s, ch); + + count += (8 - (count & 7)) & 7; // byte alignment + count += 16; // CRC-16 + + count >>= 3; + if (count > INT_MAX) + return AVERROR_BUG; + return count; } -static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n) + +static void remove_wasted_bits(FlacEncodeContext *s) +{ + int ch, i; + + for (ch = 0; ch < s->channels; ch++) { + FlacSubframe *sub = &s->frame.subframes[ch]; + int32_t v = 0; + + for (i = 0; i < s->frame.blocksize; i++) { + v |= sub->samples[i]; + if (v & 1) + break; + } + + if (v && !(v & 1)) { + v = av_ctz(v); + + for (i = 0; i < s->frame.blocksize; i++) + sub->samples[i] >>= v; + + sub->wasted = v; + sub->obits -= v; + + /* for 24-bit, check if removing wasted bits makes the range better + suited for using RICE instead of RICE2 for entropy coding */ + if (sub->obits <= 17) + sub->rc.coding_mode = CODING_MODE_RICE; + } + } +} + + +static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n, + int max_rice_param) { int i, best; int32_t lt, rt; @@ -954,8 +981,8 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n) /* calculate sum of 2nd order residual for each channel */ sum[0] = sum[1] = sum[2] = sum[3] = 0; - for(i=2; i> 1); sum[3] += FFABS(lt - rt); @@ -963,9 +990,9 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n) sum[1] += FFABS(rt); } /* estimate bit counts */ - for(i=0; i<4; i++) { - k = find_optimal_param(2*sum[i], n); - sum[i] = rice_encode_count(2*sum[i], n, k); + for (i = 0; i < 4; i++) { + k = find_optimal_param(2 * sum[i], n, max_rice_param); + sum[i] = rice_encode_count( 2 * sum[i], n, k); } /* calculate score for each mode */ @@ -976,75 +1003,70 @@ static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n) /* return mode with lowest score */ best = 0; - for(i=1; i<4; i++) { - if(score[i] < score[best]) { + for (i = 1; i < 4; i++) + if (score[i] < score[best]) best = i; - } - } - if(best == 0) { - return FLAC_CHMODE_INDEPENDENT; - } else if(best == 1) { - return FLAC_CHMODE_LEFT_SIDE; - } else if(best == 2) { - return FLAC_CHMODE_RIGHT_SIDE; - } else { - return FLAC_CHMODE_MID_SIDE; - } + + return best; } + /** - * Perform stereo channel decorrelation + * Perform stereo channel decorrelation. */ -static void channel_decorrelation(FlacEncodeContext *ctx) +static void channel_decorrelation(FlacEncodeContext *s) { FlacFrame *frame; int32_t *left, *right; int i, n; - frame = &ctx->frame; - n = frame->blocksize; + frame = &s->frame; + n = frame->blocksize; left = frame->subframes[0].samples; right = frame->subframes[1].samples; - if(ctx->channels != 2) { + if (s->channels != 2) { frame->ch_mode = FLAC_CHMODE_INDEPENDENT; return; } - frame->ch_mode = estimate_stereo_mode(left, right, n); + if (s->options.ch_mode < 0) { + int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2; + frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param); + } else + frame->ch_mode = s->options.ch_mode; /* perform decorrelation and adjust bits-per-sample */ - if(frame->ch_mode == FLAC_CHMODE_INDEPENDENT) { + if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT) return; - } - if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) { + if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) { int32_t tmp; - for(i=0; i> 1; - right[i] = tmp - right[i]; + for (i = 0; i < n; i++) { + tmp = left[i]; + left[i] = (tmp + right[i]) >> 1; + right[i] = tmp - right[i]; } frame->subframes[1].obits++; - } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) { - for(i=0; ich_mode == FLAC_CHMODE_LEFT_SIDE) { + for (i = 0; i < n; i++) right[i] = left[i] - right[i]; - } frame->subframes[1].obits++; } else { - for(i=0; isubframes[0].obits++; } } + static void write_utf8(PutBitContext *pb, uint32_t val) { uint8_t