X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Fg722.c;h=830877e3365eded53956896590aa365f332cfcb5;hb=1da2a20763ae9ca579d5fd20763065871ddf6311;hp=0efc390afcdb17ede05a0323f459769fd1e53659;hpb=d36beb3f6902b1217beda576aa18abf7eb72b03c;p=ffmpeg diff --git a/libavcodec/g722.c b/libavcodec/g722.c index 0efc390afcd..830877e3365 100644 --- a/libavcodec/g722.c +++ b/libavcodec/g722.c @@ -7,26 +7,25 @@ * Copyright (c) 2009 Kenan Gillet * Copyright (c) 2010 Martin Storsjo * - * This file is part of FFmpeg. + * This file is part of Libav. * - * FFmpeg is free software; you can redistribute it and/or + * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * - * FFmpeg is distributed in the hope that it will be useful, + * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public - * License along with FFmpeg; if not, write to the Free Software + * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file - * * G.722 ADPCM audio codec * * This G.722 decoder is a bit-exact implementation of the ITU G.722 @@ -37,45 +36,8 @@ * respectively of each byte are ignored. */ -#include "avcodec.h" #include "mathops.h" -#include "get_bits.h" - -#define PREV_SAMPLES_BUF_SIZE 1024 - -#define FREEZE_INTERVAL 128 - -typedef struct { - int16_t prev_samples[PREV_SAMPLES_BUF_SIZE]; ///< memory of past decoded samples - int prev_samples_pos; ///< the number of values in prev_samples - - /** - * The band[0] and band[1] correspond respectively to the lower band and higher band. - */ - struct G722Band { - int16_t s_predictor; ///< predictor output value - int32_t s_zero; ///< previous output signal from zero predictor - int8_t part_reconst_mem[2]; ///< signs of previous partially reconstructed signals - int16_t prev_qtzd_reconst; ///< previous quantized reconstructed signal (internal value, using low_inv_quant4) - int16_t pole_mem[2]; ///< second-order pole section coefficient buffer - int32_t diff_mem[6]; ///< quantizer difference signal memory - int16_t zero_mem[6]; ///< Seventh-order zero section coefficient buffer - int16_t log_factor; ///< delayed 2-logarithmic quantizer factor - int16_t scale_factor; ///< delayed quantizer scale factor - } band[2]; - - struct TrellisNode { - struct G722Band state; - uint32_t ssd; - int path; - } *node_buf[2], **nodep_buf[2]; - - struct TrellisPath { - int value; - int prev; - } *paths[2]; -} G722Context; - +#include "g722.h" static const int8_t sign_lookup[2] = { -1, 1 }; @@ -86,7 +48,7 @@ static const int16_t inv_log2_table[32] = { 3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008 }; static const int16_t high_log_factor_step[2] = { 798, -214 }; -static const int16_t high_inv_quant[4] = { -926, -202, 926, 202 }; +const int16_t ff_g722_high_inv_quant[4] = { -926, -202, 926, 202 }; /** * low_log_factor_step[index] == wl[rl42[index]] */ @@ -94,11 +56,11 @@ static const int16_t low_log_factor_step[16] = { -60, 3042, 1198, 538, 334, 172, 58, -30, 3042, 1198, 538, 334, 172, 58, -30, -60 }; -static const int16_t low_inv_quant4[16] = { +const int16_t ff_g722_low_inv_quant4[16] = { 