X-Git-Url: https://git.sesse.net/?a=blobdiff_plain;f=libavcodec%2Fra144.c;h=81a29086cae954ffe398222550abd5e9080007b2;hb=32b3ab9b60f05c1c1e82022e9f57a21a0e3e1ec4;hp=fb31714511331f392e961e732d4ac1d7ac5bdfa3;hpb=89a2713e660688175a40ce93e470b24421d27682;p=ffmpeg diff --git a/libavcodec/ra144.c b/libavcodec/ra144.c index fb317145113..81a29086cae 100644 --- a/libavcodec/ra144.c +++ b/libavcodec/ra144.c @@ -1,6 +1,9 @@ /* * Real Audio 1.0 (14.4K) - * Copyright (c) 2003 the ffmpeg project + * + * Copyright (c) 2008 Vitor Sessak + * Copyright (c) 2003 Nick Kurshev + * Based on public domain decoder at http://www.honeypot.net/audio * * This file is part of FFmpeg. * @@ -20,38 +23,42 @@ */ #include "avcodec.h" -#include "bitstream.h" +#include "get_bits.h" #include "ra144.h" +#include "celp_filters.h" -#define NBLOCKS 4 /* number of segments within a block */ -#define BLOCKSIZE 40 /* (quarter) block size in 16-bit words (80 bytes) */ -#define HALFBLOCK 20 /* BLOCKSIZE/2 */ -#define BUFFERSIZE 146 /* for do_output */ +#define NBLOCKS 4 ///< number of subblocks within a block +#define BLOCKSIZE 40 ///< subblock size in 16-bit words +#define BUFFERSIZE 146 ///< the size of the adaptive codebook typedef struct { unsigned int old_energy; ///< previous frame energy - /* the swapped buffers */ unsigned int lpc_tables[2][10]; - unsigned int *lpc_coef; ///< LPC coefficients - unsigned int *lpc_coef_old; ///< previous frame LPC coefficients - unsigned int lpc_refl_rms; - unsigned int lpc_refl_rms_old; - /** the current subblock padded by the last 10 values of the previous one*/ + /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame + * and lpc_coef[1] of the previous one. */ + unsigned int *lpc_coef[2]; + + unsigned int lpc_refl_rms[2]; + + /** The current subblock padded by the last 10 values of the previous one. */ int16_t curr_sblock[50]; - uint16_t adapt_cb[148]; ///< adaptive codebook + /** Adaptive codebook, its size is two units bigger to avoid a + * buffer overflow. */ + uint16_t adapt_cb[146+2]; } RA144Context; -static int ra144_decode_init(AVCodecContext * avctx) +static av_cold int ra144_decode_init(AVCodecContext * avctx) { RA144Context *ractx = avctx->priv_data; - ractx->lpc_coef = ractx->lpc_tables[0]; - ractx->lpc_coef_old = ractx->lpc_tables[1]; + ractx->lpc_coef[0] = ractx->lpc_tables[0]; + ractx->lpc_coef[1] = ractx->lpc_tables[1]; + avctx->sample_fmt = SAMPLE_FMT_S16; return 0; } @@ -61,54 +68,54 @@ static int ra144_decode_init(AVCodecContext * avctx) */ static int t_sqrt(unsigned int x) { - int s = 0; + int s = 2; while (x > 0xfff) { s++; - x = x >> 2; + x >>= 2; } - return (ff_sqrt(x << 20) << s) << 2; + return ff_sqrt(x << 20) << s; } /** * Evaluate the LPC filter coefficients from the reflection coefficients. * Does the inverse of the eval_refl() function. */ -static void eval_coefs(const int *refl, int *coefs) +static void eval_coefs(int *coefs, const int *refl) { int buffer[10]; int *b1 = buffer; int *b2 = coefs; - int x, y; + int i, j; - for (x=0; x < 10; x++) { - b1[x] = refl[x] << 4; + for (i=0; i < 10; i++) { + b1[i] = refl[i] << 4; - for (y=0; y < x; y++) - b1[y] = ((refl[x] * b2[x-y-1]) >> 12) + b2[y]; + for (j=0; j < i; j++) + b1[j] = ((refl[i] * b2[i-j-1]) >> 12) + b2[j]; FFSWAP(int *, b1, b2); } - for (x=0; x < 10; x++) - coefs[x] >>= 4; + for (i=0; i < 10; i++) + coefs[i] >>= 4; } -/* rotate block */ -static void rotate_block(const int16_t *source, int16_t *target, int