X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Fopus_pvq.c;h=fa349c47da08387f4b6ec3694ef2ced987c825f8;hb=fea471347218be0b8d1313b8f14ea9512e555d76;hp=e424cb2e03c9b83854e26392793ba9ac2dc517d3;hpb=8c6f18e4449ad2bb3c30621b9dca45acc86332cb;p=ffmpeg diff --git a/libavcodec/opus_pvq.c b/libavcodec/opus_pvq.c index e424cb2e03c..fa349c47da0 100644 --- a/libavcodec/opus_pvq.c +++ b/libavcodec/opus_pvq.c @@ -33,7 +33,7 @@ static inline int16_t celt_cos(int16_t x) { x = (MUL16(x, x) + 4096) >> 13; x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x))))); - return 1+x; + return x + 1; } static inline int celt_log2tan(int isin, int icos) @@ -89,18 +89,16 @@ static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride, Xptr = X; for (i = 0; i < len - stride; i++) { - float x1, x2; - x1 = Xptr[0]; - x2 = Xptr[stride]; + float x1 = Xptr[0]; + float x2 = Xptr[stride]; Xptr[stride] = c * x2 + s * x1; *Xptr++ = c * x1 - s * x2; } Xptr = &X[len - 2 * stride - 1]; for (i = len - 2 * stride - 1; i >= 0; i--) { - float x1, x2; - x1 = Xptr[0]; - x2 = Xptr[stride]; + float x1 = Xptr[0]; + float x2 = Xptr[stride]; Xptr[stride] = c * x2 + s * x1; *Xptr-- = c * x1 - s * x2; } @@ -132,8 +130,6 @@ static inline void celt_exp_rotation(float *X, uint32_t len, stride2++; } - /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for - extract_collapse_mask().*/ len /= stride; for (i = 0; i < stride; i++) { if (encode) { @@ -150,20 +146,15 @@ static inline void celt_exp_rotation(float *X, uint32_t len, static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B) { - uint32_t collapse_mask; - int N0; - int i, j; + int i, j, N0 = N / B; + uint32_t collapse_mask = 0; if (B <= 1) return 1; - /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for - exp_rotation().*/ - N0 = N/B; - collapse_mask = 0; for (i = 0; i < B; i++) for (j = 0; j < N0; j++) - collapse_mask |= (iy[i*N0+j]!=0)< 2) { - uint32_t q; - /*Lots of pulses case:*/ if (K >= N) { const uint32_t *row = ff_celt_pvq_u_row[N]; @@ -441,9 +412,10 @@ static int celt_pvq_search(float *X, int *y, int K, int N) } static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, - enum CeltSpread spread, uint32_t blocks, float gain) + enum CeltSpread spread, uint32_t blocks, float gain, + void *scratch) { - int y[176]; + int *y = scratch; celt_exp_rotation(X, N, blocks, K, spread, 1); gain /= sqrtf(celt_pvq_search(X, y, K, N)); @@ -456,9 +428,10 @@ static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_ /** Decode pulse vector and combine the result with the pitch vector to produce the final normalised signal in the current band. */ static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K, - enum CeltSpread spread, uint32_t blocks, float gain) + enum CeltSpread spread, uint32_t blocks, float gain, + void *scratch) { - int y[176]; + int *y = scratch; gain /= sqrtf(celt_decode_pulses(rc, y, N, K)); celt_normalize_residual(y, X, N, gain); @@ -466,373 +439,19 @@ static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint3 return celt_extract_collapse_mask(y, N, blocks); } -uint32_t ff_celt_decode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, - float *X, float *Y, int N, int b, uint32_t blocks, - float *lowband, int duration, float *lowband_out, int level, - float gain, float *lowband_scratch, int fill) -{ - const uint8_t *cache; - int dualstereo, split; - int imid = 0, iside = 0; - uint32_t N0 = N; - int N_B; - int N_B0; - int B0 = blocks; - int time_divide = 0; - int recombine = 0; - int inv = 0; - float mid = 0, side = 0; - int longblocks = (B0 == 1); - uint32_t cm = 0; - - N_B0 = N_B = N / blocks; - split = dualstereo = (Y != NULL); - - if (N == 1) { - /* special case for one sample */ - int i; - float *x = X; - for (i = 0; i <= dualstereo; i++) { - int sign = 0; - if (f->remaining2 >= 1<<3) { - sign = ff_opus_rc_get_raw(rc, 1); - f->remaining2 -= 1 << 3; - b -= 1 << 3; - } - x[0] = sign ? -1.0f : 1.0f; - x = Y; - } - if (lowband_out) - lowband_out[0] = X[0]; - return 1; - } - - if (!dualstereo && level == 0) { - int tf_change = f->tf_change[band]; - int k; - if (tf_change > 0) - recombine = tf_change; - /* Band recombining to increase frequency resolution */ - - if (lowband && - (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { - int j; - for (j = 0; j < N; j++) - lowband_scratch[j] = lowband[j]; - lowband = lowband_scratch; - } - - for (k = 0; k < recombine; k++) { - if (lowband) - celt_haar1(lowband, N >> k, 1 << k); - fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; - } - blocks >>= recombine; - N_B <<= recombine; - - /* Increasing the time resolution */ - while ((N_B & 1) == 0 && tf_change < 0) { - if (lowband) - celt_haar1(lowband, N_B, blocks); - fill |= fill << blocks; - blocks <<= 1; - N_B >>= 1; - time_divide++; - tf_change++; - } - B0 = blocks; - N_B0 = N_B; - - /* Reorganize the samples in time order instead of frequency order */ - if (B0 > 1 && lowband) - celt_deinterleave_hadamard(f->scratch, lowband, N_B >> recombine, - B0 << recombine, longblocks); - } - - /* If we need 1.5 more bit than we can produce, split the band in two. */ - cache = ff_celt_cache_bits + - ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; - if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { - N >>= 1; - Y = X + N; - split = 1; - duration -= 1; - if (blocks == 1) - fill = (fill & 1) | (fill << 1); - blocks = (blocks + 1) >> 1; - } - - if (split) { - int qn; - int itheta = 0; - int mbits, sbits, delta; - int qalloc; - int pulse_cap; - int offset; - int orig_fill; - int tell; - - /* Decide on the resolution to give to the split parameter theta */ - pulse_cap = ff_celt_log_freq_range[band] + duration * 8; - offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : - CELT_QTHETA_OFFSET); - qn = (dualstereo && band >= f->intensity_stereo) ? 1 : - celt_compute_qn(N, b, offset, pulse_cap, dualstereo); - tell = opus_rc_tell_frac(rc); - if (qn != 1) { - /* Entropy coding of the angle. We use a uniform pdf for the - time split, a step for stereo, and a triangular one for the rest. */ - if (dualstereo && N > 2) - itheta = ff_opus_rc_dec_uint_step(rc, qn/2); - else if (dualstereo || B0 > 1) - itheta = ff_opus_rc_dec_uint(rc, qn+1); - else - itheta = ff_opus_rc_dec_uint_tri(rc, qn); - itheta = itheta * 16384 / qn; - /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate. - Let's do that at higher complexity */ - } else if (dualstereo) { - inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0; - itheta = 0; - } - qalloc = opus_rc_tell_frac(rc) - tell; - b -= qalloc; - - orig_fill = fill; - if (itheta == 0) { - imid = 32767; - iside = 0; - fill = av_mod_uintp2(fill, blocks); - delta = -16384; - } else if (itheta == 16384) { - imid = 0; - iside = 32767; - fill &= ((1 << blocks) - 1) << blocks; - delta = 16384; - } else { - imid = celt_cos(itheta); - iside = celt_cos(16384-itheta); - /* This is the mid vs side allocation that minimizes squared error - in that band. */ - delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid)); - } - - mid = imid / 32768.0f; - side = iside / 32768.0f; - - /* This is a special case for N=2 that only works for stereo and takes - advantage of the fact that mid and side are orthogonal to encode - the side with just one bit. */ - if (N == 2 && dualstereo) { - int c; - int sign = 0; - float tmp; - float *x2, *y2; - mbits = b; - /* Only need one bit for the side */ - sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0; - mbits -= sbits; - c = (itheta > 8192); - f->remaining2 -= qalloc+sbits; - - x2 = c ? Y : X; - y2 = c ? X : Y; - if (sbits) - sign = ff_opus_rc_get_raw(rc, 1); - sign = 1 - 2 * sign; - /* We use orig_fill here because we want to fold the side, but if - itheta==16384, we'll have cleared the low bits of fill. */ - cm = ff_celt_decode_band(f, rc, band, x2, NULL, N, mbits, blocks, - lowband, duration, lowband_out, level, gain, - lowband_scratch, orig_fill); - /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), - and