X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Fopusenc.c;h=4068c4359470e3b8e62dc06269810c43d7596b9f;hb=793347a54579ee954b58d336b82eed4a1786de21;hp=79d20dc6e693c6140da89f162f904e109f5828c4;hpb=e5841b22ca83d9e300752d7ce6b4abfa4d509024;p=ffmpeg diff --git a/libavcodec/opusenc.c b/libavcodec/opusenc.c index 79d20dc6e69..4068c435947 100644 --- a/libavcodec/opusenc.c +++ b/libavcodec/opusenc.c @@ -255,7 +255,7 @@ static void celt_frame_mdct(OpusEncContext *s, CeltFrame *f) } } -static void celt_enc_tf(OpusRangeCoder *rc, CeltFrame *f) +static void celt_enc_tf(CeltFrame *f, OpusRangeCoder *rc) { int i, tf_select = 0, diff = 0, tf_changed = 0, tf_select_needed; int bits = f->transient ? 2 : 4; @@ -282,333 +282,6 @@ static void celt_enc_tf(OpusRangeCoder *rc, CeltFrame *f) f->tf_change[i] = ff_celt_tf_select[f->size][f->transient][tf_select][f->tf_change[i]]; } -void ff_celt_enc_bitalloc(OpusRangeCoder *rc, CeltFrame *f) -{ - int i, j, low, high, total, done, bandbits, remaining, tbits_8ths; - int skip_startband = f->start_band; - int skip_bit = 0; - int intensitystereo_bit = 0; - int dualstereo_bit = 0; - int dynalloc = 6; - int extrabits = 0; - - int *cap = f->caps; - int boost[CELT_MAX_BANDS]; - int trim_offset[CELT_MAX_BANDS]; - int threshold[CELT_MAX_BANDS]; - int bits1[CELT_MAX_BANDS]; - int bits2[CELT_MAX_BANDS]; - - /* Tell the spread to the decoder */ - if (opus_rc_tell(rc) + 4 <= f->framebits) - ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread); - else - f->spread = CELT_SPREAD_NORMAL; - - /* Generate static allocation caps */ - for (i = 0; i < CELT_MAX_BANDS; i++) { - cap[i] = (ff_celt_static_caps[f->size][f->channels - 1][i] + 64) - * ff_celt_freq_range[i] << (f->channels - 1) << f->size >> 2; - } - - /* Band boosts */ - tbits_8ths = f->framebits << 3; - for (i = f->start_band; i < f->end_band; i++) { - int quanta, b_dynalloc, boost_amount = f->alloc_boost[i]; - - boost[i] = 0; - - quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size; - quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta)); - b_dynalloc = dynalloc; - - while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < cap[i]) { - int is_boost = boost_amount--; - - ff_opus_rc_enc_log(rc, is_boost, b_dynalloc); - if (!is_boost) - break; - - boost[i] += quanta; - tbits_8ths -= quanta; - - b_dynalloc = 1; - } - - if (boost[i]) - dynalloc = FFMAX(2, dynalloc - 1); - } - - /* Put allocation trim */ - if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths) - ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim); - - /* Anti-collapse bit reservation */ - tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1; - f->anticollapse_needed = 0; - if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3)) - f->anticollapse_needed = 1 << 3; - tbits_8ths -= f->anticollapse_needed; - - /* Band skip bit reservation */ - if (tbits_8ths >= 1 << 3) - skip_bit = 1 << 3; - tbits_8ths -= skip_bit; - - /* Intensity/dual stereo bit reservation */ - if (f->channels == 2) { - intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band]; - if (intensitystereo_bit <= tbits_8ths) { - tbits_8ths -= intensitystereo_bit; - if (tbits_8ths >= 1 << 3) { - dualstereo_bit = 1 << 3; - tbits_8ths -= 1 << 3; - } - } else { - intensitystereo_bit = 0; - } - } - - /* Trim offsets */ - for (i = f->start_band; i < f->end_band; i++) { - int trim = f->alloc_trim - 5 - f->size; - int band = ff_celt_freq_range[i] * (f->end_band - i - 1); - int duration = f->size + 3; - int scale = duration + f->channels - 1; - - /* PVQ minimum allocation threshold, below this value the band is - * skipped */ - threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4, - f->channels << 3); - - trim_offset[i] = trim * (band << scale) >> 6; - - if (ff_celt_freq_range[i] << f->size == 1) - trim_offset[i] -= f->channels << 3; - } - - /* Bisection */ - low = 1; - high = CELT_VECTORS - 