offset) +/** + * Copy the last offset values of *source to *target. If those values are not + * enough to fill the target buffer, fill it with another copy of those values. + */ +static void copy_and_dup(int16_t *target, const int16_t *source, int offset) { source += BUFFERSIZE - offset; - if (offset > BLOCKSIZE) { - memcpy(target, source, BLOCKSIZE*sizeof(*target)); - } else { - memcpy(target, source, offset*sizeof(*target)); + memcpy(target, source, FFMIN(BLOCKSIZE, offset)*sizeof(*target)); + if (offset < BLOCKSIZE) memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target)); - } } -/* inverse root mean square */ -static int irms(const int16_t *data, int factor) +/** inverse root mean square */ +static int irms(const int16_t *data) { unsigned int i, sum = 0; @@ -118,70 +125,41 @@ static int irms(const int16_t *data, int factor) if (sum == 0) return 0; /* OOPS - division by zero */ - return (0x20000000 / (t_sqrt(sum) >> 8)) * factor; + return 0x20000000 / (t_sqrt(sum) >> 8); } -/* multiply/add wavetable */ -static void add_wav(int n, int skip_first, int *m, const int16_t *s1, - const int8_t *s2, const int8_t *s3, int16_t *dest) +static void add_wav(int16_t *dest, int n, int skip_first, int *m, + const int16_t *s1, const int8_t *s2, const int8_t *s3) { int i; int v[3]; v[0] = 0; for (i=!skip_first; i<3; i++) - v[i] = (gain_val_tab[n][i] * m[i]) >> (gain_exp_tab[n][i] + 1); - - for (i=0; i < BLOCKSIZE; i++) - dest[i] = ((*(s1++))*v[0] + (*(s2++))*v[1] + (*(s3++))*v[2]) >> 12; -} - -/** - * LPC Filter. Each output value is predicted from the 10 previous computed - * ones. It overwrites the input with the output. - * - * @param in the input of the filter. It should be an array of size len + 10. - * The 10 first input values are used to evaluate the first filtered one. - */ -static void lpc_filter(const int16_t *lpc_coefs, uint16_t *in, int len) -{ - int x, i; - int16_t *ptr = in; - - for (i=0; i> gain_exp_tab[n]; - for(x=0; x<10; x++) - sum += lpc_coefs[9-x] * ptr[x]; - - sum >>= 12; - - new_val = ptr[10] - sum; - - if (new_val < -32768 || new_val > 32767) { - memset(in, 0, 100); - return; - } - - ptr[10] = new_val; - ptr++; + if (v[0]) { + for (i=0; i < BLOCKSIZE; i++) + dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12; + } else { + for (i=0; i < BLOCKSIZE; i++) + dest[i] = ( s2[i]*v[1] + s3[i]*v[2]) >> 12; } } -static unsigned int rescale_rms(int rms, int energy) +static unsigned int rescale_rms(unsigned int rms, unsigned int energy) { return (rms * energy) >> 10; } static unsigned int rms(const int *data) { - int x; + int i; unsigned int res = 0x10000; - int b = 0; + int b = 10; - for (x=0; x<10; x++) { - res = (((0x1000000 - (*data) * (*data)) >> 12) * res) >> 12; + for (i=0; i < 10; i++) { + res = (((0x1000000 - data[i]*data[i]) >> 12) * res) >> 12; if (res == 0) return 0; @@ -190,20 +168,13 @@ static unsigned int rms(const int *data) b++; res <<= 2; } - data++; } - if (res > 0) - res = t_sqrt(res); - - res >>= (b + 10); - return res; + return t_sqrt(res) >> b; } -/* do quarter-block output */ -static void do_output_subblock(RA144Context *ractx, - const uint16_t *lpc_coefs, unsigned int gval, - GetBitContext *gb) +static void do_output_subblock(RA144Context *ractx, const uint16_t *lpc_coefs, + int gval, GetBitContext *gb) { uint16_t buffer_a[40]; uint16_t *block; @@ -214,52 +185,50 @@ static void do_output_subblock(RA144Context *ractx, int m[3]; if (cba_idx) { - cba_idx += HALFBLOCK - 