there's no need to worry about mixing with the other channel. */ - y2[0] = -sign * x2[1]; - y2[1] = sign * x2[0]; - X[0] *= mid; - X[1] *= mid; - Y[0] *= side; - Y[1] *= side; - tmp = X[0]; - X[0] = tmp - Y[0]; - Y[0] = tmp + Y[0]; - tmp = X[1]; - X[1] = tmp - Y[1]; - Y[1] = tmp + Y[1]; - } else { - /* "Normal" split code */ - float *next_lowband2 = NULL; - float *next_lowband_out1 = NULL; - int next_level = 0; - int rebalance; - - /* Give more bits to low-energy MDCTs than they would - * otherwise deserve */ - if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) { - if (itheta > 8192) - /* Rough approximation for pre-echo masking */ - delta -= delta >> (4 - duration); - else - /* Corresponds to a forward-masking slope of - * 1.5 dB per 10 ms */ - delta = FFMIN(0, delta + (N << 3 >> (5 - duration))); - } - mbits = av_clip((b - delta) / 2, 0, b); - sbits = b - mbits; - f->remaining2 -= qalloc; - - if (lowband && !dualstereo) - next_lowband2 = lowband + N; /* >32-bit split case */ - - /* Only stereo needs to pass on lowband_out. - * Otherwise, it's handled at the end */ - if (dualstereo) - next_lowband_out1 = lowband_out; - else - next_level = level + 1; - - rebalance = f->remaining2; - if (mbits >= sbits) { - /* In stereo mode, we do not apply a scaling to the mid - * because we need the normalized mid for folding later */ - cm = ff_celt_decode_band(f, rc, band, X, NULL, N, mbits, blocks, - lowband, duration, next_lowband_out1, - next_level, dualstereo ? 1.0f : (gain * mid), - lowband_scratch, fill); - - rebalance = mbits - (rebalance - f->remaining2); - if (rebalance > 3 << 3 && itheta != 0) - sbits += rebalance - (3 << 3); - - /* For a stereo split, the high bits of fill are always zero, - * so no folding will be done to the side. */ - cm |= ff_celt_decode_band(f, rc, band, Y, NULL, N, sbits, blocks, - next_lowband2, duration, NULL, - next_level, gain * side, NULL, - fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); - } else { - /* For a stereo split, the high bits of fill are always zero, - * so no folding will be done to the side. */ - cm = ff_celt_decode_band(f, rc, band, Y, NULL, N, sbits, blocks, - next_lowband2, duration, NULL, - next_level, gain * side, NULL, - fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); - - rebalance = sbits - (rebalance - f->remaining2); - if (rebalance > 3 << 3 && itheta != 16384) - mbits += rebalance - (3 << 3); - - /* In stereo mode, we do not apply a scaling to the mid because - * we need the normalized mid for folding later */ - cm |= ff_celt_decode_band(f, rc, band, X, NULL, N, mbits, blocks, - lowband, duration, next_lowband_out1, - next_level, dualstereo ? 1.0f : (gain * mid), - lowband_scratch, fill); - } - } - } else { - /* This is the basic no-split case */ - uint32_t q = celt_bits2pulses(cache, b); - uint32_t curr_bits = celt_pulses2bits(cache, q); - f->remaining2 -= curr_bits; - - /* Ensures we can never bust the budget */ - while (f->remaining2 < 0 && q > 0) { - f->remaining2 += curr_bits; - curr_bits = celt_pulses2bits(cache, --q); - f->remaining2 -= curr_bits; - } - - if (q != 0) { - /* Finally do the actual quantization */ - cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), - f->spread, blocks, gain); - } else { - /* If there's no pulse, fill the band anyway */ - int j; - uint32_t cm_mask = (1 << blocks) - 1; - fill &= cm_mask; - if (!fill) { - for (j = 0; j < N; j++) - X[j] = 0.0f; - } else { - if (!lowband) { - /* Noise */ - for (j = 0; j < N; j++) - X[j] = (((int32_t)celt_rng(f)) >> 20); - cm = cm_mask; - } else { - /* Folded spectrum */ - for (j = 0; j < N; j++) { - /* About 48 dB below the "normal" folding level */ - X[j] = lowband[j] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); - } - cm = fill; - } - celt_renormalize_vector(X, N, gain); - } - } - } - - /* This code is