tmp; PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);) } -static void output_frame_header(FlacEncodeContext *s) + +static void write_frame_header(FlacEncodeContext *s) { FlacFrame *frame; int crc; @@ -1054,276 +1076,307 @@ static void output_frame_header(FlacEncodeContext *s) put_bits(&s->pb, 16, 0xFFF8); put_bits(&s->pb, 4, frame->bs_code[0]); put_bits(&s->pb, 4, s->sr_code[0]); - if(frame->ch_mode == FLAC_CHMODE_INDEPENDENT) { + + if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT) put_bits(&s->pb, 4, s->channels-1); - } else { - put_bits(&s->pb, 4, frame->ch_mode); - } - put_bits(&s->pb, 3, 4); /* bits-per-sample code */ + else + put_bits(&s->pb, 4, frame->ch_mode + FLAC_MAX_CHANNELS - 1); + + put_bits(&s->pb, 3, s->bps_code); put_bits(&s->pb, 1, 0); write_utf8(&s->pb, s->frame_count); - if(frame->bs_code[0] == 6) { + + if (frame->bs_code[0] == 6) put_bits(&s->pb, 8, frame->bs_code[1]); - } else if(frame->bs_code[0] == 7) { + else if (frame->bs_code[0] == 7) put_bits(&s->pb, 16, frame->bs_code[1]); - } - if(s->sr_code[0] == 12) { + + if (s->sr_code[0] == 12) put_bits(&s->pb, 8, s->sr_code[1]); - } else if(s->sr_code[0] > 12) { + else if (s->sr_code[0] > 12) put_bits(&s->pb, 16, s->sr_code[1]); - } + flush_put_bits(&s->pb); - crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, - s->pb.buf, put_bits_count(&s->pb)>>3); + crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf, + put_bits_count(&s->pb) >> 3); put_bits(&s->pb, 8, crc); } -static void output_subframe_constant(FlacEncodeContext *s, int ch) -{ - FlacSubframe *sub; - int32_t res; - - sub = &s->frame.subframes[ch]; - res = sub->residual[0]; - put_sbits(&s->pb, sub->obits, res); -} -static void output_subframe_verbatim(FlacEncodeContext *s, int ch) +static void write_subframes(FlacEncodeContext *s) { - int i; - FlacFrame *frame; - FlacSubframe *sub; - int32_t res; - - frame = &s->frame; - sub = &frame->subframes[ch]; - - for(i=0; iblocksize; i++) { - res = sub->residual[i]; - put_sbits(&s->pb, sub->obits, res); - } -} - -static void output_residual(FlacEncodeContext *ctx, int ch) -{ - int i, j, p, n, parts; - int k, porder, psize, res_cnt; - FlacFrame *frame; - FlacSubframe *sub; - int32_t *res; - - frame = &ctx->frame; - sub = &frame->subframes[ch]; - res = sub->residual; - n = frame->blocksize; - - /* rice-encoded block */ - put_bits(&ctx->pb, 2, 0); - - /* partition order */ - porder = sub->rc.porder; - psize = n >> porder; - parts = (1 << porder); - put_bits(&ctx->pb, 4, porder); - res_cnt = psize - sub->order; - - /* residual */ - j = sub->order; - for(p=0; prc.params[p]; - put_bits(&ctx->pb, 4, k); - if(p == 1) res_cnt = psize; - for(i=0; ipb, res[j], k, INT32_MAX, 0); - } - } -} - -static void output_subframe_fixed(FlacEncodeContext *ctx, int ch) -{ - int i; - FlacFrame *frame; - FlacSubframe *sub; - - frame = &ctx->frame; - sub = &frame->subframes[ch]; - - /* warm-up samples */ - for(i=0; iorder; i++) { - put_sbits(&ctx->pb, sub->obits, sub->residual[i]); - } - - /* residual */ - output_residual(ctx, ch); -} - -static void output_subframe_lpc(FlacEncodeContext *ctx, int ch) -{ - int i, cbits; - FlacFrame *frame; - FlacSubframe *sub; - - frame = &ctx->frame; - sub = &frame->subframes[ch]; - - /* warm-up samples */ - for(i=0; iorder; i++) { - put_sbits(&ctx->pb, sub->obits, sub->residual[i]); - } - - /* LPC coefficients */ - cbits = ctx->options.lpc_coeff_precision; - put_bits(&ctx->pb, 4, cbits-1); - put_sbits(&ctx->pb, 5, sub->shift); - for(i=0; iorder; i++) { - put_sbits(&ctx->pb, cbits, sub->coefs[i]); - } - - /* residual */ - output_residual(ctx, ch); -} - -static void output_subframes(FlacEncodeContext *s) -{ - FlacFrame *frame; - FlacSubframe *sub; int ch; - frame = &s->frame; - - for(ch=0; chchannels; ch++) { - sub = &frame->subframes[ch]; + for (ch = 0; ch < s->channels; ch++) { + FlacSubframe *sub = &s->frame.subframes[ch]; + int i, p, porder, psize; + int32_t *part_end; + int32_t *res = sub->residual; + int32_t *frame_end = &sub->residual[s->frame.blocksize]; /* subframe header */ put_bits(&s->pb, 1, 0); put_bits(&s->pb, 6, sub->type_code); - put_bits(&s->pb, 1, 0); /* no wasted bits */ + put_bits(&s->pb, 1, !!sub->wasted); + if (sub->wasted) + put_bits(&s->pb, sub->wasted, 1); /* subframe */ - if(sub->type == FLAC_SUBFRAME_CONSTANT) { - output_subframe_constant(s, ch); - } else if(sub->type == FLAC_SUBFRAME_VERBATIM) { - output_subframe_verbatim(s, ch); - } else if(sub->type == FLAC_SUBFRAME_FIXED) { - output_subframe_fixed(s, ch); - } else if(sub->type == FLAC_SUBFRAME_LPC) { - output_subframe_lpc(s, ch); + if (sub->type == FLAC_SUBFRAME_CONSTANT) { + put_sbits(&s->pb, sub->obits, res[0]); + } else if (sub->type == FLAC_SUBFRAME_VERBATIM) { + while (res < frame_end) + put_sbits(&s->pb, sub->obits, *res++); + } else { + /* warm-up samples */ + for (i = 0; i < sub->order; i++) + put_sbits(&s->pb, sub->obits, *res++); + + /* LPC coefficients */ + if (sub->type == FLAC_SUBFRAME_LPC) { + int cbits = s->options.lpc_coeff_precision; + put_bits( &s->pb, 4, cbits-1); + put_sbits(&s->pb, 5, sub->shift); + for (i = 0; i < sub->order; i++) + put_sbits(&s->pb, cbits, sub->coefs[i]); + } + + /* rice-encoded block */ + put_bits(&s->pb, 2, sub->rc.coding_mode - 4); + + /* partition order */ + porder = sub->rc.porder; + psize = s->frame.blocksize >> porder; + put_bits(&s->pb, 4, porder); + + /* residual */ + part_end = &sub->residual[psize]; + for (p = 0; p < 1 << porder; p++) { + int k = sub->rc.params[p]; + put_bits(&s->pb, sub->rc.coding_mode, k); + while (res < part_end) + set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0); + part_end = FFMIN(frame_end, part_end + psize); + } } } } -static void output_frame_footer(FlacEncodeContext *s) + +static void write_frame_footer(FlacEncodeContext *s) { int crc; flush_put_bits(&s->pb); - crc = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, - s->pb.buf, put_bits_count(&s->pb)>>3)); + crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf, + put_bits_count(&s->pb)>>3)); put_bits(&s->pb, 16, crc); flush_put_bits(&s->pb); } -static void update_md5_sum(FlacEncodeContext *s, int16_t *samples) + +static int write_frame(FlacEncodeContext *s, AVPacket *avpkt) { -#ifdef WORDS_BIGENDIAN - int i; - for(i = 0; i < s->frame.blocksize*s->channels; i++) { - int16_t smp = le2me_16(samples[i]); - av_md5_update(s->md5ctx, (uint8_t *)&smp, 2); - } -#else - av_md5_update(s->md5ctx, (uint8_t *)samples, s->frame.blocksize*s->channels*2); + init_put_bits(&s->pb, avpkt->data, avpkt->size); + write_frame_header(s); + write_subframes(s); + write_frame_footer(s); + return put_bits_count(&s->pb) >> 3; +} + + +static int update_md5_sum(FlacEncodeContext *s, const void *samples) +{ + const uint8_t *buf; + int buf_size = s->frame.blocksize * s->channels * + ((s->avctx->bits_per_raw_sample + 7) / 8); + + if (s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) { + av_fast_malloc(&s->md5_buffer, &s->md5_buffer_size, buf_size); + if (!s->md5_buffer) + return AVERROR(ENOMEM); + } + + if (s->avctx->bits_per_raw_sample <= 16) { + buf = (const uint8_t *)samples; +#if HAVE_BIGENDIAN + s->bdsp.bswap16_buf((uint16_t *) s->md5_buffer, + (const uint16_t *) samples, buf_size / 2); + buf = s->md5_buffer; #endif + } else { + int i; + const int32_t *samples0 = samples; + uint8_t *tmp = s->md5_buffer; + + for (i = 0; i < s->frame.blocksize * s->channels; i++) { + int32_t v = samples0[i] >> 8; + *tmp++ = (v ) & 0xFF; + *tmp++ = (v >> 8) & 0xFF; + *tmp++ = (v >> 16) & 