1; - rotate_block(ractx->adapt_cb, buffer_a, cba_idx); - m[0] = irms(buffer_a, gval) >> 12; + cba_idx += BLOCKSIZE/2 - 1; + copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx); + m[0] = (irms(buffer_a) * gval) >> 12; } else { m[0] = 0; } - m[1] = ((cb1_base[cb1_idx] >> 4) * gval) >> 8; - m[2] = ((cb2_base[cb2_idx] >> 4) * gval) >> 8; + m[1] = (cb1_base[cb1_idx] * gval) >> 8; + m[2] = (cb2_base[cb2_idx] * gval) >> 8; memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE, - (BUFFERSIZE - BLOCKSIZE) * 2); + (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb)); block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE; - add_wav(gain, cba_idx, m, buffer_a, cb1_vects[cb1_idx], cb2_vects[cb2_idx], - block); + add_wav(block, gain, cba_idx, m, cba_idx? buffer_a: NULL, + cb1_vects[cb1_idx], cb2_vects[cb2_idx]); memcpy(ractx->curr_sblock, ractx->curr_sblock + 40, 10*sizeof(*ractx->curr_sblock)); - memcpy(ractx->curr_sblock + 10, block, - BLOCKSIZE*sizeof(*ractx->curr_sblock)); - lpc_filter(lpc_coefs, ractx->curr_sblock, BLOCKSIZE); + if (ff_celp_lp_synthesis_filter(ractx->curr_sblock + 10, lpc_coefs, + block, BLOCKSIZE, 10, 1, 0xfff)) + memset(ractx->curr_sblock, 0, 50*sizeof(*ractx->curr_sblock)); } static void int_to_int16(int16_t *out, const int *inp) { int i; - for (i=0; i<30; i++) - *(out++) = *(inp++); + for (i=0; i < 30; i++) + *out++ = *inp++; } /** * Evaluate the reflection coefficients from the filter coefficients. * Does the inverse of the eval_coefs() function. * - * @return 1 if one of the reflection coefficients is of magnitude greater than + * @return 1 if one of the reflection coefficients is greater than * 4095, 0 if not. */ -static int eval_refl(const int16_t *coefs, int *refl, RA144Context *ractx) +static int eval_refl(int *refl, const int16_t *coefs, RA144Context *ractx) { - int retval = 0; - int b, c, i; - unsigned int u; + int b, i, j; int buffer1[10]; int buffer2[10]; int *bp1 = buffer1; @@ -268,82 +237,74 @@ static int eval_refl(const int16_t *coefs, int *refl, RA144Context *ractx) for (i=0; i < 10; i++) buffer2[i] = coefs[i]; - u = refl[9] = bp2[9]; + refl[9] = bp2[9]; - if (u + 0x1000 > 0x1fff) { + if ((unsigned) bp2[9] + 0x1000 > 0x1fff) { av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n"); - return 0; + return 1; } - for (c=8; c >= 0; c--) { - if (u == 0x1000) - u++; + for (i=8; i >= 0; i--) { + b = 0x1000-((bp2[i+1] * bp2[i+1]) >> 12); - if (u == 0xfffff000) - u--; + if (!b) + b = -2; - b = 0x1000-((u * u) >> 12); + for (j=0; j <= i; j++) + bp1[j] = ((bp2[j] - ((refl[i+1] * bp2[i-j]) >> 12)) * (0x1000000 / b)) >> 12; - if (b == 0) - b++; - - for (u=0; u<=c; u++) - bp1[u] = ((bp2[u] - ((refl[c+1] * bp2[c-u]) >> 12)) * (0x1000000 / b)) >> 12; + if ((unsigned) bp1[i] + 0x1000 > 0x1fff) + return 1; - refl[c] = u = bp1[c]; - - if ((u + 0x1000) > 0x1fff) - retval = 1; + refl[i] = bp1[i]; FFSWAP(int *, bp1, bp2); } - return retval; + return 0; } -static int interp(RA144Context *ractx, int16_t *out, int block_num, - int copynew, int energy) +static int interp(RA144Context *ractx, int16_t *out, int a, + int copyold, int energy) { int work[10]; - int a = block_num + 1; int b = NBLOCKS - a; - int x; + int i; - // Interpolate block coefficients from the this frame forth block and - // last frame forth block - for (x=0; x<30; x++) - out[x] = (a * ractx->lpc_coef[x] + b * ractx->lpc_coef_old[x])>> 2; + // Interpolate block coefficients from the this frame's forth block and + // last frame's forth block. + for (i=0; i<30; i++) + out[i] = (a * ractx->lpc_coef[0][i] + b * ractx->lpc_coef[1][i])>> 2; - if (eval_refl(out, work, ractx)) { + if (eval_refl(work, out, ractx)) { // The interpolated coefficients are unstable, copy either new or old - // coefficients - if (copynew) { - int_to_int16(out, ractx->lpc_coef); - return rescale_rms(ractx->lpc_refl_rms, energy); - } else { - int_to_int16(out, ractx->lpc_coef_old); - return rescale_rms(ractx->lpc_refl_rms_old, energy); - } + // coefficients. + int_to_int16(out, ractx->lpc_coef[copyold]); + return rescale_rms(ractx->lpc_refl_rms[copyold], energy); } else { return rescale_rms(rms(work), energy); } } -/* Uncompress one block (20 bytes -> 160*2 bytes) */ -static int ra144_decode_frame(AVCodecContext * avctx, - void *vdata, int *data_size, - const uint8_t * buf, int buf_size) +/** Uncompress one block (20 bytes -> 160*2 bytes). */ +static int ra144_decode_frame(AVCodecContext * avctx, void *vdata, + int *data_size, AVPacket *avpkt) { + const uint8_t *buf = avpkt->data; + int buf_size = avpkt->size; static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2}; unsigned int refl_rms[4]; // RMS of the reflection coefficients uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame - int i, c; + int i, j; int16_t *data = vdata; unsigned int energy; RA144Context *ractx = avctx->priv_data; GetBitContext gb; + if (*data_size < 2*160) + return -1; + if(buf_size < 20) { av_log(avctx, AV_LOG_ERROR, "Frame too small (%d bytes). Truncated file?\n", buf_size); @@ -353,34 +314,32 @@ static int ra144_decode_frame(AVCodecContext * avctx, init_get_bits(&gb, buf, 20 * 8); for (i=0; i<10; i++) - // "<< 1"? Doesn't this make one value out of two of the table useless? - lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i]) << 1]; + lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])]; - eval_coefs(lpc_refl, ractx->lpc_coef); - ractx->lpc_refl_rms = rms(lpc_refl); + eval_coefs(ractx->lpc_coef[0], lpc_refl); + ractx->lpc_refl_rms[0] = rms(lpc_refl); - energy = energy_tab[get_bits(&gb, 5) << 1]; // Useless table entries? + energy = energy_tab[get_bits(&gb, 5)]; - refl_rms[0] = interp(ractx, block_coefs[0], 0, 0, ractx->old_energy); - refl_rms[1] = interp(ractx, block_coefs[1], 1, energy > ractx->old_energy, + refl_rms[0] = interp(ractx, block_coefs[0], 1, 1, ractx->old_energy); + refl_rms[1] = interp(ractx, block_coefs[1], 2, energy <= ractx->old_energy, t_sqrt(energy*ractx->old_energy) >> 12); - refl_rms[2] = interp(ractx, block_coefs[2], 2, 1, energy); - refl_rms[3] = rescale_rms(ractx->lpc_refl_rms, energy); + refl_rms[2] = interp(ractx, block_coefs[2], 3, 0, energy); + refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy); - int_to_int16(block_coefs[3], ractx->lpc_coef); + int_to_int16(block_coefs[3], ractx->lpc_coef[0]); - /* do output */ - for (c=0; c<4; c++) { - do_output_subblock(ractx, block_coefs[c], refl_rms[c], &gb); + for (i=0; i < 4; i++) { + do_output_subblock(ractx, block_coefs[i], refl_rms[i], &gb); - for (i=0; icurr_sblock[i + 10] << 2); + for (j=0; j < BLOCKSIZE; j++) + *data++ = av_clip_int16(ractx->curr_sblock[j + 10] << 2); } ractx->old_energy = energy; - ractx->lpc_refl_rms_old = ractx->lpc_refl_rms; + ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0]; - FFSWAP(unsigned int *, ractx->lpc_coef_old, ractx->lpc_coef); + FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]); *data_size = 2*160; return 20;