used by the decoder and by the resynthesis-enabled encoder */ - if (dualstereo) { - int j; - if (N != 2) - celt_stereo_merge(X, Y, mid, N); - if (inv) { - for (j = 0; j < N; j++) - Y[j] *= -1; - } - } else if (level == 0) { - int k; - - /* Undo the sample reorganization going from time order to frequency order */ - if (B0 > 1) - celt_interleave_hadamard(f->scratch, X, N_B>>recombine, - B0<>= 1; - N_B <<= 1; - cm |= cm >> blocks; - celt_haar1(X, N_B, blocks); - } - - for (k = 0; k < recombine; k++) { - cm = ff_celt_bit_deinterleave[cm]; - celt_haar1(X, N0>>k, 1<remaining2 >= 1<<3) { - ff_opus_rc_put_raw(rc, x[0] < 0, 1); + for (i = 0; i <= stereo; i++) { + int sign = 0; + if (f->remaining2 >= 1 << 3) { + if (quant) { + sign = x[0] < 0; + ff_opus_rc_put_raw(rc, sign, 1); + } else { + sign = ff_opus_rc_get_raw(rc, 1); + } f->remaining2 -= 1 << 3; - b -= 1 << 3; } - x[0] = 1.0f - 2.0f*(x[0] < 0); + x[0] = 1.0f - 2.0f*sign; x = Y; } if (lowband_out) @@ -898,7 +528,7 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, return 1; } - if (!dualstereo && level == 0) { + if (!stereo && level == 0) { int tf_change = f->tf_change[band]; int k; if (tf_change > 0) @@ -907,14 +537,14 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, if (lowband && (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) { - int j; - for (j = 0; j < N; j++) - lowband_scratch[j] = lowband[j]; + for (i = 0; i < N; i++) + lowband_scratch[i] = lowband[i]; lowband = lowband_scratch; } for (k = 0; k < recombine; k++) { - celt_haar1(X, N >> k, 1 << k); + if (quant || lowband) + celt_haar1(quant ? X : lowband, N >> k, 1 << k); fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2; } blocks >>= recombine; @@ -922,7 +552,8 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, /* Increasing the time resolution */ while ((N_B & 1) == 0 && tf_change < 0) { - celt_haar1(X, N_B, blocks); + if (quant || lowband) + celt_haar1(quant ? X : lowband, N_B, blocks); fill |= fill << blocks; blocks <<= 1; N_B >>= 1; @@ -933,15 +564,16 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, N_B0 = N_B; /* Reorganize the samples in time order instead of frequency order */ - if (B0 > 1) - celt_deinterleave_hadamard(f->scratch, X, N_B >> recombine, - B0 << recombine, longblocks); + if (B0 > 1 && (quant || lowband)) + celt_deinterleave_hadamard(f->scratch, quant ? X : lowband, + N_B >> recombine, B0 << recombine, + longblocks); } /* If we need 1.5 more bit than we can produce, split the band in two. */ cache = ff_celt_cache_bits + ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band]; - if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { + if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) { N >>= 1; Y = X + N; split = 1; @@ -953,7 +585,7 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, if (split) { int qn; - int itheta = celt_calc_theta(X, Y, dualstereo, N); + int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0; int mbits, sbits, delta; int qalloc; int pulse_cap; @@ -963,49 +595,58 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, /* Decide on the resolution to give to the split parameter theta */ pulse_cap = ff_celt_log_freq_range[band] + duration * 8; - offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : + offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE : CELT_QTHETA_OFFSET); - qn = (dualstereo && band >= f->intensity_stereo) ? 1 : - celt_compute_qn(N, b, offset, pulse_cap, dualstereo); + qn = (stereo && band >= f->intensity_stereo) ? 