1; - while (low <= high) { - int center = (low + high) >> 1; - done = total = 0; - - for (i = f->end_band - 1; i >= f->start_band; i--) { - bandbits = ff_celt_freq_range[i] * ff_celt_static_alloc[center][i] - << (f->channels - 1) << f->size >> 2; - - if (bandbits) - bandbits = FFMAX(0, bandbits + trim_offset[i]); - bandbits += boost[i]; - - if (bandbits >= threshold[i] || done) { - done = 1; - total += FFMIN(bandbits, cap[i]); - } else if (bandbits >= f->channels << 3) - total += f->channels << 3; - } - - if (total > tbits_8ths) - high = center - 1; - else - low = center + 1; - } - high = low--; - - /* Bisection */ - for (i = f->start_band; i < f->end_band; i++) { - bits1[i] = ff_celt_freq_range[i] * ff_celt_static_alloc[low][i] - << (f->channels - 1) << f->size >> 2; - bits2[i] = high >= CELT_VECTORS ? cap[i] : - ff_celt_freq_range[i] * ff_celt_static_alloc[high][i] - << (f->channels - 1) << f->size >> 2; - - if (bits1[i]) - bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]); - if (bits2[i]) - bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]); - if (low) - bits1[i] += boost[i]; - bits2[i] += boost[i]; - - if (boost[i]) - skip_startband = i; - bits2[i] = FFMAX(0, bits2[i] - bits1[i]); - } - - /* Bisection */ - low = 0; - high = 1 << CELT_ALLOC_STEPS; - for (i = 0; i < CELT_ALLOC_STEPS; i++) { - int center = (low + high) >> 1; - done = total = 0; - - for (j = f->end_band - 1; j >= f->start_band; j--) { - bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS); - - if (bandbits >= threshold[j] || done) { - done = 1; - total += FFMIN(bandbits, cap[j]); - } else if (bandbits >= f->channels << 3) - total += f->channels << 3; - } - if (total > tbits_8ths) - high = center; - else - low = center; - } - - /* Bisection */ - done = total = 0; - for (i = f->end_band - 1; i >= f->start_band; i--) { - bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS); - - if (bandbits >= threshold[i] || done) - done = 1; - else - bandbits = (bandbits >= f->channels << 3) ? - f->channels << 3 : 0; - - bandbits = FFMIN(bandbits, cap[i]); - f->pulses[i] = bandbits; - total += bandbits; - } - - /* Band skipping */ - for (f->coded_bands = f->end_band; ; f->coded_bands--) { - int allocation; - j = f->coded_bands - 1; - - if (j == skip_startband) { - /* all remaining bands are not skipped */ - tbits_8ths += skip_bit; - break; - } - - /* determine the number of bits available for coding "do not skip" markers */ - remaining = tbits_8ths - total; - bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); - remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]); - allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j] - + FFMAX(0, remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band])); - - /* a "do not skip" marker is only coded if the allocation is - above the chosen threshold */ - if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) { - const int do_not_skip = f->coded_bands <= f->skip_band_floor; - ff_opus_rc_enc_log(rc, do_not_skip, 1); - if (do_not_skip) - break; - - total += 1 << 3; - allocation -= 1 << 3; - } - - /* the band is skipped, so reclaim its bits */ - total -= f->pulses[j]; - if (intensitystereo_bit) { - total -= intensitystereo_bit; - intensitystereo_bit = ff_celt_log2_frac[j - f->start_band]; - total += intensitystereo_bit; - } - - total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0; - } - - /* Encode stereo flags */ - if (intensitystereo_bit) { - f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands); - ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band); - } - if (f->intensity_stereo <= f->start_band) - tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */ - else if (dualstereo_bit) - ff_opus_rc_enc_log(rc, f->dual_stereo, 1); - - /* Supply the remaining bits in this frame to lower bands */ - remaining = tbits_8ths - total; - bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); - remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]); - for (i = f->start_band; i < f->coded_bands; i++) { - int bits = FFMIN(remaining, ff_celt_freq_range[i]); - - f->pulses[i] += bits + bandbits * ff_celt_freq_range[i]; - remaining -= bits; - } - - /* Finally determine the allocation */ - for (i = f->start_band; i < f->coded_bands; i++) { - int N = ff_celt_freq_range[i] << f->size; - int prev_extra = extrabits; - f->pulses[i] += extrabits; - - if (N > 1) { - int dof; // degrees of freedom - int temp; // dof * channels * log(dof) - int offset; // fine energy quantization offset, i.e. - // extra bits assigned over the standard - // totalbits/dof - int fine_bits, max_bits; - - extrabits = FFMAX(0, f->pulses[i] - cap[i]); - f->pulses[i] -= extrabits; - - /* intensity stereo makes use of an extra degree of freedom */ - dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo); - temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3)); - offset = (temp >> 1) - dof * CELT_FINE_OFFSET; - if (N == 2) /* dof=2 is the only case that doesn't fit the model */ - offset += dof << 1; - - /* grant an additional bias for the first and second pulses */ - if (f->pulses[i] + offset < 2 * (dof << 3)) - offset += temp >> 2; - else if (f->pulses[i] + offset < 3 * (dof << 3)) - offset += temp >> 3; - - fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3); - max_bits = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS); - - max_bits = FFMAX(max_bits, 0); - - f->fine_bits[i] = av_clip(fine_bits, 0, max_bits); - - /* if fine_bits was rounded down or capped, - give priority for the final fine energy pass */ - f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset); - - /* the remaining bits are assigned to PVQ */ - f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3; - } else { - /* all bits go to fine energy except for the sign bit */ - extrabits = FFMAX(0, f->pulses[i] - (f->channels << 3)); - f->pulses[i] -= extrabits; - f->fine_bits[i] = 0; - f->fine_priority[i] = 1; - } - - /* hand back a limited number of extra fine energy bits to this band */ - if (extrabits > 0) { - int fineextra = FFMIN(extrabits >> (f->channels + 2), - CELT_MAX_FINE_BITS - f->fine_bits[i]); - f->fine_bits[i] += fineextra; - - fineextra <<= f->channels + 2; - f->fine_priority[i] = (fineextra >= extrabits - prev_extra); - extrabits -= fineextra; - } - } - f->remaining = extrabits; - - /* skipped bands dedicate all of their bits for fine energy */ - for (; i < f->end_band; i++) { - f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3; - f->pulses[i] = 0; - f->fine_priority[i] = f->fine_bits[i] < 1; - } -} - static void celt_enc_quant_pfilter(OpusRangeCoder *rc, CeltFrame *f) { float gain = f->pf_gain; @@ -690,7 +363,7 @@ static void exp_quant_coarse(OpusRangeCoder *rc, CeltFrame *f, } } -static void celt_quant_coarse(OpusRangeCoder *rc, CeltFrame *f, +static void celt_quant_coarse(CeltFrame *f, OpusRangeCoder *rc, float last_energy[][CELT_MAX_BANDS]) { uint32_t inter, intra; @@ -710,7 +383,7 @@ static void celt_quant_coarse(OpusRangeCoder *rc, CeltFrame *f, } } -static void celt_quant_fine(OpusRangeCoder *rc, CeltFrame *f) +static void celt_quant_fine(CeltFrame *f, OpusRangeCoder *rc) { int i, ch; for (i = f->start_band; i < f->end_band; i++) { @@ -747,95 +420,6 @@ static void celt_quant_final(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f } } -static void celt_quant_bands(OpusRangeCoder *rc, CeltFrame *f) -{ - float lowband_scratch[8 * 22]; - float norm[2 * 8 * 100]; - - int totalbits = (f->framebits << 3) - f->anticollapse_needed; - - int update_lowband = 1; - int lowband_offset = 0; - - int i, j; - - for (i = f->start_band; i < f->end_band; i++) { - uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; - int band_offset = ff_celt_freq_bands[i] << f->size; - int band_size = ff_celt_freq_range[i] << f->size; - float *X = f->block[0].coeffs + band_offset; - float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL; - - int consumed = opus_rc_tell_frac(rc); - float *norm2 = norm + 8 * 100; - int effective_lowband = -1; - int b = 0; - - /* Compute how many bits we want to allocate to this band */ - if (i != f->start_band) - f->remaining -= consumed; - f->remaining2 = totalbits - consumed - 1; - if (i <= f->coded_bands - 1) { - int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i); - b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14); - } - - if (ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] && - (update_lowband || lowband_offset == 0)) - lowband_offset = i; - - /* Get a conservative estimate of the collapse_mask's for the bands we're - going to be folding from. */ - if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE || - f->blocks > 1 || f->tf_change[i] < 0)) { - int foldstart, foldend; - - /* This ensures we never repeat spectral content within one band */ - effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band], - ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]); - foldstart = lowband_offset; - while (ff_celt_freq_bands[--foldstart] > effective_lowband); - foldend = lowband_offset - 1; - while (ff_celt_freq_bands[++foldend] < effective_lowband + ff_celt_freq_range[i]); - - cm[0] = cm[1] = 0; - for (j = foldstart; j < foldend; j++) { - cm[0] |= f->block[0].collapse_masks[j]; - cm[1] |= f->block[f->channels - 1].collapse_masks[j]; - } - } - - if (f->dual_stereo && i == f->intensity_stereo) { - /* Switch off dual stereo to do intensity */ - f->dual_stereo = 0; - for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++) - norm[j] = (norm[j] + norm2[j]) / 2; - } - - if (f->dual_stereo) { - cm[0] = f->pvq->encode_band(f->pvq, f, rc, i, X, NULL, band_size, b / 2, f->blocks, - effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size, - norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]); - - cm[1] = f->pvq->encode_band(f->pvq, f, rc, i, Y, NULL, band_size, b / 2, f->blocks, - effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL, f->size, - norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]); - } else { - cm[0] = f->pvq->encode_band(f->pvq, f, rc, i, X, Y, band_size, b, f->blocks, - effective_lowband != -1 ? norm + (effective_lowband << f->size) : NULL, f->size, - norm + band_offset, 0, 1.0f, lowband_scratch, cm[0] | cm[1]); - cm[1] = cm[0]; - } - - f->block[0].collapse_masks[i] = (uint8_t)cm[0]; - f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1]; - f->remaining += f->pulses[i] + consumed; - - /* Update the folding position only as long as we have 1 bit/sample depth */ - update_lowband = (b > band_size << 3); - } -} - static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc, CeltFrame *f, int index) { @@ -883,11 +467,11 @@ static void celt_encode_frame(OpusEncContext *s, OpusRangeCoder *rc, ff_opus_rc_enc_log(rc, f->transient, 3); /* Main encoding */ - celt_quant_coarse(rc, f, s->last_quantized_energy); - celt_enc_tf (rc, f); - ff_celt_enc_bitalloc(rc, f); - celt_quant_fine (rc, f); - celt_quant_bands (rc, f); + celt_quant_coarse (f, rc, s->last_quantized_energy); + celt_enc_tf (f, rc); + ff_celt_bitalloc (f, rc, 1); + celt_quant_fine (f, rc); + ff_celt_quant_bands(f, rc); /* Anticollapse bit */ if (f->anticollapse_needed) @@ -1080,7 +664,7 @@ static av_cold int opus_encode_init(AVCodecContext *avctx) ff_af_queue_init(avctx, &s->afq); - if ((ret = ff_celt_pvq_init(&s->pvq)) < 0) + if ((ret = ff_celt_pvq_init(&s->pvq, 1)) < 0) return ret; if (!(s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT))) @@ -1117,6 +701,7 @@ static av_cold int opus_encode_init(AVCodecContext *avctx) s->frame[i].avctx = s->avctx; s->frame[i].seed = 0; s->frame[i].pvq = s->pvq; + s->frame[i].apply_phase_inv = 1; s->frame[i].block[0].emph_coeff = s->frame[i].block[1].emph_coeff = 0.0f; }