0xFF; + } + buf = s->md5_buffer; + } + av_md5_update(s->md5ctx, buf, buf_size); + + return 0; } -static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame, - int buf_size, void *data) + +static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, + const AVFrame *frame, int *got_packet_ptr) { - int ch; FlacEncodeContext *s; - int16_t *samples = data; - int out_bytes; - int reencoded=0; + int frame_bytes, out_bytes, ret; s = avctx->priv_data; - if(buf_size < s->max_framesize*2) { - av_log(avctx, AV_LOG_ERROR, "output buffer too small\n"); - return 0; - } - /* when the last block is reached, update the header in extradata */ - if (!data) { + if (!frame) { s->max_framesize = s->max_encoded_framesize; av_md5_final(s->md5ctx, s->md5sum); write_streaminfo(s, avctx->extradata); + +#if FF_API_SIDEDATA_ONLY_PKT +FF_DISABLE_DEPRECATION_WARNINGS + if (avctx->side_data_only_packets && !s->flushed) { +FF_ENABLE_DEPRECATION_WARNINGS +#else + if (!s->flushed) { +#endif + uint8_t *side_data = av_packet_new_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA, + avctx->extradata_size); + if (!side_data) + return AVERROR(ENOMEM); + memcpy(side_data, avctx->extradata, avctx->extradata_size); + + avpkt->pts = s->next_pts; + + *got_packet_ptr = 1; + s->flushed = 1; + } + return 0; } - init_frame(s); + /* change max_framesize for small final frame */ + if (frame->nb_samples < s->frame.blocksize) { + s->max_framesize = ff_flac_get_max_frame_size(frame->nb_samples, + s->channels, + avctx->bits_per_raw_sample); + } - copy_samples(s, samples); + init_frame(s, frame->nb_samples); + + copy_samples(s, frame->data[0]); channel_decorrelation(s); - for(ch=0; chchannels; ch++) { - encode_residual(s, ch); - } + remove_wasted_bits(s); -write_frame: - init_put_bits(&s->pb, frame, buf_size); - output_frame_header(s); - output_subframes(s); - output_frame_footer(s); - out_bytes = put_bits_count(&s->pb) >> 3; - - if(out_bytes > s->max_framesize) { - if(reencoded) { - /* still too large. must be an error. */ - av_log(avctx, AV_LOG_ERROR, "error encoding frame\n"); - return -1; - } + frame_bytes = encode_frame(s); - /* frame too large. use verbatim mode */ - for(ch=0; chchannels; ch++) { - encode_residual_v(s, ch); + /* Fall back on verbatim mode if the compressed frame is larger than it + would be if encoded uncompressed. */ + if (frame_bytes < 0 || frame_bytes > s->max_framesize) { + s->frame.verbatim_only = 1; + frame_bytes = encode_frame(s); + if (frame_bytes < 0) { + av_log(avctx, AV_LOG_ERROR, "Bad frame count\n"); + return frame_bytes; } - reencoded = 1; - goto write_frame; } + if ((ret = ff_alloc_packet(avpkt, frame_bytes))) { + av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n"); + return ret; + } + + out_bytes = write_frame(s, avpkt); + s->frame_count++; - s->sample_count += avctx->frame_size; - update_md5_sum(s, samples); + s->sample_count += frame->nb_samples; + if ((ret = update_md5_sum(s, frame->data[0])) < 0) { + av_log(avctx, AV_LOG_ERROR, "Error updating MD5 checksum\n"); + return ret; + } if (out_bytes > s->max_encoded_framesize) s->max_encoded_framesize = out_bytes; if (out_bytes < s->min_framesize) s->min_framesize = out_bytes; - return out_bytes; + avpkt->pts = frame->pts; + avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples); + avpkt->size = out_bytes; + + s->next_pts = avpkt->pts + avpkt->duration; + + *got_packet_ptr = 1; + return 0; } + static av_cold int flac_encode_close(AVCodecContext *avctx) { if (avctx->priv_data) { FlacEncodeContext *s = avctx->priv_data; av_freep(&s->md5ctx); + av_freep(&s->md5_buffer); + ff_lpc_end(&s->lpc_ctx); } av_freep(&avctx->extradata); avctx->extradata_size = 0; - av_freep(&avctx->coded_frame); return 0; } -AVCodec flac_encoder = { - "flac", - CODEC_TYPE_AUDIO, - CODEC_ID_FLAC, - sizeof(FlacEncodeContext), - flac_encode_init, - flac_encode_frame, - flac_encode_close, - NULL, - .capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY, - .