1 : + celt_compute_qn(N, b, offset, pulse_cap, stereo); tell = opus_rc_tell_frac(rc); - if (qn != 1) { - - itheta = (itheta*qn + 8192) >> 14; - + if (quant) + itheta = (itheta*qn + 8192) >> 14; /* Entropy coding of the angle. We use a uniform pdf for the * time split, a step for stereo, and a triangular one for the rest. */ - if (dualstereo && N > 2) - ff_opus_rc_enc_uint_step(rc, itheta, qn / 2); - else if (dualstereo || B0 > 1) - ff_opus_rc_enc_uint(rc, itheta, qn + 1); - else - ff_opus_rc_enc_uint_tri(rc, itheta, qn); - itheta = itheta * 16384 / qn; - - if (dualstereo) { - if (itheta == 0) - celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], - f->block[1].lin_energy[band], N); + if (quant) { + if (stereo && N > 2) + ff_opus_rc_enc_uint_step(rc, itheta, qn / 2); + else if (stereo || B0 > 1) + ff_opus_rc_enc_uint(rc, itheta, qn + 1); else - celt_stereo_ms_decouple(X, Y, N); + ff_opus_rc_enc_uint_tri(rc, itheta, qn); + itheta = itheta * 16384 / qn; + if (stereo) { + if (itheta == 0) + celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], + f->block[1].lin_energy[band], N); + else + celt_stereo_ms_decouple(X, Y, N); + } + } else { + if (stereo && N > 2) + itheta = ff_opus_rc_dec_uint_step(rc, qn / 2); + else if (stereo || B0 > 1) + itheta = ff_opus_rc_dec_uint(rc, qn+1); + else + itheta = ff_opus_rc_dec_uint_tri(rc, qn); + itheta = itheta * 16384 / qn; } - } else if (dualstereo) { - inv = itheta > 8192; - if (inv) { - int j; - for (j = 0; j < N; j++) - Y[j] = -Y[j]; - } - celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], - f->block[1].lin_energy[band], N); - - if (b > 2 << 3 && f->remaining2 > 2 << 3) { - ff_opus_rc_enc_log(rc, inv, 2); + } else if (stereo) { + if (quant) { + inv = itheta > 8192; + if (inv) { + for (i = 0; i < N; i++) + Y[i] *= -1; + } + celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band], + f->block[1].lin_energy[band], N); + + if (b > 2 << 3 && f->remaining2 > 2 << 3) { + ff_opus_rc_enc_log(rc, inv, 2); + } else { + inv = 0; + } } else { - inv = 0; + inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0; } - itheta = 0; } qalloc = opus_rc_tell_frac(rc) - tell; @@ -1036,7 +677,7 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, /* This is a special case for N=2 that only works for stereo and takes advantage of the fact that mid and side are orthogonal to encode the side with just one bit. */ - if (N == 2 && dualstereo) { + if (N == 2 && stereo) { int c; int sign = 0; float tmp; @@ -1051,15 +692,18 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, x2 = c ? Y : X; y2 = c ? X : Y; if (sbits) { - sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; - ff_opus_rc_put_raw(rc, sign, 1); + if (quant) { + sign = x2[0]*y2[1] - x2[1]*y2[0] < 0; + ff_opus_rc_put_raw(rc, sign, 1); + } else { + sign = ff_opus_rc_get_raw(rc, 1); + } } sign = 1 - 2 * sign; /* We use orig_fill here because we want to fold the side, but if itheta==16384, we'll have cleared the low bits of fill. */ - cm = ff_celt_encode_band(f, rc, band, x2, NULL, N, mbits, blocks, - lowband, duration, lowband_out, level, gain, - lowband_scratch, orig_fill); + cm = rec(f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration, + lowband_out, level, gain, lowband_scratch, orig_fill); /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse), and there's no need to worry about mixing with the other channel. */ y2[0] = -sign * x2[1]; @@ -1080,10 +724,11 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, float *next_lowband_out1 = NULL; int next_level = 0; int rebalance; + uint32_t cmt; /* Give more bits to low-energy MDCTs than they would * otherwise deserve */ - if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) { + if (B0 > 1 && !stereo && (itheta & 0x3fff)) { if (itheta > 8192) /* Rough approximation for pre-echo masking */ delta -= delta >> (4 - duration); @@ -1096,12 +741,12 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, sbits = b - mbits; f->remaining2 -= qalloc; - if (lowband && !dualstereo) + if (lowband && !stereo) next_lowband2 = lowband + N; /* >32-bit split case */ /* Only stereo needs to pass on lowband_out. * Otherwise, it's handled at the end */ - if (dualstereo) + if (stereo) next_lowband_out1 = lowband_out; else next_level = level + 1; @@ -1110,39 +755,34 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, if (mbits >= sbits) { /* In stereo mode, we do not apply a scaling to the mid * because we need the normalized mid for folding later */ - cm = ff_celt_encode_band(f, rc, band, X, NULL, N, mbits, blocks, - lowband, duration, next_lowband_out1, - next_level, dualstereo ? 