0, -2557, -1612, -1121, -786, -530, -323, -150, 2557, 1612, 1121, 786, 530, 323, 150, 0 }; -static const int16_t low_inv_quant6[64] = { +const int16_t ff_g722_low_inv_quant6[64] = { -17, -17, -17, -17, -3101, -2738, -2376, -2088, -1873, -1689, -1535, -1399, -1279, -1170, -1072, -982, -899, -822, -750, -682, -618, -558, -501, -447, @@ -109,15 +71,35 @@ static const int16_t low_inv_quant6[64] = { 211, 170, 130, 91, 54, 17, -54, -17 }; -/** - * quadrature mirror filter (QMF) coefficients - * - * ITU-T G.722 Table 11 - */ -static const int16_t qmf_coeffs[12] = { - 3, -11, 12, 32, -210, 951, 3876, -805, 362, -156, 53, -11, -}; - +static inline void s_zero(int cur_diff, struct G722Band *band) +{ + int s_zero = 0; + + #define ACCUM(k, x, d) do { \ + int tmp = x; \ + band->zero_mem[k] = ((band->zero_mem[k] * 255) >> 8) + \ + d*((band->diff_mem[k]^cur_diff) < 0 ? -128 : 128); \ + band->diff_mem[k] = tmp; \ + s_zero += (tmp * band->zero_mem[k]) >> 15; \ + } while (0) + if (cur_diff) { + ACCUM(5, band->diff_mem[4], 1); + ACCUM(4, band->diff_mem[3], 1); + ACCUM(3, band->diff_mem[2], 1); + ACCUM(2, band->diff_mem[1], 1); + ACCUM(1, band->diff_mem[0], 1); + ACCUM(0, cur_diff << 1, 1); + } else { + ACCUM(5, band->diff_mem[4], 0); + ACCUM(4, band->diff_mem[3], 0); + ACCUM(3, band->diff_mem[2], 0); + ACCUM(2, band->diff_mem[1], 0); + ACCUM(1, band->diff_mem[0], 0); + ACCUM(0, cur_diff << 1, 0); + } + #undef ACCUM + band->s_zero = s_zero; +} /** * adaptive predictor @@ -127,7 +109,7 @@ static const int16_t qmf_coeffs[12] = { */ static void do_adaptive_prediction(struct G722Band *band, const int cur_diff) { - int sg[2], limit, i, cur_qtzd_reconst; + int sg[2], limit, cur_qtzd_reconst; const int cur_part_reconst = band->s_zero + cur_diff < 0; @@ -142,23 +124,7 @@ static void do_adaptive_prediction(struct G722Band *band, const int cur_diff) limit = 15360 - band->pole_mem[1]; band->pole_mem[0] = av_clip(-192 * sg[0] + (band->pole_mem[0] * 255 >> 8), -limit, limit); - - if (cur_diff) { - for (i = 0; i < 6; i++) - band->zero_mem[i] = ((band->zero_mem[i]*255) >> 8) + - ((band->diff_mem[i]^cur_diff) < 0 ? -128 : 128); - } else - for (i = 0; i < 6; i++) - band->zero_mem[i] = (band->zero_mem[i]*255) >> 8; - - for (i = 5; i > 0; i--) - band->diff_mem[i] = band->diff_mem[i-1]; - band->diff_mem[0] = av_clip_int16(cur_diff << 1); - - band->s_zero = 0; - for (i = 5; i >= 0; i--) - band->s_zero += (band->zero_mem[i]*band->diff_mem[i]) >> 15; - + s_zero(cur_diff, band); cur_qtzd_reconst = av_clip_int16((band->s_predictor + cur_diff) << 1); band->s_predictor = av_clip_int16(band->s_zero + @@ -167,17 +133,17 @@ static void do_adaptive_prediction(struct G722Band *band, const int cur_diff) band->prev_qtzd_reconst = cur_qtzd_reconst; } -static int inline linear_scale_factor(const int log_factor) +static inline int linear_scale_factor(const int log_factor) { const int wd1 = inv_log2_table[(log_factor >> 6) & 31]; const int shift = log_factor >> 11; return shift < 0 ? wd1 >> -shift : wd1 << shift; } -static void