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, - .long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"), +#define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM +static const AVOption options[] = { +{ "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, MAX_LPC_PRECISION, FLAGS }, +{ "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, "lpc_type" }, +{ "none", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_NONE }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, +{ "fixed", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_FIXED }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, +{ "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, +{ "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, "lpc_type" }, +{ "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes), AV_OPT_TYPE_INT, {.i64 = 1 }, 1, INT_MAX, FLAGS }, +{ "min_partition_order", NULL, offsetof(FlacEncodeContext, options.min_partition_order), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, MAX_PARTITION_ORDER, FLAGS }, +{ "max_partition_order", NULL, offsetof(FlacEncodeContext, options.max_partition_order), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, MAX_PARTITION_ORDER, FLAGS }, +{ "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, ORDER_METHOD_LOG, FLAGS, "predm" }, +{ "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST }, INT_MIN, INT_MAX, FLAGS, "predm" }, +{ "2level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" }, +{ "4level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" }, +{ "8level", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" }, +{ "search", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, "predm" }, +{ "log", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_LOG }, INT_MIN, INT_MAX, FLAGS, "predm" }, +{ "ch_mode", "Stereo decorrelation mode", offsetof(FlacEncodeContext, options.ch_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, FLAC_CHMODE_MID_SIDE, FLAGS, "ch_mode" }, +{ "auto", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1 }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, +{ "indep", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_INDEPENDENT }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, +{ "left_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_LEFT_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, +{ "right_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_RIGHT_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, +{ "mid_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_MID_SIDE }, INT_MIN, INT_MAX, FLAGS, "ch_mode" }, +{ "min_prediction_order", NULL, offsetof(FlacEncodeContext, options.min_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS }, +{ "max_prediction_order", NULL, offsetof(FlacEncodeContext, options.max_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS }, + +{ NULL }, +}; + +static const AVClass flac_encoder_class = { + "FLAC encoder", + av_default_item_name, + options, + LIBAVUTIL_VERSION_INT, +}; + +AVCodec ff_flac_encoder = { + .name = "flac", + .long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"), + .type = AVMEDIA_TYPE_AUDIO, + .id = AV_CODEC_ID_FLAC, + .priv_data_size = sizeof(FlacEncodeContext), + .init = flac_encode_init, + .encode2 = flac_encode_frame, + .close = flac_encode_close, + .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY, + .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16, + AV_SAMPLE_FMT_S32, + AV_SAMPLE_FMT_NONE }, + .priv_class = &flac_encoder_class, };