1.0f : (gain * mid), - lowband_scratch, fill); - + cm = rec(f, rc, band, X, NULL, N, mbits, blocks, lowband, + duration, next_lowband_out1, next_level, + stereo ? 1.0f : (gain * mid), lowband_scratch, fill); rebalance = mbits - (rebalance - f->remaining2); if (rebalance > 3 << 3 && itheta != 0) sbits += rebalance - (3 << 3); /* For a stereo split, the high bits of fill are always zero, * so no folding will be done to the side. */ - cm |= ff_celt_encode_band(f, rc, band, Y, NULL, N, sbits, blocks, - next_lowband2, duration, NULL, - next_level, gain * side, NULL, - fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); + cmt = rec(f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2, + duration, NULL, next_level, gain * side, NULL, + fill >> blocks); + cm |= cmt << ((B0 >> 1) & (stereo - 1)); } else { /* For a stereo split, the high bits of fill are always zero, * so no folding will be done to the side. */ - cm = ff_celt_encode_band(f, rc, band, Y, NULL, N, sbits, blocks, - next_lowband2, duration, NULL, - next_level, gain * side, NULL, - fill >> blocks) << ((B0 >> 1) & (dualstereo - 1)); - + cm = rec(f, rc, band, Y, NULL, N, sbits, blocks, next_lowband2, + duration, NULL, next_level, gain * side, NULL, fill >> blocks); + cm <<= ((B0 >> 1) & (stereo - 1)); rebalance = sbits - (rebalance - f->remaining2); if (rebalance > 3 << 3 && itheta != 16384) mbits += rebalance - (3 << 3); /* In stereo mode, we do not apply a scaling to the mid because * we need the normalized mid for folding later */ - cm |= ff_celt_encode_band(f, rc, band, X, NULL, N, mbits, blocks, - lowband, duration, next_lowband_out1, - next_level, dualstereo ? 1.0f : (gain * mid), - lowband_scratch, fill); + cm |= rec(f, rc, band, X, NULL, N, mbits, blocks, lowband, duration, + next_lowband_out1, next_level, stereo ? 1.0f : (gain * mid), + lowband_scratch, fill); } } } else { @@ -1159,44 +799,46 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, } if (q != 0) { - /* Finally do the actual quantization */ - cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), - f->spread, blocks, gain); + /* Finally do the actual (de)quantization */ + if (quant) { + cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), + f->spread, blocks, gain, f->scratch); + } else { + cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1), + f->spread, blocks, gain, f->scratch); + } } else { /* If there's no pulse, fill the band anyway */ - int j; uint32_t cm_mask = (1 << blocks) - 1; fill &= cm_mask; - if (!fill) { - for (j = 0; j < N; j++) - X[j] = 0.0f; - } else { + if (fill) { if (!lowband) { /* Noise */ - for (j = 0; j < N; j++) - X[j] = (((int32_t)celt_rng(f)) >> 20); + for (i = 0; i < N; i++) + X[i] = (((int32_t)celt_rng(f)) >> 20); cm = cm_mask; } else { /* Folded spectrum */ - for (j = 0; j < N; j++) { + for (i = 0; i < N; i++) { /* About 48 dB below the "normal" folding level */ - X[j] = lowband[j] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); + X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256); } cm = fill; } celt_renormalize_vector(X, N, gain); + } else { + memset(X, 0, N*sizeof(float)); } } } /* This code is used by the decoder and by the resynthesis-enabled encoder */ - if (dualstereo) { - int j; - if (N != 2) + if (stereo) { + if (N > 2) celt_stereo_merge(X, Y, mid, N); if (inv) { - for (j = 0; j < N; j++) - Y[j] *= -1; + for (i = 0; i < N; i++) + Y[i] *= -1; } } else if (level == 0) { int k; @@ -1204,7 +846,7 @@ uint32_t ff_celt_encode_band(CeltFrame *f, OpusRangeCoder *rc, const int band, /* Undo the sample reorganization going from time order to frequency order */ if (B0 > 1) celt_interleave_hadamard(f->scratch, X, N_B >> recombine, - B0<