update_low_predictor(struct G722Band *band, const int ilow) +void ff_g722_update_low_predictor(struct G722Band *band, const int ilow) { do_adaptive_prediction(band, - band->scale_factor * low_inv_quant4[ilow] >> 10); + band->scale_factor * ff_g722_low_inv_quant4[ilow] >> 10); // quantizer adaptation band->log_factor = av_clip((band->log_factor * 127 >> 7) + @@ -185,7 +151,7 @@ static void update_low_predictor(struct G722Band *band, const int ilow) band->scale_factor = linear_scale_factor(band->log_factor - (8 << 11)); } -static void update_high_predictor(struct G722Band *band, const int dhigh, +void ff_g722_update_high_predictor(struct G722Band *band, const int dhigh, const int ihigh) { do_adaptive_prediction(band, dhigh); @@ -195,389 +161,3 @@ static void update_high_predictor(struct G722Band *band, const int dhigh, high_log_factor_step[ihigh&1], 0, 22528); band->scale_factor = linear_scale_factor(band->log_factor - (10 << 11)); } - -static void apply_qmf(const int16_t *prev_samples, int *xout1, int *xout2) -{ - int i; - - *xout1 = 0; - *xout2 = 0; - for (i = 0; i < 12; i++) { - MAC16(*xout2, prev_samples[2*i ], qmf_coeffs[i ]); - MAC16(*xout1, prev_samples[2*i+1], qmf_coeffs[11-i]); - } -} - -static av_cold int g722_init(AVCodecContext * avctx) -{ - G722Context *c = avctx->priv_data; - - if (avctx->channels != 1) { - av_log(avctx, AV_LOG_ERROR, "Only mono tracks are allowed.\n"); - return AVERROR_INVALIDDATA; - } - avctx->sample_fmt = AV_SAMPLE_FMT_S16; - - switch (avctx->bits_per_coded_sample) { - case 8: - case 7: - case 6: - break; - default: - av_log(avctx, AV_LOG_WARNING, "Unsupported bits_per_coded_sample [%d], " - "assuming 8\n", - avctx->bits_per_coded_sample); - case 0: - avctx->bits_per_coded_sample = 8; - break; - } - - c->band[0].scale_factor = 8; - c->band[1].scale_factor = 2; - c->prev_samples_pos = 22; - - if (avctx->lowres) - avctx->sample_rate /= 2; - - if (avctx->trellis) { - int frontier = 1 << avctx->trellis; - int max_paths = frontier * FREEZE_INTERVAL; - int i; - for (i = 0; i < 2; i++) { - c->paths[i] = av_mallocz(max_paths * sizeof(**c->paths)); - c->node_buf[i] = av_mallocz(2 * frontier * sizeof(**c->node_buf)); - c->nodep_buf[i] = av_mallocz(2 * frontier * sizeof(**c->nodep_buf)); - } - } - - return 0; -} - -static av_cold int g722_close(AVCodecContext *avctx) -{ - G722Context *c = avctx->priv_data; - int i; - for (i = 0; i < 2; i++) { - av_freep(&c->paths[i]); - av_freep(&c->node_buf[i]); - av_freep(&c->nodep_buf[i]); - } - return 0; -} - -#if CONFIG_ADPCM_G722_DECODER -static const int16_t low_inv_quant5[32] = { - -35, -35, -2919, -2195, -1765, -1458, -1219, -1023, - -858, -714, -587, -473, -370, -276, -190, -110, - 2919, 2195, 1765, 1458, 1219, 1023, 858, 714, - 587, 473, 370, 276, 190, 110, 35, -35 -}; - -static const int16_t *low_inv_quants[3] = { low_inv_quant6, low_inv_quant5, - low_inv_quant4 }; - -static int g722_decode_frame(AVCodecContext *avctx, void *data, - int *data_size, AVPacket *avpkt) -{ - G722Context *c = avctx->priv_data; - int16_t *out_buf = data; - int j, out_len = 0; - const int skip = 8 - avctx->bits_per_coded_sample; - const int16_t *quantizer_table = low_inv_quants[skip]; - GetBitContext gb; - - init_get_bits(&gb, avpkt->data, avpkt->size * 8); - - for (j = 0; j < avpkt->size; j++) { - int ilow, ihigh, rlow; - - ihigh = get_bits(&gb, 2); - ilow = get_bits(&gb, 6 - skip); - skip_bits(&gb, skip); - - rlow = av_clip((c->band[0].scale_factor * quantizer_table[ilow] >> 10) - + c->band[0].s_predictor, -16384, 16383); - - update_low_predictor(&c->band[0], ilow >> (2 - skip)); - - if (!avctx->lowres) { - const int dhigh = c->band[1].scale_factor * - high_inv_quant[ihigh] >> 10; - const int rhigh = av_clip(dhigh + c->band[1].s_predictor, - -16384, 16383); - int xout1, xout2; - - update_high_predictor(&c->band[1], dhigh, ihigh); - - c->prev_samples[c->prev_samples_pos++] = rlow + rhigh; - c->prev_samples[c->prev_samples_pos++] = rlow - rhigh; - apply_qmf(c->prev_samples + c->prev_samples_pos - 24, - &xout1, &xout2); - out_buf[out_len++] = av_clip_int16(xout1 >> 12); - out_buf[out_len++] = av_clip_int16(xout2 >> 12); - if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { - memmove(c->prev_samples, - c->prev_samples + c->prev_samples_pos - 22, - 22 * sizeof(c->prev_samples[0])); - c->prev_samples_pos = 22; - } - } else - out_buf[out_len++] = rlow; - } - *data_size = out_len << 1; - return avpkt->size; -} - -AVCodec ff_adpcm_g722_decoder = { - .name = "g722", - .type = AVMEDIA_TYPE_AUDIO, - .id = CODEC_ID_ADPCM_G722, - .priv_data_size = sizeof(G722Context), - .init = g722_init, - .decode = g722_decode_frame, - .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), - .max_lowres = 1, -}; -#endif - -#if CONFIG_ADPCM_G722_ENCODER -static const int16_t low_quant[33] = { - 35, 72, 110, 150, 190, 233, 276, 323, - 370, 422, 473, 530, 587, 650, 714, 786, - 858, 940, 1023, 1121, 1219, 1339, 1458, 1612, - 1765, 1980, 2195, 2557, 2919 -}; - -static inline void filter_samples(G722Context *c, const int16_t *samples, - int *xlow, int *xhigh) -{ - int xout1, xout2; - c->prev_samples[c->prev_samples_pos++] = samples[0]; - c->prev_samples[c->prev_samples_pos++] = samples[1]; - apply_qmf(c->prev_samples + c->prev_samples_pos - 24, &xout1, &xout2); - *xlow = xout1 + xout2 >> 13; - *xhigh = xout1 - xout2 >> 13; - if (c->prev_samples_pos >= PREV_SAMPLES_BUF_SIZE) { - memmove(c->prev_samples, - c->prev_samples + c->prev_samples_pos - 22, - 22 * sizeof(c->prev_samples[0])); - c->prev_samples_pos = 22; - } -} - -static inline int encode_high(const struct G722Band *state, int xhigh) -{ - int diff = av_clip_int16(xhigh - state->s_predictor); - int pred = 141 * state->scale_factor >> 8; - /* = diff >= 0 ? (diff < pred) + 2 : diff >= -pred */ - return ((diff ^ (diff >> (sizeof(diff)*8-1))) < pred) + 2*(diff >= 0); -} - -static inline int encode_low(const struct G722Band* state, int xlow) -{ - int diff = av_clip_int16(xlow - state->s_predictor); - /* = diff >= 0 ? diff : -(diff + 1) */ - int limit = diff ^ (diff >> (sizeof(diff)*8-1)); - int i = 0; - limit = limit + 1 << 10; - if (limit > low_quant[8] * state->scale_factor) - i = 9; - while (i < 29 && limit > low_quant[i] * state->scale_factor) - i++; - return (diff < 0 ? (i < 2 ? 63 : 33) : 61) - i; -} - -static int g722_encode_trellis(AVCodecContext *avctx, - uint8_t *dst, int buf_size, void *data) -{ - G722Context *c = avctx->priv_data; - const int16_t *samples = data; - int i, j, k; - int frontier = 1 << avctx->trellis; - struct TrellisNode **nodes[2]; - struct TrellisNode **nodes_next[2]; - int pathn[2] = {0, 0}, froze = -1; - struct TrellisPath *p[2]; - - for (i = 0; i < 2; i++) { - nodes[i] = c->nodep_buf[i]; - nodes_next[i] = c->nodep_buf[i] + frontier; - memset(c->nodep_buf[i], 0, 2 * frontier * sizeof(*c->nodep_buf)); - nodes[i][0] = c->node_buf[i] + frontier; - nodes[i][0]->ssd = 0; - nodes[i][0]->path = 0; - nodes[i][0]->state = c->band[i]; - } - - for (i = 0; i < buf_size >> 1; i++) { - int xlow, xhigh; - struct TrellisNode *next[2]; - int heap_pos[2] = {0, 0}; - - for (j = 0; j < 2; j++) { - next[j] = c->node_buf[j] + frontier*(i & 1); - memset(nodes_next[j], 0, frontier * sizeof(**nodes_next)); - } - - filter_samples(c, &samples[2*i], &xlow, &xhigh); - - for (j = 0; j < frontier && nodes[0][j]; j++) { - /* Only k >> 2 affects the future adaptive state, therefore testing - * small steps that don't change k >> 2 is useless, the orignal - * value from encode_low is better than them. Since we step k - * in steps of 4, make sure range is a multiple of 4, so that - * we don't miss the original value from encode_low. */ - int range = j < frontier/2 ? 4 : 0; - struct TrellisNode *cur_node = nodes[0][j]; - - int ilow = encode_low(&cur_node->state, xlow); - - for (k = ilow - range; k <= ilow + range && k <= 63; k += 4) { - int decoded, dec_diff, pos; - uint32_t ssd; - struct TrellisNode* node; - - if (k < 0) - continue; - - decoded = av_clip((cur_node->state.scale_factor * - low_inv_quant6[k] >> 10) - + cur_node->state.s_predictor, -16384, 16383); - dec_diff = xlow - decoded; - -#define STORE_NODE(index, UPDATE, VALUE)\ - ssd = cur_node->ssd + dec_diff*dec_diff;\ - /* Check for wraparound. Using 64 bit ssd counters would \ - * be simpler, but is slower on x86 32 bit. */\ - if (ssd < cur_node->ssd)\ - continue;\ - if (heap_pos[index] < frontier) {\ - pos = heap_pos[index]++;\ - assert(pathn[index] < FREEZE_INTERVAL * frontier);\ - node = nodes_next[index][pos] = next[index]++;\ - node->path = pathn[index]++;\ - } else {\ - /* Try to replace one of the leaf nodes with the new \ - * one, but not always testing the same leaf position */\ - pos = (frontier>>1) + (heap_pos[index] & ((frontier>>1) - 1));\ - if (ssd >= nodes_next[index][pos]->ssd)\ - continue;\ - heap_pos[index]++;\ - node = nodes_next[index][pos];\ - }\ - node->ssd = ssd;\ - node->state = cur_node->state;\ - UPDATE;\ - c->paths[index][node->path].value = VALUE;\ - c->paths[index][node->path].prev = cur_node->path;\ - /* Sift the newly inserted node up in the heap to restore \ - * the heap property */\ - while (pos > 0) {\ - int parent = (pos - 1) >> 1;\ - if (nodes_next[index][parent]->ssd <= ssd)\ - break;\ - FFSWAP(struct TrellisNode*, nodes_next[index][parent],\ - nodes_next[index][pos]);\ - pos = parent;\ - } - STORE_NODE(0, update_low_predictor(&node->state, k >> 2), k); - } - } - - for (j = 0; j < frontier && nodes[1][j]; j++) { - int ihigh; - struct TrellisNode *cur_node = nodes[1][j]; - - /* We don't try to get any initial guess for ihigh via - * encode_high - since there's only 4 possible values, test - * them all. Testing all of these gives a much, much larger - * gain than testing a larger range around ilow. */ - for (ihigh = 0; ihigh < 4; ihigh++) { - int dhigh, decoded, dec_diff, pos; - uint32_t ssd; - struct TrellisNode* node; - - dhigh = cur_node->state.scale_factor * - high_inv_quant[ihigh] >> 10; - decoded = av_clip(dhigh + cur_node->state.s_predictor, - -16384, 16383); - dec_diff = xhigh - decoded; - - STORE_NODE(1, update_high_predictor(&node->state, dhigh, ihigh), ihigh); - } - } - - for (j = 0; j < 2; j++) { - FFSWAP(struct TrellisNode**, nodes[j], nodes_next[j]); - - if (nodes[j][0]->ssd > (1 << 16)) { - for (k = 1; k < frontier && nodes[j][k]; k++) - nodes[j][k]->ssd -= nodes[j][0]->ssd; - nodes[j][0]->ssd = 0; - } - } - - if (i == froze + FREEZE_INTERVAL) { - p[0] = &c->paths[0][nodes[0][0]->path]; - p[1] = &c->paths[1][nodes[1][0]->path]; - for (j = i; j > froze; j--) { - dst[j] = p[1]->value << 6 | p[0]->value; - p[0] = &c->paths[0][p[0]->prev]; - p[1] = &c->paths[1][p[1]->prev]; - } - froze = i; - pathn[0] = pathn[1] = 0; - memset(nodes[0] + 1, 0, (frontier - 1)*sizeof(**nodes)); - memset(nodes[1] + 1, 0, (frontier - 1)*sizeof(**nodes)); - } - } - - p[0] = &c->paths[0][nodes[0][0]->path]; - p[1] = &c->paths[1][nodes[1][0]->path]; - for (j = i; j > froze; j--) { - dst[j] = p[1]->value << 6 | p[0]->value; - p[0] = &c->paths[0][p[0]->prev]; - p[1] = &c->paths[1][p[1]->prev]; - } - c->band[0] = nodes[0][0]->state; - c->band[1] = nodes[1][0]->state; - - return i; -} - -static int g722_encode_frame(AVCodecContext *avctx, - uint8_t *dst, int buf_size, void *data) -{ - G722Context *c = avctx->priv_data; - const int16_t *samples = data; - int i; - - if (avctx->trellis) - return g722_encode_trellis(avctx, dst, buf_size, data); - - for (i = 0; i < buf_size >> 1; i++) { - int xlow, xhigh, ihigh, ilow; - filter_samples(c, &samples[2*i], &xlow, &xhigh); - ihigh = encode_high(&c->band[1], xhigh); - ilow = encode_low(&c->band[0], xlow); - update_high_predictor(&c->band[1], c->band[1].scale_factor * - high_inv_quant[ihigh] >> 10, ihigh); - update_low_predictor(&c->band[0], ilow >> 2); - *dst++ = ihigh << 6 | ilow; - } - return i; -} - -AVCodec ff_adpcm_g722_encoder = { - .name = "g722", - .type = AVMEDIA_TYPE_AUDIO, - .id = CODEC_ID_ADPCM_G722, - .priv_data_size = sizeof(G722Context), - .init = g722_init, - .close = g722_close, - .encode = g722_encode_frame, - .long_name = NULL_IF_CONFIG_SMALL("G.722 ADPCM"), - .sample_fmts = (enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, -}; -#endif -